forked from lijiext/lammps
490 lines
16 KiB
Fortran
490 lines
16 KiB
Fortran
*> \brief \b DSTEBZ
|
|
*
|
|
* =========== DOCUMENTATION ===========
|
|
*
|
|
* Online html documentation available at
|
|
* http://www.netlib.org/lapack/explore-html/
|
|
*
|
|
*> \htmlonly
|
|
*> Download DSTEDC + dependencies
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dstedc.f">
|
|
*> [TGZ]</a>
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dstedc.f">
|
|
*> [ZIP]</a>
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dstedc.f">
|
|
*> [TXT]</a>
|
|
*> \endhtmlonly
|
|
*
|
|
* Definition:
|
|
* ===========
|
|
*
|
|
* SUBROUTINE DSTEDC( COMPZ, N, D, E, Z, LDZ, WORK, LWORK, IWORK,
|
|
* LIWORK, INFO )
|
|
*
|
|
* .. Scalar Arguments ..
|
|
* CHARACTER COMPZ
|
|
* INTEGER INFO, LDZ, LIWORK, LWORK, N
|
|
* ..
|
|
* .. Array Arguments ..
|
|
* INTEGER IWORK( * )
|
|
* DOUBLE PRECISION D( * ), E( * ), WORK( * ), Z( LDZ, * )
|
|
* ..
|
|
*
|
|
*
|
|
*> \par Purpose:
|
|
* =============
|
|
*>
|
|
*> \verbatim
|
|
*>
|
|
*> DSTEDC computes all eigenvalues and, optionally, eigenvectors of a
|
|
*> symmetric tridiagonal matrix using the divide and conquer method.
|
|
*> The eigenvectors of a full or band real symmetric matrix can also be
|
|
*> found if DSYTRD or DSPTRD or DSBTRD has been used to reduce this
|
|
*> matrix to tridiagonal form.
|
|
*>
|
|
*> This code makes very mild assumptions about floating point
|
|
*> arithmetic. It will work on machines with a guard digit in
|
|
*> add/subtract, or on those binary machines without guard digits
|
|
*> which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or Cray-2.
|
|
*> It could conceivably fail on hexadecimal or decimal machines
|
|
*> without guard digits, but we know of none. See DLAED3 for details.
|
|
*> \endverbatim
|
|
*
|
|
* Arguments:
|
|
* ==========
|
|
*
|
|
*> \param[in] COMPZ
|
|
*> \verbatim
|
|
*> COMPZ is CHARACTER*1
|
|
*> = 'N': Compute eigenvalues only.
|
|
*> = 'I': Compute eigenvectors of tridiagonal matrix also.
|
|
*> = 'V': Compute eigenvectors of original dense symmetric
|
|
*> matrix also. On entry, Z contains the orthogonal
|
|
*> matrix used to reduce the original matrix to
|
|
*> tridiagonal form.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] N
|
|
*> \verbatim
|
|
*> N is INTEGER
|
|
*> The dimension of the symmetric tridiagonal matrix. N >= 0.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in,out] D
|
|
*> \verbatim
|
|
*> D is DOUBLE PRECISION array, dimension (N)
|
|
*> On entry, the diagonal elements of the tridiagonal matrix.
|
|
*> On exit, if INFO = 0, the eigenvalues in ascending order.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in,out] E
|
|
*> \verbatim
|
|
*> E is DOUBLE PRECISION array, dimension (N-1)
|
|
*> On entry, the subdiagonal elements of the tridiagonal matrix.
|
|
*> On exit, E has been destroyed.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in,out] Z
|
|
*> \verbatim
|
|
*> Z is DOUBLE PRECISION array, dimension (LDZ,N)
|
|
*> On entry, if COMPZ = 'V', then Z contains the orthogonal
|
|
*> matrix used in the reduction to tridiagonal form.
|
|
*> On exit, if INFO = 0, then if COMPZ = 'V', Z contains the
|
|
*> orthonormal eigenvectors of the original symmetric matrix,
|
|
*> and if COMPZ = 'I', Z contains the orthonormal eigenvectors
|
|
*> of the symmetric tridiagonal matrix.
|
|
*> If COMPZ = 'N', then Z is not referenced.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LDZ
|
|
*> \verbatim
|
|
*> LDZ is INTEGER
|
|
*> The leading dimension of the array Z. LDZ >= 1.
|
|
*> If eigenvectors are desired, then LDZ >= max(1,N).
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] WORK
|
|
*> \verbatim
|
|
*> WORK is DOUBLE PRECISION array,
|
|
*> dimension (LWORK)
|
|
*> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LWORK
|
|
*> \verbatim
|
|
*> LWORK is INTEGER
|
|
*> The dimension of the array WORK.
|
|
*> If COMPZ = 'N' or N <= 1 then LWORK must be at least 1.
|
|
*> If COMPZ = 'V' and N > 1 then LWORK must be at least
|
|
*> ( 1 + 3*N + 2*N*lg N + 4*N**2 ),
|
|
*> where lg( N ) = smallest integer k such
|
|
*> that 2**k >= N.
|
|
*> If COMPZ = 'I' and N > 1 then LWORK must be at least
|
|
*> ( 1 + 4*N + N**2 ).
|
|
*> Note that for COMPZ = 'I' or 'V', then if N is less than or
|
|
*> equal to the minimum divide size, usually 25, then LWORK need
|
|
*> only be max(1,2*(N-1)).
|
|
*>
|
|
*> If LWORK = -1, then a workspace query is assumed; the routine
|
|
*> only calculates the optimal size of the WORK array, returns
|
|
*> this value as the first entry of the WORK array, and no error
|
|
*> message related to LWORK is issued by XERBLA.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] IWORK
|
|
*> \verbatim
|
|
*> IWORK is INTEGER array, dimension (MAX(1,LIWORK))
|
|
*> On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LIWORK
|
|
*> \verbatim
|
|
*> LIWORK is INTEGER
|
|
*> The dimension of the array IWORK.
|
|
*> If COMPZ = 'N' or N <= 1 then LIWORK must be at least 1.
|
|
*> If COMPZ = 'V' and N > 1 then LIWORK must be at least
|
|
*> ( 6 + 6*N + 5*N*lg N ).
|
|
*> If COMPZ = 'I' and N > 1 then LIWORK must be at least
|
|
*> ( 3 + 5*N ).
|
|
*> Note that for COMPZ = 'I' or 'V', then if N is less than or
|
|
*> equal to the minimum divide size, usually 25, then LIWORK
|
|
*> need only be 1.
|
|
*>
|
|
*> If LIWORK = -1, then a workspace query is assumed; the
|
|
*> routine only calculates the optimal size of the IWORK array,
|
|
*> returns this value as the first entry of the IWORK array, and
|
|
*> no error message related to LIWORK is issued by XERBLA.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] INFO
|
|
*> \verbatim
|
|
*> INFO is INTEGER
|
|
*> = 0: successful exit.
|
|
*> < 0: if INFO = -i, the i-th argument had an illegal value.
|
|
*> > 0: The algorithm failed to compute an eigenvalue while
|
|
*> working on the submatrix lying in rows and columns
|
|
*> INFO/(N+1) through mod(INFO,N+1).
|
|
*> \endverbatim
|
|
*
|
|
* Authors:
|
|
* ========
|
|
*
|
|
*> \author Univ. of Tennessee
|
|
*> \author Univ. of California Berkeley
|
|
*> \author Univ. of Colorado Denver
|
|
*> \author NAG Ltd.
|
|
*
|
|
*> \date November 2011
|
|
*
|
|
*> \ingroup auxOTHERcomputational
|
|
*
|
|
*> \par Contributors:
|
|
* ==================
|
|
*>
|
|
*> Jeff Rutter, Computer Science Division, University of California
|
|
*> at Berkeley, USA \n
|
|
*> Modified by Francoise Tisseur, University of Tennessee
|
|
*>
|
|
* =====================================================================
|
|
SUBROUTINE DSTEDC( COMPZ, N, D, E, Z, LDZ, WORK, LWORK, IWORK,
|
|
$ LIWORK, INFO )
|
|
*
|
|
* -- LAPACK computational routine (version 3.4.0) --
|
|
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
|
* November 2011
|
|
*
|
|
* .. Scalar Arguments ..
|
|
CHARACTER COMPZ
|
|
INTEGER INFO, LDZ, LIWORK, LWORK, N
|
|
* ..
|
|
* .. Array Arguments ..
|
|
INTEGER IWORK( * )
|
|
DOUBLE PRECISION D( * ), E( * ), WORK( * ), Z( LDZ, * )
|
|
* ..
|
|
*
|
|
* =====================================================================
|
|
*
|
|
* .. Parameters ..
|
|
DOUBLE PRECISION ZERO, ONE, TWO
|
|
PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0, TWO = 2.0D0 )
|
|
* ..
|
|
* .. Local Scalars ..
|
|
LOGICAL LQUERY
|
|
INTEGER FINISH, I, ICOMPZ, II, J, K, LGN, LIWMIN,
|
|
$ LWMIN, M, SMLSIZ, START, STOREZ, STRTRW
|
|
DOUBLE PRECISION EPS, ORGNRM, P, TINY
|
|
* ..
|
|
* .. External Functions ..
|
|
LOGICAL LSAME
|
|
INTEGER ILAENV
|
|
DOUBLE PRECISION DLAMCH, DLANST
|
|
EXTERNAL LSAME, ILAENV, DLAMCH, DLANST
|
|
* ..
|
|
* .. External Subroutines ..
|
|
EXTERNAL DGEMM, DLACPY, DLAED0, DLASCL, DLASET, DLASRT,
|
|
$ DSTEQR, DSTERF, DSWAP, XERBLA
|
|
* ..
|
|
* .. Intrinsic Functions ..
|
|
INTRINSIC ABS, DBLE, INT, LOG, MAX, MOD, SQRT
|
|
* ..
|
|
* .. Executable Statements ..
|
|
*
|
|
* Test the input parameters.
|
|
*
|
|
INFO = 0
|
|
LQUERY = ( LWORK.EQ.-1 .OR. LIWORK.EQ.-1 )
|
|
*
|
|
IF( LSAME( COMPZ, 'N' ) ) THEN
|
|
ICOMPZ = 0
|
|
ELSE IF( LSAME( COMPZ, 'V' ) ) THEN
|
|
ICOMPZ = 1
|
|
ELSE IF( LSAME( COMPZ, 'I' ) ) THEN
|
|
ICOMPZ = 2
|
|
ELSE
|
|
ICOMPZ = -1
|
|
END IF
|
|
IF( ICOMPZ.LT.0 ) THEN
|
|
INFO = -1
|
|
ELSE IF( N.LT.0 ) THEN
|
|
INFO = -2
|
|
ELSE IF( ( LDZ.LT.1 ) .OR.
|
|
$ ( ICOMPZ.GT.0 .AND. LDZ.LT.MAX( 1, N ) ) ) THEN
|
|
INFO = -6
|
|
END IF
|
|
*
|
|
IF( INFO.EQ.0 ) THEN
|
|
*
|
|
* Compute the workspace requirements
|
|
*
|
|
SMLSIZ = ILAENV( 9, 'DSTEDC', ' ', 0, 0, 0, 0 )
|
|
IF( N.LE.1 .OR. ICOMPZ.EQ.0 ) THEN
|
|
LIWMIN = 1
|
|
LWMIN = 1
|
|
ELSE IF( N.LE.SMLSIZ ) THEN
|
|
LIWMIN = 1
|
|
LWMIN = 2*( N - 1 )
|
|
ELSE
|
|
LGN = INT( LOG( DBLE( N ) )/LOG( TWO ) )
|
|
IF( 2**LGN.LT.N )
|
|
$ LGN = LGN + 1
|
|
IF( 2**LGN.LT.N )
|
|
$ LGN = LGN + 1
|
|
IF( ICOMPZ.EQ.1 ) THEN
|
|
LWMIN = 1 + 3*N + 2*N*LGN + 4*N**2
|
|
LIWMIN = 6 + 6*N + 5*N*LGN
|
|
ELSE IF( ICOMPZ.EQ.2 ) THEN
|
|
LWMIN = 1 + 4*N + N**2
|
|
LIWMIN = 3 + 5*N
|
|
END IF
|
|
END IF
|
|
WORK( 1 ) = LWMIN
|
|
IWORK( 1 ) = LIWMIN
|
|
*
|
|
IF( LWORK.LT.LWMIN .AND. .NOT. LQUERY ) THEN
|
|
INFO = -8
|
|
ELSE IF( LIWORK.LT.LIWMIN .AND. .NOT. LQUERY ) THEN
|
|
INFO = -10
|
|
END IF
|
|
END IF
|
|
*
|
|
IF( INFO.NE.0 ) THEN
|
|
CALL XERBLA( 'DSTEDC', -INFO )
|
|
RETURN
|
|
ELSE IF (LQUERY) THEN
|
|
RETURN
|
|
END IF
|
|
*
|
|
* Quick return if possible
|
|
*
|
|
IF( N.EQ.0 )
|
|
$ RETURN
|
|
IF( N.EQ.1 ) THEN
|
|
IF( ICOMPZ.NE.0 )
|
|
$ Z( 1, 1 ) = ONE
|
|
RETURN
|
|
END IF
|
|
*
|
|
* If the following conditional clause is removed, then the routine
|
|
* will use the Divide and Conquer routine to compute only the
|
|
* eigenvalues, which requires (3N + 3N**2) real workspace and
|
|
* (2 + 5N + 2N lg(N)) integer workspace.
|
|
* Since on many architectures DSTERF is much faster than any other
|
|
* algorithm for finding eigenvalues only, it is used here
|
|
* as the default. If the conditional clause is removed, then
|
|
* information on the size of workspace needs to be changed.
|
|
*
|
|
* If COMPZ = 'N', use DSTERF to compute the eigenvalues.
|
|
*
|
|
IF( ICOMPZ.EQ.0 ) THEN
|
|
CALL DSTERF( N, D, E, INFO )
|
|
GO TO 50
|
|
END IF
|
|
*
|
|
* If N is smaller than the minimum divide size (SMLSIZ+1), then
|
|
* solve the problem with another solver.
|
|
*
|
|
IF( N.LE.SMLSIZ ) THEN
|
|
*
|
|
CALL DSTEQR( COMPZ, N, D, E, Z, LDZ, WORK, INFO )
|
|
*
|
|
ELSE
|
|
*
|
|
* If COMPZ = 'V', the Z matrix must be stored elsewhere for later
|
|
* use.
|
|
*
|
|
IF( ICOMPZ.EQ.1 ) THEN
|
|
STOREZ = 1 + N*N
|
|
ELSE
|
|
STOREZ = 1
|
|
END IF
|
|
*
|
|
IF( ICOMPZ.EQ.2 ) THEN
|
|
CALL DLASET( 'Full', N, N, ZERO, ONE, Z, LDZ )
|
|
END IF
|
|
*
|
|
* Scale.
|
|
*
|
|
ORGNRM = DLANST( 'M', N, D, E )
|
|
IF( ORGNRM.EQ.ZERO )
|
|
$ GO TO 50
|
|
*
|
|
EPS = DLAMCH( 'Epsilon' )
|
|
*
|
|
START = 1
|
|
*
|
|
* while ( START <= N )
|
|
*
|
|
10 CONTINUE
|
|
IF( START.LE.N ) THEN
|
|
*
|
|
* Let FINISH be the position of the next subdiagonal entry
|
|
* such that E( FINISH ) <= TINY or FINISH = N if no such
|
|
* subdiagonal exists. The matrix identified by the elements
|
|
* between START and FINISH constitutes an independent
|
|
* sub-problem.
|
|
*
|
|
FINISH = START
|
|
20 CONTINUE
|
|
IF( FINISH.LT.N ) THEN
|
|
TINY = EPS*SQRT( ABS( D( FINISH ) ) )*
|
|
$ SQRT( ABS( D( FINISH+1 ) ) )
|
|
IF( ABS( E( FINISH ) ).GT.TINY ) THEN
|
|
FINISH = FINISH + 1
|
|
GO TO 20
|
|
END IF
|
|
END IF
|
|
*
|
|
* (Sub) Problem determined. Compute its size and solve it.
|
|
*
|
|
M = FINISH - START + 1
|
|
IF( M.EQ.1 ) THEN
|
|
START = FINISH + 1
|
|
GO TO 10
|
|
END IF
|
|
IF( M.GT.SMLSIZ ) THEN
|
|
*
|
|
* Scale.
|
|
*
|
|
ORGNRM = DLANST( 'M', M, D( START ), E( START ) )
|
|
CALL DLASCL( 'G', 0, 0, ORGNRM, ONE, M, 1, D( START ), M,
|
|
$ INFO )
|
|
CALL DLASCL( 'G', 0, 0, ORGNRM, ONE, M-1, 1, E( START ),
|
|
$ M-1, INFO )
|
|
*
|
|
IF( ICOMPZ.EQ.1 ) THEN
|
|
STRTRW = 1
|
|
ELSE
|
|
STRTRW = START
|
|
END IF
|
|
CALL DLAED0( ICOMPZ, N, M, D( START ), E( START ),
|
|
$ Z( STRTRW, START ), LDZ, WORK( 1 ), N,
|
|
$ WORK( STOREZ ), IWORK, INFO )
|
|
IF( INFO.NE.0 ) THEN
|
|
INFO = ( INFO / ( M+1 )+START-1 )*( N+1 ) +
|
|
$ MOD( INFO, ( M+1 ) ) + START - 1
|
|
GO TO 50
|
|
END IF
|
|
*
|
|
* Scale back.
|
|
*
|
|
CALL DLASCL( 'G', 0, 0, ONE, ORGNRM, M, 1, D( START ), M,
|
|
$ INFO )
|
|
*
|
|
ELSE
|
|
IF( ICOMPZ.EQ.1 ) THEN
|
|
*
|
|
* Since QR won't update a Z matrix which is larger than
|
|
* the length of D, we must solve the sub-problem in a
|
|
* workspace and then multiply back into Z.
|
|
*
|
|
CALL DSTEQR( 'I', M, D( START ), E( START ), WORK, M,
|
|
$ WORK( M*M+1 ), INFO )
|
|
CALL DLACPY( 'A', N, M, Z( 1, START ), LDZ,
|
|
$ WORK( STOREZ ), N )
|
|
CALL DGEMM( 'N', 'N', N, M, M, ONE,
|
|
$ WORK( STOREZ ), N, WORK, M, ZERO,
|
|
$ Z( 1, START ), LDZ )
|
|
ELSE IF( ICOMPZ.EQ.2 ) THEN
|
|
CALL DSTEQR( 'I', M, D( START ), E( START ),
|
|
$ Z( START, START ), LDZ, WORK, INFO )
|
|
ELSE
|
|
CALL DSTERF( M, D( START ), E( START ), INFO )
|
|
END IF
|
|
IF( INFO.NE.0 ) THEN
|
|
INFO = START*( N+1 ) + FINISH
|
|
GO TO 50
|
|
END IF
|
|
END IF
|
|
*
|
|
START = FINISH + 1
|
|
GO TO 10
|
|
END IF
|
|
*
|
|
* endwhile
|
|
*
|
|
* If the problem split any number of times, then the eigenvalues
|
|
* will not be properly ordered. Here we permute the eigenvalues
|
|
* (and the associated eigenvectors) into ascending order.
|
|
*
|
|
IF( M.NE.N ) THEN
|
|
IF( ICOMPZ.EQ.0 ) THEN
|
|
*
|
|
* Use Quick Sort
|
|
*
|
|
CALL DLASRT( 'I', N, D, INFO )
|
|
*
|
|
ELSE
|
|
*
|
|
* Use Selection Sort to minimize swaps of eigenvectors
|
|
*
|
|
DO 40 II = 2, N
|
|
I = II - 1
|
|
K = I
|
|
P = D( I )
|
|
DO 30 J = II, N
|
|
IF( D( J ).LT.P ) THEN
|
|
K = J
|
|
P = D( J )
|
|
END IF
|
|
30 CONTINUE
|
|
IF( K.NE.I ) THEN
|
|
D( K ) = D( I )
|
|
D( I ) = P
|
|
CALL DSWAP( N, Z( 1, I ), 1, Z( 1, K ), 1 )
|
|
END IF
|
|
40 CONTINUE
|
|
END IF
|
|
END IF
|
|
END IF
|
|
*
|
|
50 CONTINUE
|
|
WORK( 1 ) = LWMIN
|
|
IWORK( 1 ) = LIWMIN
|
|
*
|
|
RETURN
|
|
*
|
|
* End of DSTEDC
|
|
*
|
|
END
|