lammps/lib/gpu/lal_coul_long_ext.cpp

124 lines
4.1 KiB
C++

/***************************************************************************
coul_long_ext.cpp
-------------------
Axel Kohlmeyer (Temple)
Functions for LAMMPS access to coul/long acceleration routines.
__________________________________________________________________________
This file is part of the LAMMPS Accelerator Library (LAMMPS_AL)
__________________________________________________________________________
begin : July 2011
email : a.kohlmeyer@temple.edu
***************************************************************************/
#include <iostream>
#include <cassert>
#include <math.h>
#include "lal_coul_long.h"
using namespace std;
using namespace LAMMPS_AL;
static CoulLong<PRECISION,ACC_PRECISION> CLMF;
// ---------------------------------------------------------------------------
// Allocate memory on host and device and copy constants to device
// ---------------------------------------------------------------------------
int cl_gpu_init(const int inum, const int nall, const int max_nbors,
const int maxspecial, const double cell_size, int &gpu_mode,
FILE *screen, double host_cut_coulsq, double *host_special_coul,
const double qqrd2e, const double g_ewald) {
CLMF.clear();
gpu_mode=CLMF.device->gpu_mode();
double gpu_split=CLMF.device->particle_split();
int first_gpu=CLMF.device->first_device();
int last_gpu=CLMF.device->last_device();
int world_me=CLMF.device->world_me();
int gpu_rank=CLMF.device->gpu_rank();
int procs_per_gpu=CLMF.device->procs_per_gpu();
CLMF.device->init_message(screen,"coul/long",first_gpu,last_gpu);
bool message=false;
if (CLMF.device->replica_me()==0 && screen)
message=true;
if (message) {
fprintf(screen,"Initializing GPU and compiling on process 0...");
fflush(screen);
}
int init_ok=0;
if (world_me==0)
init_ok=CLMF.init(inum, nall, 300, maxspecial, cell_size, gpu_split,
screen, host_cut_coulsq, host_special_coul, qqrd2e,
g_ewald);
CLMF.device->world_barrier();
if (message)
fprintf(screen,"Done.\n");
for (int i=0; i<procs_per_gpu; i++) {
if (message) {
if (last_gpu-first_gpu==0)
fprintf(screen,"Initializing GPU %d on core %d...",first_gpu,i);
else
fprintf(screen,"Initializing GPUs %d-%d on core %d...",first_gpu,
last_gpu,i);
fflush(screen);
}
if (gpu_rank==i && world_me!=0)
init_ok=CLMF.init(inum, nall, 300, maxspecial, cell_size, gpu_split,
screen, host_cut_coulsq, host_special_coul,
qqrd2e, g_ewald);
CLMF.device->gpu_barrier();
if (message)
fprintf(screen,"Done.\n");
}
if (message)
fprintf(screen,"\n");
if (init_ok==0)
CLMF.estimate_gpu_overhead();
return init_ok;
}
void cl_gpu_clear() {
CLMF.clear();
}
int** cl_gpu_compute_n(const int ago, const int inum_full,
const int nall, double **host_x, int *host_type,
double *sublo, double *subhi, int *tag, int **nspecial,
int **special, const bool eflag, const bool vflag,
const bool eatom, const bool vatom, int &host_start,
int **ilist, int **jnum, const double cpu_time,
bool &success, double *host_q, double *boxlo,
double *prd) {
return CLMF.compute(ago, inum_full, nall, host_x, host_type, sublo,
subhi, tag, nspecial, special, eflag, vflag, eatom,
vatom, host_start, ilist, jnum, cpu_time, success,
host_q, boxlo, prd);
}
void cl_gpu_compute(const int ago, const int inum_full, const int nall,
double **host_x, int *host_type, int *ilist, int *numj,
int **firstneigh, const bool eflag, const bool vflag,
const bool eatom, const bool vatom, int &host_start,
const double cpu_time, bool &success, double *host_q,
const int nlocal, double *boxlo, double *prd) {
CLMF.compute(ago,inum_full,nall,host_x,host_type,ilist,numj,
firstneigh,eflag,vflag,eatom,vatom,host_start,cpu_time,success,
host_q,nlocal,boxlo,prd);
}
double cl_gpu_bytes() {
return CLMF.host_memory_usage();
}