lammps/potentials/WBe_Wood_PRB2019.snapcoeff

119 lines
4.1 KiB
Plaintext

# DATE: 2019-09-18 UNITS: metal CONTRIBUTOR: Mary Alice Cusentino mcusent@sandia.gov CITATION: M.A. Wood, M.A. Cusentino, B.D. Wirth, and A.P. Thompson, "Data-driven material models for atomistic simulation", Physical Review B 99, 184305 (2019)
# LAMMPS SNAP coefficients for WBe
2 56
W 0.5 1
-0.000000000000 # B[0]
-0.001487061994 # B[1, 0, 0, 0]
0.075808306870 # B[2, 1, 0, 1]
0.538735683870 # B[3, 1, 1, 2]
-0.074148039366 # B[4, 2, 0, 2]
0.602629813770 # B[5, 2, 1, 3]
-0.147022424344 # B[6, 2, 2, 2]
0.117756828488 # B[7, 2, 2, 4]
-0.026490439049 # B[8, 3, 0, 3]
-0.035162708767 # B[9, 3, 1, 4]
0.064315385091 # B[10, 3, 2, 3]
-0.131936948089 # B[11, 3, 2, 5]
-0.021272860272 # B[12, 3, 3, 4]
-0.091171134054 # B[13, 3, 3, 6]
-0.024396224398 # B[14, 4, 0, 4]
-0.059813132803 # B[15, 4, 1, 5]
0.069585393203 # B[16, 4, 2, 4]
-0.085344044181 # B[17, 4, 2, 6]
-0.155425254597 # B[18, 4, 3, 5]
-0.117031758367 # B[19, 4, 3, 7]
-0.040956258020 # B[20, 4, 4, 4]
-0.084465000389 # B[21, 4, 4, 6]
-0.020367513630 # B[22, 4, 4, 8]
-0.010730484318 # B[23, 5, 0, 5]
-0.054777575658 # B[24, 5, 1, 6]
0.050742893747 # B[25, 5, 2, 5]
-0.004686334611 # B[26, 5, 2, 7]
-0.116372907121 # B[27, 5, 3, 6]
0.005542497708 # B[28, 5, 3, 8]
-0.126526795635 # B[29, 5, 4, 5]
-0.080163926221 # B[30, 5, 4, 7]
-0.082426250179 # B[31, 5, 5, 6]
-0.010558777281 # B[32, 5, 5, 8]
-0.001939058038 # B[33, 6, 0, 6]
-0.027907949962 # B[34, 6, 1, 7]
0.049483908476 # B[35, 6, 2, 6]
0.005103754385 # B[36, 6, 2, 8]
-0.054751505141 # B[37, 6, 3, 7]
-0.055556071011 # B[38, 6, 4, 6]
-0.006026917619 # B[39, 6, 4, 8]
-0.060889030109 # B[40, 6, 5, 7]
-0.029977673973 # B[41, 6, 6, 6]
-0.014987527280 # B[42, 6, 6, 8]
-0.006697686658 # B[43, 7, 0, 7]
0.017369624409 # B[44, 7, 1, 8]
0.047864358817 # B[45, 7, 2, 7]
-0.001989812679 # B[46, 7, 3, 8]
0.000153530925 # B[47, 7, 4, 7]
-0.003862356345 # B[48, 7, 5, 8]
-0.009754314198 # B[49, 7, 6, 7]
0.000777958970 # B[50, 7, 7, 8]
-0.003031424287 # B[51, 8, 0, 8]
0.015612715209 # B[52, 8, 2, 8]
0.003210129646 # B[53, 8, 4, 8]
-0.013088799947 # B[54, 8, 6, 8]
0.001465970755 # B[55, 8, 8, 8]
Be 0.417932 0.959049
0.000000000000 # B[0]
-0.000112143918 # B[1, 0, 0, 0]
0.002449805180 # B[2, 1, 0, 1]
0.189705916830 # B[3, 1, 1, 2]
-0.019967429692 # B[4, 2, 0, 2]
0.286015704682 # B[5, 2, 1, 3]
0.072864063124 # B[6, 2, 2, 2]
0.108748154196 # B[7, 2, 2, 4]
-0.005203284351 # B[8, 3, 0, 3]
0.043948598532 # B[9, 3, 1, 4]
0.105425889093 # B[10, 3, 2, 3]
0.060460134045 # B[11, 3, 2, 5]
-0.003406205141 # B[12, 3, 3, 4]
0.002306765306 # B[13, 3, 3, 6]
-0.003845115174 # B[14, 4, 0, 4]
0.029471162073 # B[15, 4, 1, 5]
0.054901130330 # B[16, 4, 2, 4]
0.010910192753 # B[17, 4, 2, 6]
0.033885210622 # B[18, 4, 3, 5]
0.008053439551 # B[19, 4, 3, 7]
-0.001432298168 # B[20, 4, 4, 4]
0.017478027729 # B[21, 4, 4, 6]
-0.003402034990 # B[22, 4, 4, 8]
-0.002655339820 # B[23, 5, 0, 5]
0.012668749892 # B[24, 5, 1, 6]
0.037521561888 # B[25, 5, 2, 5]
-0.000682693314 # B[26, 5, 2, 7]
0.008525913627 # B[27, 5, 3, 6]
0.008977936348 # B[28, 5, 3, 8]
0.006922732235 # B[29, 5, 4, 5]
0.003031883044 # B[30, 5, 4, 7]
-0.000345577975 # B[31, 5, 5, 6]
-0.001041600679 # B[32, 5, 5, 8]
-0.001407625493 # B[33, 6, 0, 6]
0.004211558640 # B[34, 6, 1, 7]
0.014450875461 # B[35, 6, 2, 6]
-0.007033326252 # B[36, 6, 2, 8]
0.004998742185 # B[37, 6, 3, 7]
-0.002824617682 # B[38, 6, 4, 6]
0.003831871934 # B[39, 6, 4, 8]
-0.005700892700 # B[40, 6, 5, 7]
0.000184422409 # B[41, 6, 6, 6]
0.001592696824 # B[42, 6, 6, 8]
-0.000804927645 # B[43, 7, 0, 7]
0.008465358642 # B[44, 7, 1, 8]
0.005460531160 # B[45, 7, 2, 7]
-0.000639605094 # B[46, 7, 3, 8]
-0.002403948393 # B[47, 7, 4, 7]
-0.001267042453 # B[48, 7, 5, 8]
0.003836940623 # B[49, 7, 6, 7]
0.002333141437 # B[50, 7, 7, 8]
-0.000665360637 # B[51, 8, 0, 8]
-0.003460637865 # B[52, 8, 2, 8]
-0.001598726043 # B[53, 8, 4, 8]
0.001478744304 # B[54, 8, 6, 8]
0.000806643203 # B[55, 8, 8, 8]