forked from lijiext/lammps
373 lines
11 KiB
Fortran
373 lines
11 KiB
Fortran
*> \brief \b DORMBR
|
|
*
|
|
* =========== DOCUMENTATION ===========
|
|
*
|
|
* Online html documentation available at
|
|
* http://www.netlib.org/lapack/explore-html/
|
|
*
|
|
*> \htmlonly
|
|
*> Download DORMBR + dependencies
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dormbr.f">
|
|
*> [TGZ]</a>
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dormbr.f">
|
|
*> [ZIP]</a>
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dormbr.f">
|
|
*> [TXT]</a>
|
|
*> \endhtmlonly
|
|
*
|
|
* Definition:
|
|
* ===========
|
|
*
|
|
* SUBROUTINE DORMBR( VECT, SIDE, TRANS, M, N, K, A, LDA, TAU, C,
|
|
* LDC, WORK, LWORK, INFO )
|
|
*
|
|
* .. Scalar Arguments ..
|
|
* CHARACTER SIDE, TRANS, VECT
|
|
* INTEGER INFO, K, LDA, LDC, LWORK, M, N
|
|
* ..
|
|
* .. Array Arguments ..
|
|
* DOUBLE PRECISION A( LDA, * ), C( LDC, * ), TAU( * ), WORK( * )
|
|
* ..
|
|
*
|
|
*
|
|
*> \par Purpose:
|
|
* =============
|
|
*>
|
|
*> \verbatim
|
|
*>
|
|
*> If VECT = 'Q', DORMBR overwrites the general real M-by-N matrix C
|
|
*> with
|
|
*> SIDE = 'L' SIDE = 'R'
|
|
*> TRANS = 'N': Q * C C * Q
|
|
*> TRANS = 'T': Q**T * C C * Q**T
|
|
*>
|
|
*> If VECT = 'P', DORMBR overwrites the general real M-by-N matrix C
|
|
*> with
|
|
*> SIDE = 'L' SIDE = 'R'
|
|
*> TRANS = 'N': P * C C * P
|
|
*> TRANS = 'T': P**T * C C * P**T
|
|
*>
|
|
*> Here Q and P**T are the orthogonal matrices determined by DGEBRD when
|
|
*> reducing a real matrix A to bidiagonal form: A = Q * B * P**T. Q and
|
|
*> P**T are defined as products of elementary reflectors H(i) and G(i)
|
|
*> respectively.
|
|
*>
|
|
*> Let nq = m if SIDE = 'L' and nq = n if SIDE = 'R'. Thus nq is the
|
|
*> order of the orthogonal matrix Q or P**T that is applied.
|
|
*>
|
|
*> If VECT = 'Q', A is assumed to have been an NQ-by-K matrix:
|
|
*> if nq >= k, Q = H(1) H(2) . . . H(k);
|
|
*> if nq < k, Q = H(1) H(2) . . . H(nq-1).
|
|
*>
|
|
*> If VECT = 'P', A is assumed to have been a K-by-NQ matrix:
|
|
*> if k < nq, P = G(1) G(2) . . . G(k);
|
|
*> if k >= nq, P = G(1) G(2) . . . G(nq-1).
|
|
*> \endverbatim
|
|
*
|
|
* Arguments:
|
|
* ==========
|
|
*
|
|
*> \param[in] VECT
|
|
*> \verbatim
|
|
*> VECT is CHARACTER*1
|
|
*> = 'Q': apply Q or Q**T;
|
|
*> = 'P': apply P or P**T.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] SIDE
|
|
*> \verbatim
|
|
*> SIDE is CHARACTER*1
|
|
*> = 'L': apply Q, Q**T, P or P**T from the Left;
|
|
*> = 'R': apply Q, Q**T, P or P**T from the Right.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] TRANS
|
|
*> \verbatim
|
|
*> TRANS is CHARACTER*1
|
|
*> = 'N': No transpose, apply Q or P;
|
|
*> = 'T': Transpose, apply Q**T or P**T.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] M
|
|
*> \verbatim
|
|
*> M is INTEGER
|
|
*> The number of rows of the matrix C. M >= 0.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] N
|
|
*> \verbatim
|
|
*> N is INTEGER
|
|
*> The number of columns of the matrix C. N >= 0.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] K
|
|
*> \verbatim
|
|
*> K is INTEGER
|
|
*> If VECT = 'Q', the number of columns in the original
|
|
*> matrix reduced by DGEBRD.
|
|
*> If VECT = 'P', the number of rows in the original
|
|
*> matrix reduced by DGEBRD.
|
|
*> K >= 0.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] A
|
|
*> \verbatim
|
|
*> A is DOUBLE PRECISION array, dimension
|
|
*> (LDA,min(nq,K)) if VECT = 'Q'
|
|
*> (LDA,nq) if VECT = 'P'
|
|
*> The vectors which define the elementary reflectors H(i) and
|
|
*> G(i), whose products determine the matrices Q and P, as
|
|
*> returned by DGEBRD.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LDA
|
|
*> \verbatim
|
|
*> LDA is INTEGER
|
|
*> The leading dimension of the array A.
|
|
*> If VECT = 'Q', LDA >= max(1,nq);
|
|
*> if VECT = 'P', LDA >= max(1,min(nq,K)).
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] TAU
|
|
*> \verbatim
|
|
*> TAU is DOUBLE PRECISION array, dimension (min(nq,K))
|
|
*> TAU(i) must contain the scalar factor of the elementary
|
|
*> reflector H(i) or G(i) which determines Q or P, as returned
|
|
*> by DGEBRD in the array argument TAUQ or TAUP.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in,out] C
|
|
*> \verbatim
|
|
*> C is DOUBLE PRECISION array, dimension (LDC,N)
|
|
*> On entry, the M-by-N matrix C.
|
|
*> On exit, C is overwritten by Q*C or Q**T*C or C*Q**T or C*Q
|
|
*> or P*C or P**T*C or C*P or C*P**T.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LDC
|
|
*> \verbatim
|
|
*> LDC is INTEGER
|
|
*> The leading dimension of the array C. LDC >= max(1,M).
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] WORK
|
|
*> \verbatim
|
|
*> WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK))
|
|
*> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LWORK
|
|
*> \verbatim
|
|
*> LWORK is INTEGER
|
|
*> The dimension of the array WORK.
|
|
*> If SIDE = 'L', LWORK >= max(1,N);
|
|
*> if SIDE = 'R', LWORK >= max(1,M).
|
|
*> For optimum performance LWORK >= N*NB if SIDE = 'L', and
|
|
*> LWORK >= M*NB if SIDE = 'R', where NB is the optimal
|
|
*> blocksize.
|
|
*>
|
|
*> If LWORK = -1, then a workspace query is assumed; the routine
|
|
*> only calculates the optimal size of the WORK array, returns
|
|
*> this value as the first entry of the WORK array, and no error
|
|
*> message related to LWORK is issued by XERBLA.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] INFO
|
|
*> \verbatim
|
|
*> INFO is INTEGER
|
|
*> = 0: successful exit
|
|
*> < 0: if INFO = -i, the i-th argument had an illegal value
|
|
*> \endverbatim
|
|
*
|
|
* Authors:
|
|
* ========
|
|
*
|
|
*> \author Univ. of Tennessee
|
|
*> \author Univ. of California Berkeley
|
|
*> \author Univ. of Colorado Denver
|
|
*> \author NAG Ltd.
|
|
*
|
|
*> \date December 2016
|
|
*
|
|
*> \ingroup doubleOTHERcomputational
|
|
*
|
|
* =====================================================================
|
|
SUBROUTINE DORMBR( VECT, SIDE, TRANS, M, N, K, A, LDA, TAU, C,
|
|
$ LDC, WORK, LWORK, INFO )
|
|
*
|
|
* -- LAPACK computational routine (version 3.7.0) --
|
|
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
|
* December 2016
|
|
*
|
|
* .. Scalar Arguments ..
|
|
CHARACTER SIDE, TRANS, VECT
|
|
INTEGER INFO, K, LDA, LDC, LWORK, M, N
|
|
* ..
|
|
* .. Array Arguments ..
|
|
DOUBLE PRECISION A( LDA, * ), C( LDC, * ), TAU( * ), WORK( * )
|
|
* ..
|
|
*
|
|
* =====================================================================
|
|
*
|
|
* .. Local Scalars ..
|
|
LOGICAL APPLYQ, LEFT, LQUERY, NOTRAN
|
|
CHARACTER TRANST
|
|
INTEGER I1, I2, IINFO, LWKOPT, MI, NB, NI, NQ, NW
|
|
* ..
|
|
* .. External Functions ..
|
|
LOGICAL LSAME
|
|
INTEGER ILAENV
|
|
EXTERNAL LSAME, ILAENV
|
|
* ..
|
|
* .. External Subroutines ..
|
|
EXTERNAL DORMLQ, DORMQR, XERBLA
|
|
* ..
|
|
* .. Intrinsic Functions ..
|
|
INTRINSIC MAX, MIN
|
|
* ..
|
|
* .. Executable Statements ..
|
|
*
|
|
* Test the input arguments
|
|
*
|
|
INFO = 0
|
|
APPLYQ = LSAME( VECT, 'Q' )
|
|
LEFT = LSAME( SIDE, 'L' )
|
|
NOTRAN = LSAME( TRANS, 'N' )
|
|
LQUERY = ( LWORK.EQ.-1 )
|
|
*
|
|
* NQ is the order of Q or P and NW is the minimum dimension of WORK
|
|
*
|
|
IF( LEFT ) THEN
|
|
NQ = M
|
|
NW = N
|
|
ELSE
|
|
NQ = N
|
|
NW = M
|
|
END IF
|
|
IF( .NOT.APPLYQ .AND. .NOT.LSAME( VECT, 'P' ) ) THEN
|
|
INFO = -1
|
|
ELSE IF( .NOT.LEFT .AND. .NOT.LSAME( SIDE, 'R' ) ) THEN
|
|
INFO = -2
|
|
ELSE IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'T' ) ) THEN
|
|
INFO = -3
|
|
ELSE IF( M.LT.0 ) THEN
|
|
INFO = -4
|
|
ELSE IF( N.LT.0 ) THEN
|
|
INFO = -5
|
|
ELSE IF( K.LT.0 ) THEN
|
|
INFO = -6
|
|
ELSE IF( ( APPLYQ .AND. LDA.LT.MAX( 1, NQ ) ) .OR.
|
|
$ ( .NOT.APPLYQ .AND. LDA.LT.MAX( 1, MIN( NQ, K ) ) ) )
|
|
$ THEN
|
|
INFO = -8
|
|
ELSE IF( LDC.LT.MAX( 1, M ) ) THEN
|
|
INFO = -11
|
|
ELSE IF( LWORK.LT.MAX( 1, NW ) .AND. .NOT.LQUERY ) THEN
|
|
INFO = -13
|
|
END IF
|
|
*
|
|
IF( INFO.EQ.0 ) THEN
|
|
IF( APPLYQ ) THEN
|
|
IF( LEFT ) THEN
|
|
NB = ILAENV( 1, 'DORMQR', SIDE // TRANS, M-1, N, M-1,
|
|
$ -1 )
|
|
ELSE
|
|
NB = ILAENV( 1, 'DORMQR', SIDE // TRANS, M, N-1, N-1,
|
|
$ -1 )
|
|
END IF
|
|
ELSE
|
|
IF( LEFT ) THEN
|
|
NB = ILAENV( 1, 'DORMLQ', SIDE // TRANS, M-1, N, M-1,
|
|
$ -1 )
|
|
ELSE
|
|
NB = ILAENV( 1, 'DORMLQ', SIDE // TRANS, M, N-1, N-1,
|
|
$ -1 )
|
|
END IF
|
|
END IF
|
|
LWKOPT = MAX( 1, NW )*NB
|
|
WORK( 1 ) = LWKOPT
|
|
END IF
|
|
*
|
|
IF( INFO.NE.0 ) THEN
|
|
CALL XERBLA( 'DORMBR', -INFO )
|
|
RETURN
|
|
ELSE IF( LQUERY ) THEN
|
|
RETURN
|
|
END IF
|
|
*
|
|
* Quick return if possible
|
|
*
|
|
WORK( 1 ) = 1
|
|
IF( M.EQ.0 .OR. N.EQ.0 )
|
|
$ RETURN
|
|
*
|
|
IF( APPLYQ ) THEN
|
|
*
|
|
* Apply Q
|
|
*
|
|
IF( NQ.GE.K ) THEN
|
|
*
|
|
* Q was determined by a call to DGEBRD with nq >= k
|
|
*
|
|
CALL DORMQR( SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC,
|
|
$ WORK, LWORK, IINFO )
|
|
ELSE IF( NQ.GT.1 ) THEN
|
|
*
|
|
* Q was determined by a call to DGEBRD with nq < k
|
|
*
|
|
IF( LEFT ) THEN
|
|
MI = M - 1
|
|
NI = N
|
|
I1 = 2
|
|
I2 = 1
|
|
ELSE
|
|
MI = M
|
|
NI = N - 1
|
|
I1 = 1
|
|
I2 = 2
|
|
END IF
|
|
CALL DORMQR( SIDE, TRANS, MI, NI, NQ-1, A( 2, 1 ), LDA, TAU,
|
|
$ C( I1, I2 ), LDC, WORK, LWORK, IINFO )
|
|
END IF
|
|
ELSE
|
|
*
|
|
* Apply P
|
|
*
|
|
IF( NOTRAN ) THEN
|
|
TRANST = 'T'
|
|
ELSE
|
|
TRANST = 'N'
|
|
END IF
|
|
IF( NQ.GT.K ) THEN
|
|
*
|
|
* P was determined by a call to DGEBRD with nq > k
|
|
*
|
|
CALL DORMLQ( SIDE, TRANST, M, N, K, A, LDA, TAU, C, LDC,
|
|
$ WORK, LWORK, IINFO )
|
|
ELSE IF( NQ.GT.1 ) THEN
|
|
*
|
|
* P was determined by a call to DGEBRD with nq <= k
|
|
*
|
|
IF( LEFT ) THEN
|
|
MI = M - 1
|
|
NI = N
|
|
I1 = 2
|
|
I2 = 1
|
|
ELSE
|
|
MI = M
|
|
NI = N - 1
|
|
I1 = 1
|
|
I2 = 2
|
|
END IF
|
|
CALL DORMLQ( SIDE, TRANST, MI, NI, NQ-1, A( 1, 2 ), LDA,
|
|
$ TAU, C( I1, I2 ), LDC, WORK, LWORK, IINFO )
|
|
END IF
|
|
END IF
|
|
WORK( 1 ) = LWKOPT
|
|
RETURN
|
|
*
|
|
* End of DORMBR
|
|
*
|
|
END
|