forked from lijiext/lammps
287 lines
8.3 KiB
Fortran
287 lines
8.3 KiB
Fortran
*> \brief <b> DSYEV computes the eigenvalues and, optionally, the left and/or right eigenvectors for SY matrices</b>
|
|
*
|
|
* =========== DOCUMENTATION ===========
|
|
*
|
|
* Online html documentation available at
|
|
* http://www.netlib.org/lapack/explore-html/
|
|
*
|
|
*> \htmlonly
|
|
*> Download DSYEV + dependencies
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dsyev.f">
|
|
*> [TGZ]</a>
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dsyev.f">
|
|
*> [ZIP]</a>
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dsyev.f">
|
|
*> [TXT]</a>
|
|
*> \endhtmlonly
|
|
*
|
|
* Definition:
|
|
* ===========
|
|
*
|
|
* SUBROUTINE DSYEV( JOBZ, UPLO, N, A, LDA, W, WORK, LWORK, INFO )
|
|
*
|
|
* .. Scalar Arguments ..
|
|
* CHARACTER JOBZ, UPLO
|
|
* INTEGER INFO, LDA, LWORK, N
|
|
* ..
|
|
* .. Array Arguments ..
|
|
* DOUBLE PRECISION A( LDA, * ), W( * ), WORK( * )
|
|
* ..
|
|
*
|
|
*
|
|
*> \par Purpose:
|
|
* =============
|
|
*>
|
|
*> \verbatim
|
|
*>
|
|
*> DSYEV computes all eigenvalues and, optionally, eigenvectors of a
|
|
*> real symmetric matrix A.
|
|
*> \endverbatim
|
|
*
|
|
* Arguments:
|
|
* ==========
|
|
*
|
|
*> \param[in] JOBZ
|
|
*> \verbatim
|
|
*> JOBZ is CHARACTER*1
|
|
*> = 'N': Compute eigenvalues only;
|
|
*> = 'V': Compute eigenvalues and eigenvectors.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] UPLO
|
|
*> \verbatim
|
|
*> UPLO is CHARACTER*1
|
|
*> = 'U': Upper triangle of A is stored;
|
|
*> = 'L': Lower triangle of A is stored.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] N
|
|
*> \verbatim
|
|
*> N is INTEGER
|
|
*> The order of the matrix A. N >= 0.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in,out] A
|
|
*> \verbatim
|
|
*> A is DOUBLE PRECISION array, dimension (LDA, N)
|
|
*> On entry, the symmetric matrix A. If UPLO = 'U', the
|
|
*> leading N-by-N upper triangular part of A contains the
|
|
*> upper triangular part of the matrix A. If UPLO = 'L',
|
|
*> the leading N-by-N lower triangular part of A contains
|
|
*> the lower triangular part of the matrix A.
|
|
*> On exit, if JOBZ = 'V', then if INFO = 0, A contains the
|
|
*> orthonormal eigenvectors of the matrix A.
|
|
*> If JOBZ = 'N', then on exit the lower triangle (if UPLO='L')
|
|
*> or the upper triangle (if UPLO='U') of A, including the
|
|
*> diagonal, is destroyed.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LDA
|
|
*> \verbatim
|
|
*> LDA is INTEGER
|
|
*> The leading dimension of the array A. LDA >= max(1,N).
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] W
|
|
*> \verbatim
|
|
*> W is DOUBLE PRECISION array, dimension (N)
|
|
*> If INFO = 0, the eigenvalues in ascending order.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] WORK
|
|
*> \verbatim
|
|
*> WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK))
|
|
*> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LWORK
|
|
*> \verbatim
|
|
*> LWORK is INTEGER
|
|
*> The length of the array WORK. LWORK >= max(1,3*N-1).
|
|
*> For optimal efficiency, LWORK >= (NB+2)*N,
|
|
*> where NB is the blocksize for DSYTRD returned by ILAENV.
|
|
*>
|
|
*> If LWORK = -1, then a workspace query is assumed; the routine
|
|
*> only calculates the optimal size of the WORK array, returns
|
|
*> this value as the first entry of the WORK array, and no error
|
|
*> message related to LWORK is issued by XERBLA.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] INFO
|
|
*> \verbatim
|
|
*> INFO is INTEGER
|
|
*> = 0: successful exit
|
|
*> < 0: if INFO = -i, the i-th argument had an illegal value
|
|
*> > 0: if INFO = i, the algorithm failed to converge; i
|
|
*> off-diagonal elements of an intermediate tridiagonal
|
|
*> form did not converge to zero.
|
|
*> \endverbatim
|
|
*
|
|
* Authors:
|
|
* ========
|
|
*
|
|
*> \author Univ. of Tennessee
|
|
*> \author Univ. of California Berkeley
|
|
*> \author Univ. of Colorado Denver
|
|
*> \author NAG Ltd.
|
|
*
|
|
*> \date November 2011
|
|
*
|
|
*> \ingroup doubleSYeigen
|
|
*
|
|
* =====================================================================
|
|
SUBROUTINE DSYEV( JOBZ, UPLO, N, A, LDA, W, WORK, LWORK, INFO )
|
|
*
|
|
* -- LAPACK driver routine (version 3.4.0) --
|
|
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
|
* November 2011
|
|
*
|
|
* .. Scalar Arguments ..
|
|
CHARACTER JOBZ, UPLO
|
|
INTEGER INFO, LDA, LWORK, N
|
|
* ..
|
|
* .. Array Arguments ..
|
|
DOUBLE PRECISION A( LDA, * ), W( * ), WORK( * )
|
|
* ..
|
|
*
|
|
* =====================================================================
|
|
*
|
|
* .. Parameters ..
|
|
DOUBLE PRECISION ZERO, ONE
|
|
PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0 )
|
|
* ..
|
|
* .. Local Scalars ..
|
|
LOGICAL LOWER, LQUERY, WANTZ
|
|
INTEGER IINFO, IMAX, INDE, INDTAU, INDWRK, ISCALE,
|
|
$ LLWORK, LWKOPT, NB
|
|
DOUBLE PRECISION ANRM, BIGNUM, EPS, RMAX, RMIN, SAFMIN, SIGMA,
|
|
$ SMLNUM
|
|
* ..
|
|
* .. External Functions ..
|
|
LOGICAL LSAME
|
|
INTEGER ILAENV
|
|
DOUBLE PRECISION DLAMCH, DLANSY
|
|
EXTERNAL LSAME, ILAENV, DLAMCH, DLANSY
|
|
* ..
|
|
* .. External Subroutines ..
|
|
EXTERNAL DLASCL, DORGTR, DSCAL, DSTEQR, DSTERF, DSYTRD,
|
|
$ XERBLA
|
|
* ..
|
|
* .. Intrinsic Functions ..
|
|
INTRINSIC MAX, SQRT
|
|
* ..
|
|
* .. Executable Statements ..
|
|
*
|
|
* Test the input parameters.
|
|
*
|
|
WANTZ = LSAME( JOBZ, 'V' )
|
|
LOWER = LSAME( UPLO, 'L' )
|
|
LQUERY = ( LWORK.EQ.-1 )
|
|
*
|
|
INFO = 0
|
|
IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
|
|
INFO = -1
|
|
ELSE IF( .NOT.( LOWER .OR. LSAME( UPLO, 'U' ) ) ) THEN
|
|
INFO = -2
|
|
ELSE IF( N.LT.0 ) THEN
|
|
INFO = -3
|
|
ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
|
|
INFO = -5
|
|
END IF
|
|
*
|
|
IF( INFO.EQ.0 ) THEN
|
|
NB = ILAENV( 1, 'DSYTRD', UPLO, N, -1, -1, -1 )
|
|
LWKOPT = MAX( 1, ( NB+2 )*N )
|
|
WORK( 1 ) = LWKOPT
|
|
*
|
|
IF( LWORK.LT.MAX( 1, 3*N-1 ) .AND. .NOT.LQUERY )
|
|
$ INFO = -8
|
|
END IF
|
|
*
|
|
IF( INFO.NE.0 ) THEN
|
|
CALL XERBLA( 'DSYEV ', -INFO )
|
|
RETURN
|
|
ELSE IF( LQUERY ) THEN
|
|
RETURN
|
|
END IF
|
|
*
|
|
* Quick return if possible
|
|
*
|
|
IF( N.EQ.0 ) THEN
|
|
RETURN
|
|
END IF
|
|
*
|
|
IF( N.EQ.1 ) THEN
|
|
W( 1 ) = A( 1, 1 )
|
|
WORK( 1 ) = 2
|
|
IF( WANTZ )
|
|
$ A( 1, 1 ) = ONE
|
|
RETURN
|
|
END IF
|
|
*
|
|
* Get machine constants.
|
|
*
|
|
SAFMIN = DLAMCH( 'Safe minimum' )
|
|
EPS = DLAMCH( 'Precision' )
|
|
SMLNUM = SAFMIN / EPS
|
|
BIGNUM = ONE / SMLNUM
|
|
RMIN = SQRT( SMLNUM )
|
|
RMAX = SQRT( BIGNUM )
|
|
*
|
|
* Scale matrix to allowable range, if necessary.
|
|
*
|
|
ANRM = DLANSY( 'M', UPLO, N, A, LDA, WORK )
|
|
ISCALE = 0
|
|
IF( ANRM.GT.ZERO .AND. ANRM.LT.RMIN ) THEN
|
|
ISCALE = 1
|
|
SIGMA = RMIN / ANRM
|
|
ELSE IF( ANRM.GT.RMAX ) THEN
|
|
ISCALE = 1
|
|
SIGMA = RMAX / ANRM
|
|
END IF
|
|
IF( ISCALE.EQ.1 )
|
|
$ CALL DLASCL( UPLO, 0, 0, ONE, SIGMA, N, N, A, LDA, INFO )
|
|
*
|
|
* Call DSYTRD to reduce symmetric matrix to tridiagonal form.
|
|
*
|
|
INDE = 1
|
|
INDTAU = INDE + N
|
|
INDWRK = INDTAU + N
|
|
LLWORK = LWORK - INDWRK + 1
|
|
CALL DSYTRD( UPLO, N, A, LDA, W, WORK( INDE ), WORK( INDTAU ),
|
|
$ WORK( INDWRK ), LLWORK, IINFO )
|
|
*
|
|
* For eigenvalues only, call DSTERF. For eigenvectors, first call
|
|
* DORGTR to generate the orthogonal matrix, then call DSTEQR.
|
|
*
|
|
IF( .NOT.WANTZ ) THEN
|
|
CALL DSTERF( N, W, WORK( INDE ), INFO )
|
|
ELSE
|
|
CALL DORGTR( UPLO, N, A, LDA, WORK( INDTAU ), WORK( INDWRK ),
|
|
$ LLWORK, IINFO )
|
|
CALL DSTEQR( JOBZ, N, W, WORK( INDE ), A, LDA, WORK( INDTAU ),
|
|
$ INFO )
|
|
END IF
|
|
*
|
|
* If matrix was scaled, then rescale eigenvalues appropriately.
|
|
*
|
|
IF( ISCALE.EQ.1 ) THEN
|
|
IF( INFO.EQ.0 ) THEN
|
|
IMAX = N
|
|
ELSE
|
|
IMAX = INFO - 1
|
|
END IF
|
|
CALL DSCAL( IMAX, ONE / SIGMA, W, 1 )
|
|
END IF
|
|
*
|
|
* Set WORK(1) to optimal workspace size.
|
|
*
|
|
WORK( 1 ) = LWKOPT
|
|
*
|
|
RETURN
|
|
*
|
|
* End of DSYEV
|
|
*
|
|
END
|