forked from lijiext/lammps
201 lines
5.2 KiB
Fortran
201 lines
5.2 KiB
Fortran
*> \brief \b DORG2R generates all or part of the orthogonal matrix Q from a QR factorization determined by sgeqrf (unblocked algorithm).
|
|
*
|
|
* =========== DOCUMENTATION ===========
|
|
*
|
|
* Online html documentation available at
|
|
* http://www.netlib.org/lapack/explore-html/
|
|
*
|
|
*> \htmlonly
|
|
*> Download DORG2R + dependencies
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dorg2r.f">
|
|
*> [TGZ]</a>
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dorg2r.f">
|
|
*> [ZIP]</a>
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dorg2r.f">
|
|
*> [TXT]</a>
|
|
*> \endhtmlonly
|
|
*
|
|
* Definition:
|
|
* ===========
|
|
*
|
|
* SUBROUTINE DORG2R( M, N, K, A, LDA, TAU, WORK, INFO )
|
|
*
|
|
* .. Scalar Arguments ..
|
|
* INTEGER INFO, K, LDA, M, N
|
|
* ..
|
|
* .. Array Arguments ..
|
|
* DOUBLE PRECISION A( LDA, * ), TAU( * ), WORK( * )
|
|
* ..
|
|
*
|
|
*
|
|
*> \par Purpose:
|
|
* =============
|
|
*>
|
|
*> \verbatim
|
|
*>
|
|
*> DORG2R generates an m by n real matrix Q with orthonormal columns,
|
|
*> which is defined as the first n columns of a product of k elementary
|
|
*> reflectors of order m
|
|
*>
|
|
*> Q = H(1) H(2) . . . H(k)
|
|
*>
|
|
*> as returned by DGEQRF.
|
|
*> \endverbatim
|
|
*
|
|
* Arguments:
|
|
* ==========
|
|
*
|
|
*> \param[in] M
|
|
*> \verbatim
|
|
*> M is INTEGER
|
|
*> The number of rows of the matrix Q. M >= 0.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] N
|
|
*> \verbatim
|
|
*> N is INTEGER
|
|
*> The number of columns of the matrix Q. M >= N >= 0.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] K
|
|
*> \verbatim
|
|
*> K is INTEGER
|
|
*> The number of elementary reflectors whose product defines the
|
|
*> matrix Q. N >= K >= 0.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in,out] A
|
|
*> \verbatim
|
|
*> A is DOUBLE PRECISION array, dimension (LDA,N)
|
|
*> On entry, the i-th column must contain the vector which
|
|
*> defines the elementary reflector H(i), for i = 1,2,...,k, as
|
|
*> returned by DGEQRF in the first k columns of its array
|
|
*> argument A.
|
|
*> On exit, the m-by-n matrix Q.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LDA
|
|
*> \verbatim
|
|
*> LDA is INTEGER
|
|
*> The first dimension of the array A. LDA >= max(1,M).
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] TAU
|
|
*> \verbatim
|
|
*> TAU is DOUBLE PRECISION array, dimension (K)
|
|
*> TAU(i) must contain the scalar factor of the elementary
|
|
*> reflector H(i), as returned by DGEQRF.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] WORK
|
|
*> \verbatim
|
|
*> WORK is DOUBLE PRECISION array, dimension (N)
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] INFO
|
|
*> \verbatim
|
|
*> INFO is INTEGER
|
|
*> = 0: successful exit
|
|
*> < 0: if INFO = -i, the i-th argument has an illegal value
|
|
*> \endverbatim
|
|
*
|
|
* Authors:
|
|
* ========
|
|
*
|
|
*> \author Univ. of Tennessee
|
|
*> \author Univ. of California Berkeley
|
|
*> \author Univ. of Colorado Denver
|
|
*> \author NAG Ltd.
|
|
*
|
|
*> \date September 2012
|
|
*
|
|
*> \ingroup doubleOTHERcomputational
|
|
*
|
|
* =====================================================================
|
|
SUBROUTINE DORG2R( M, N, K, A, LDA, TAU, WORK, INFO )
|
|
*
|
|
* -- LAPACK computational routine (version 3.4.2) --
|
|
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
|
* September 2012
|
|
*
|
|
* .. Scalar Arguments ..
|
|
INTEGER INFO, K, LDA, M, N
|
|
* ..
|
|
* .. Array Arguments ..
|
|
DOUBLE PRECISION A( LDA, * ), TAU( * ), WORK( * )
|
|
* ..
|
|
*
|
|
* =====================================================================
|
|
*
|
|
* .. Parameters ..
|
|
DOUBLE PRECISION ONE, ZERO
|
|
PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 )
|
|
* ..
|
|
* .. Local Scalars ..
|
|
INTEGER I, J, L
|
|
* ..
|
|
* .. External Subroutines ..
|
|
EXTERNAL DLARF, DSCAL, XERBLA
|
|
* ..
|
|
* .. Intrinsic Functions ..
|
|
INTRINSIC MAX
|
|
* ..
|
|
* .. Executable Statements ..
|
|
*
|
|
* Test the input arguments
|
|
*
|
|
INFO = 0
|
|
IF( M.LT.0 ) THEN
|
|
INFO = -1
|
|
ELSE IF( N.LT.0 .OR. N.GT.M ) THEN
|
|
INFO = -2
|
|
ELSE IF( K.LT.0 .OR. K.GT.N ) THEN
|
|
INFO = -3
|
|
ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
|
|
INFO = -5
|
|
END IF
|
|
IF( INFO.NE.0 ) THEN
|
|
CALL XERBLA( 'DORG2R', -INFO )
|
|
RETURN
|
|
END IF
|
|
*
|
|
* Quick return if possible
|
|
*
|
|
IF( N.LE.0 )
|
|
$ RETURN
|
|
*
|
|
* Initialise columns k+1:n to columns of the unit matrix
|
|
*
|
|
DO 20 J = K + 1, N
|
|
DO 10 L = 1, M
|
|
A( L, J ) = ZERO
|
|
10 CONTINUE
|
|
A( J, J ) = ONE
|
|
20 CONTINUE
|
|
*
|
|
DO 40 I = K, 1, -1
|
|
*
|
|
* Apply H(i) to A(i:m,i:n) from the left
|
|
*
|
|
IF( I.LT.N ) THEN
|
|
A( I, I ) = ONE
|
|
CALL DLARF( 'Left', M-I+1, N-I, A( I, I ), 1, TAU( I ),
|
|
$ A( I, I+1 ), LDA, WORK )
|
|
END IF
|
|
IF( I.LT.M )
|
|
$ CALL DSCAL( M-I, -TAU( I ), A( I+1, I ), 1 )
|
|
A( I, I ) = ONE - TAU( I )
|
|
*
|
|
* Set A(1:i-1,i) to zero
|
|
*
|
|
DO 30 L = 1, I - 1
|
|
A( L, I ) = ZERO
|
|
30 CONTINUE
|
|
40 CONTINUE
|
|
RETURN
|
|
*
|
|
* End of DORG2R
|
|
*
|
|
END
|