lammps/lib/linalg/dorg2r.f

201 lines
5.2 KiB
Fortran

*> \brief \b DORG2R generates all or part of the orthogonal matrix Q from a QR factorization determined by sgeqrf (unblocked algorithm).
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download DORG2R + dependencies
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dorg2r.f">
*> [TGZ]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dorg2r.f">
*> [ZIP]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dorg2r.f">
*> [TXT]</a>
*> \endhtmlonly
*
* Definition:
* ===========
*
* SUBROUTINE DORG2R( M, N, K, A, LDA, TAU, WORK, INFO )
*
* .. Scalar Arguments ..
* INTEGER INFO, K, LDA, M, N
* ..
* .. Array Arguments ..
* DOUBLE PRECISION A( LDA, * ), TAU( * ), WORK( * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> DORG2R generates an m by n real matrix Q with orthonormal columns,
*> which is defined as the first n columns of a product of k elementary
*> reflectors of order m
*>
*> Q = H(1) H(2) . . . H(k)
*>
*> as returned by DGEQRF.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] M
*> \verbatim
*> M is INTEGER
*> The number of rows of the matrix Q. M >= 0.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The number of columns of the matrix Q. M >= N >= 0.
*> \endverbatim
*>
*> \param[in] K
*> \verbatim
*> K is INTEGER
*> The number of elementary reflectors whose product defines the
*> matrix Q. N >= K >= 0.
*> \endverbatim
*>
*> \param[in,out] A
*> \verbatim
*> A is DOUBLE PRECISION array, dimension (LDA,N)
*> On entry, the i-th column must contain the vector which
*> defines the elementary reflector H(i), for i = 1,2,...,k, as
*> returned by DGEQRF in the first k columns of its array
*> argument A.
*> On exit, the m-by-n matrix Q.
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*> LDA is INTEGER
*> The first dimension of the array A. LDA >= max(1,M).
*> \endverbatim
*>
*> \param[in] TAU
*> \verbatim
*> TAU is DOUBLE PRECISION array, dimension (K)
*> TAU(i) must contain the scalar factor of the elementary
*> reflector H(i), as returned by DGEQRF.
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*> WORK is DOUBLE PRECISION array, dimension (N)
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*> INFO is INTEGER
*> = 0: successful exit
*> < 0: if INFO = -i, the i-th argument has an illegal value
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date September 2012
*
*> \ingroup doubleOTHERcomputational
*
* =====================================================================
SUBROUTINE DORG2R( M, N, K, A, LDA, TAU, WORK, INFO )
*
* -- LAPACK computational routine (version 3.4.2) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* September 2012
*
* .. Scalar Arguments ..
INTEGER INFO, K, LDA, M, N
* ..
* .. Array Arguments ..
DOUBLE PRECISION A( LDA, * ), TAU( * ), WORK( * )
* ..
*
* =====================================================================
*
* .. Parameters ..
DOUBLE PRECISION ONE, ZERO
PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 )
* ..
* .. Local Scalars ..
INTEGER I, J, L
* ..
* .. External Subroutines ..
EXTERNAL DLARF, DSCAL, XERBLA
* ..
* .. Intrinsic Functions ..
INTRINSIC MAX
* ..
* .. Executable Statements ..
*
* Test the input arguments
*
INFO = 0
IF( M.LT.0 ) THEN
INFO = -1
ELSE IF( N.LT.0 .OR. N.GT.M ) THEN
INFO = -2
ELSE IF( K.LT.0 .OR. K.GT.N ) THEN
INFO = -3
ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
INFO = -5
END IF
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'DORG2R', -INFO )
RETURN
END IF
*
* Quick return if possible
*
IF( N.LE.0 )
$ RETURN
*
* Initialise columns k+1:n to columns of the unit matrix
*
DO 20 J = K + 1, N
DO 10 L = 1, M
A( L, J ) = ZERO
10 CONTINUE
A( J, J ) = ONE
20 CONTINUE
*
DO 40 I = K, 1, -1
*
* Apply H(i) to A(i:m,i:n) from the left
*
IF( I.LT.N ) THEN
A( I, I ) = ONE
CALL DLARF( 'Left', M-I+1, N-I, A( I, I ), 1, TAU( I ),
$ A( I, I+1 ), LDA, WORK )
END IF
IF( I.LT.M )
$ CALL DSCAL( M-I, -TAU( I ), A( I+1, I ), 1 )
A( I, I ) = ONE - TAU( I )
*
* Set A(1:i-1,i) to zero
*
DO 30 L = 1, I - 1
A( L, I ) = ZERO
30 CONTINUE
40 CONTINUE
RETURN
*
* End of DORG2R
*
END