forked from lijiext/lammps
574 lines
20 KiB
Python
574 lines
20 KiB
Python
#!/usr/bin/env python
|
|
|
|
"""
|
|
LAMMPS Replica Exchange Molecular Dynamics (REMD) trajectories are arranged by
|
|
replica, i.e., each trajectory is a continuous replica that records all the
|
|
ups and downs in temperature. However, often the requirement is trajectories
|
|
that are continuous in temperature, which is achieved by this tool.
|
|
|
|
Author:
|
|
Tanmoy Sanyal, Shell lab, Chemical Engineering, UC Santa Barbara
|
|
Email: tanmoy dot 7989 at gmail dot com
|
|
|
|
Usage
|
|
-----
|
|
To get detailed information about the arguments, flags, etc use:
|
|
python reorder_remd_traj.py -h or
|
|
python reorder_remd_traj.py --help
|
|
|
|
Features of this script
|
|
-----------------------
|
|
a) reorder LAMMPS REMD trajectories by temperature keeping only desired frames.
|
|
Note: this only handles LAMMPS format trajectories (i.e. .lammpstrj format)
|
|
Trajectories can be gzipped or bz2-compressed. The trajectories are assumed to
|
|
be named as <prefix>.%d.lammpstrj[.gz or .bz2]
|
|
|
|
b) (optionally) calculate configurational weights for each frame at each
|
|
temperature if potential energies are supplied. But this if for the canonical
|
|
(NVT) ensemble only.
|
|
|
|
Dependencies
|
|
------------
|
|
mpi4py
|
|
pymbar (for getting configurational weights)
|
|
tqdm (for printing pretty progress bars)
|
|
StringIO (or io if in Python 3.x)
|
|
|
|
"""
|
|
|
|
|
|
|
|
import os, numpy as np, argparse, time, pickle
|
|
from scipy.special import logsumexp
|
|
from mpi4py import MPI
|
|
|
|
from tqdm import tqdm
|
|
import gzip, bz2
|
|
try:
|
|
# python-2
|
|
from StringIO import StringIO as IOBuffer
|
|
except ImportError:
|
|
# python-3
|
|
from io import BytesIO as IOBuffer
|
|
|
|
|
|
|
|
#### INITIALIZE MPI ####
|
|
# (note that all output on screen will be printed only on the ROOT proc)
|
|
ROOT = 0
|
|
comm = MPI.COMM_WORLD
|
|
me = comm.rank # my proc id
|
|
nproc = comm.size
|
|
|
|
|
|
#### HELPER FUNCTIONS ####
|
|
def _get_nearest_temp(temps, query_temp):
|
|
"""
|
|
Helper function to get the nearest temp in a list
|
|
from a given query_temp
|
|
|
|
:param temps: list of temps.
|
|
|
|
:param query_temp: query temp
|
|
|
|
Returns:
|
|
idx: index of nearest temp in the list
|
|
|
|
out_temp: nearest temp from the list
|
|
"""
|
|
|
|
if isinstance(temps, list): temps = np.array(temps)
|
|
return temps[np.argmin(np.abs(temps-query_temp))]
|
|
|
|
|
|
def readwrite(trajfn, mode):
|
|
"""
|
|
Helper function for input/output LAMMPS traj files.
|
|
Trajectories may be plain text, .gz or .bz2 compressed.
|
|
|
|
:param trajfn: name of LAMMPS traj
|
|
|
|
:param mode: "r" ("w") and "rb" ("wb") depending on read or write
|
|
|
|
Returns: file pointer
|
|
"""
|
|
|
|
if trajfn.endswith(".gz"):
|
|
of = gzip.open(trajfn, mode)
|
|
#return gzip.GzipFile(trajfn, mode)
|
|
elif trajfn.endswith(".bz2"):
|
|
of = bz2.open(trajfn, mode)
|
|
#return bz2.BZ2File(trajfn, mode)
|
|
else:
|
|
of = open(trajfn, mode)
|
|
return of
|
|
|
|
|
|
def get_replica_frames(logfn, temps, nswap, writefreq):
|
|
"""
|
|
Get a list of frames from each replica that is
|
|
at a particular temp. Do this for all temps.
|
|
|
|
:param logfn: master LAMMPS log file that contains the temp
|
|
swap history of all replicas
|
|
|
|
:param temps: list of all temps used in the REMD simulation.
|
|
|
|
:param nswap: swap frequency of the REMD simulation
|
|
|
|
:param writefreq: traj dump frequency in LAMMPS
|
|
|
|
Returns: master_frametuple_dict:
|
|
dict containing a tuple (replica #, frame #) for each temp.
|
|
"""
|
|
|
|
n_rep = len(temps)
|
|
swap_history = np.loadtxt(logfn, skiprows = 3)
|
|
master_frametuple_dict = dict( (n, []) for n in range(n_rep) )
|
|
|
|
# walk through the replicas
|
|
print("Getting frames from all replicas at temperature:")
|
|
for n in range(n_rep):
|
|
print("%3.2f K" % temps[n])
|
|
rep_inds = [np.where(x[1:] == n)[0][0] for x in swap_history]
|
|
|
|
# case-1: when frames are dumped faster than temp. swaps
|
|
if writefreq <= nswap:
|
|
for ii, i in enumerate(rep_inds[:-1]):
|
|
start = int(ii * nswap / writefreq)
|
|
stop = int( (ii+1) * nswap / writefreq)
|
|
[master_frametuple_dict[n].append( (i,x) ) \
|
|
for x in range(start, stop)]
|
|
|
|
# case-2: when temps. are swapped faster than dumping frames
|
|
else:
|
|
nskip = int(writefreq / nswap)
|
|
[master_frametuple_dict[n].append( (i,ii) ) \
|
|
for ii, i in enumerate(rep_inds[0::nskip])]
|
|
|
|
return master_frametuple_dict
|
|
|
|
|
|
def get_byte_index(rep_inds, byteindfns, intrajfns):
|
|
"""
|
|
Get byte indices from (un-ordered) trajectories.
|
|
|
|
:param rep_inds: indices of replicas to process on this proc
|
|
|
|
:param byteindsfns: list of filenames that will contain the byte indices
|
|
|
|
:param intrajfns: list of (unordered) input traj filenames
|
|
"""
|
|
for n in rep_inds:
|
|
# check if the byte indices for this traj has already been computed
|
|
if os.path.isfile(byteindfns[n]): continue
|
|
|
|
# extract bytes
|
|
fobj = readwrite(intrajfns[n], "rb")
|
|
byteinds = [ [0,0] ]
|
|
|
|
# place file pointer at first line
|
|
nframe = 0
|
|
first_line = fobj.readline()
|
|
cur_pos = fobj.tell()
|
|
|
|
# status printed only for replica read on root proc
|
|
# this assumes that each proc takes roughly the same time
|
|
if me == ROOT:
|
|
pb = tqdm(desc = "Reading replicas", leave = True,
|
|
position = ROOT + 2*me,
|
|
unit = "B/replica", unit_scale = True,
|
|
unit_divisor = 1024)
|
|
|
|
# start crawling through the bytes
|
|
while True:
|
|
next_line = fobj.readline()
|
|
if len(next_line) == 0: break
|
|
# this will only work with lammpstrj traj format.
|
|
# this condition essentially checks periodic recurrences
|
|
# of the token TIMESTEP. Each time it is found,
|
|
# we have crawled through a frame (snapshot)
|
|
if next_line == first_line:
|
|
nframe += 1
|
|
byteinds.append( [nframe, cur_pos] )
|
|
if me == ROOT: pb.update()
|
|
cur_pos = fobj.tell()
|
|
if me == ROOT: pb.update(0)
|
|
if me == ROOT: pb.close()
|
|
|
|
# take care of the EOF
|
|
cur_pos = fobj.tell()
|
|
byteinds.append( [nframe+1, cur_pos] ) # dummy index for the EOF
|
|
|
|
# write to file
|
|
np.savetxt(byteindfns[n], np.array(byteinds), fmt = "%d")
|
|
|
|
# close the trajfile object
|
|
fobj.close()
|
|
|
|
return
|
|
|
|
|
|
def write_reordered_traj(temp_inds, byte_inds, outtemps, temps,
|
|
frametuple_dict, nprod, writefreq,
|
|
outtrajfns, infobjs):
|
|
"""
|
|
Reorders trajectories by temp. and writes them to disk
|
|
|
|
:param temp_inds: list index of temps (in the list of all temps) for which
|
|
reordered trajs will be produced on this proc.
|
|
|
|
:param byte_inds: dict containing the (previously stored) byte indices
|
|
for each replica file (key = replica number)
|
|
|
|
:param outtemps: list of all temps for which to produce reordered trajs.
|
|
|
|
:param temps: list of all temps used in the REMD simulation.
|
|
|
|
:param outtrajfns: list of filenames for output (ordered) trajs.
|
|
|
|
:param frametuple_dict: dict containing a tuple (replica #, frame #)
|
|
for each temp.
|
|
|
|
:param nprod: number of production timesteps.
|
|
Last (nprod / writefreq) frames
|
|
from the end will be written to disk.
|
|
|
|
:param writefreq: traj dump frequency in LAMMPS
|
|
|
|
:param infobjs: list of file pointers to input (unordered) trajs.
|
|
"""
|
|
|
|
nframes = int(nprod / writefreq)
|
|
|
|
for n in temp_inds:
|
|
# open string-buffer and file
|
|
buf = IOBuffer()
|
|
of = readwrite(outtrajfns[n], "wb")
|
|
|
|
# get frames
|
|
abs_temp_ind = np.argmin( abs(temps - outtemps[n]) )
|
|
frametuple = frametuple_dict[abs_temp_ind][-nframes:]
|
|
|
|
# write frames to buffer
|
|
if me == ROOT:
|
|
pb = tqdm(frametuple,
|
|
desc = ("Buffering trajectories for writing"),
|
|
leave = True, position = ROOT + 2*me,
|
|
unit = 'frame/replica', unit_scale = True)
|
|
|
|
iterable = pb
|
|
else:
|
|
iterable = frametuple
|
|
|
|
for i, (rep, frame) in enumerate(iterable):
|
|
infobj = infobjs[rep]
|
|
start_ptr = int(byte_inds[rep][frame,1])
|
|
stop_ptr = int(byte_inds[rep][frame+1,1])
|
|
byte_len = stop_ptr - start_ptr
|
|
infobj.seek(start_ptr)
|
|
buf.write(infobj.read(byte_len))
|
|
if me == ROOT: pb.close()
|
|
|
|
# write buffer to disk
|
|
if me == ROOT: print("Writing buffer to file")
|
|
of.write(buf.getvalue())
|
|
of.close()
|
|
buf.close()
|
|
|
|
for i in infobjs: i.close()
|
|
|
|
return
|
|
|
|
|
|
def get_canonical_logw(enefn, frametuple_dict, temps, nprod, writefreq,
|
|
kB):
|
|
"""
|
|
Gets configurational log-weights (logw) for each frame and at each temp.
|
|
from the REMD simulation. ONLY WRITTEN FOR THE CANONICAL (NVT) ensemble.
|
|
|
|
This weights can be used to calculate the
|
|
ensemble averaged value of any simulation observable X at a given temp. T :
|
|
<X> (T) = \sum_{k=1, ntemps} \sum_{n=1, nframes} w[idx][k,n] X[k,n]
|
|
where nframes is the number of frames to use from each *reordered* traj
|
|
|
|
:param enefn: ascii file (readable by numpy.loadtxt) containing an array
|
|
u[r,n] of *total* potential energy for the n-th frame for
|
|
the r-th replica.
|
|
|
|
:param frametuple_dict: dict containing a tuple (replica #, frame #)
|
|
for each temp.
|
|
|
|
:param temps: array of temps. used in the REMD simulation
|
|
|
|
:param nprod: number of production timesteps. Last (nprod / writefreq)
|
|
frames from the end will be written to disk.
|
|
|
|
:param writefreq: traj dump frequency in LAMMPS
|
|
|
|
:param kB : Boltzmann constant to set the energy scale.
|
|
Default is in kcal/mol
|
|
|
|
Returns: logw: dict, logw[l][k,n] gives the log weights from the
|
|
n-th frame of the k-th temp. *ordered* trajectory
|
|
to reweight to the l-th temp.
|
|
|
|
"""
|
|
|
|
try:
|
|
import pymbar
|
|
except ImportError:
|
|
print("""
|
|
Configurational log-weight calculation requires pymbar.
|
|
Here are some options to install it:
|
|
conda install -c omnia pymbar
|
|
pip install --user pymbar
|
|
sudo pip install pymbar
|
|
|
|
To install the dev. version directly from github, use:
|
|
pip install pip install git+https://github.com/choderalab/pymbar.git
|
|
""")
|
|
|
|
u_rn = np.loadtxt(enefn)
|
|
ntemps = u_rn.shape[0] # number of temps.
|
|
nframes = int(nprod / writefreq) # number of frames at each temp.
|
|
|
|
# reorder the temps
|
|
u_kn = np.zeros([ntemps, nframes], float)
|
|
for k in range(ntemps):
|
|
frame_tuple = frametuple_dict[k][-nframes:]
|
|
for i, (rep, frame) in enumerate(frame_tuple):
|
|
u_kn[k, i] = u_rn[rep, frame]
|
|
|
|
# prep input for pymbar
|
|
#1) array of frames at each temp.
|
|
nframes_k = nframes * np.ones(ntemps, np.uint8)
|
|
|
|
#2) inverse temps. for chosen energy scale
|
|
beta_k = 1.0 / (kB * temps)
|
|
|
|
#3) get reduced energies (*ONLY FOR THE CANONICAL ENSEMBLE*)
|
|
u_kln = np.zeros([ntemps, ntemps, nframes], float)
|
|
for k in range(ntemps):
|
|
u_kln[k] = np.outer(beta_k, u_kn[k])
|
|
|
|
# run pymbar and extract the free energies
|
|
print("\nRunning pymbar...")
|
|
mbar = pymbar.mbar.MBAR(u_kln, nframes_k, verbose = True)
|
|
f_k = mbar.f_k # (1 x k array)
|
|
|
|
# calculate the log-weights
|
|
print("\nExtracting log-weights...")
|
|
log_nframes = np.log(nframes)
|
|
logw = dict( (k, np.zeros([ntemps, nframes], float)) for k in range(ntemps) )
|
|
# get log-weights to reweight to this temp.
|
|
for k in range(ntemps):
|
|
for n in range(nframes):
|
|
num = -beta_k[k] * u_kn[k,n]
|
|
denom = f_k - beta_k[k] * u_kn[k,n]
|
|
for l in range(ntemps):
|
|
logw[l][k,n] = num - logsumexp(denom) - log_nframes
|
|
|
|
return logw
|
|
|
|
|
|
|
|
#### MAIN WORKFLOW ####
|
|
if __name__ == "__main__":
|
|
# accept user inputs
|
|
parser = argparse.ArgumentParser(description = __doc__,
|
|
formatter_class = argparse.RawDescriptionHelpFormatter)
|
|
|
|
parser.add_argument("prefix",
|
|
help = "Prefix of REMD LAMMPS trajectories.\
|
|
Supply full path. Trajectories assumed to be named as \
|
|
<prefix>.%%d.lammpstrj. \
|
|
Can be in compressed (.gz or .bz2) format. \
|
|
This is a required argument")
|
|
|
|
parser.add_argument("-logfn", "--logfn", default = "log.lammps",
|
|
help = "LAMMPS log file that contains swap history \
|
|
of temperatures among replicas. \
|
|
Default = 'lammps.log'")
|
|
|
|
parser.add_argument("-tfn", "--tempfn", default = "temps.txt",
|
|
help = "ascii file (readable by numpy.loadtxt) with \
|
|
the temperatures used in the REMD simulation.")
|
|
|
|
parser.add_argument("-ns", "--nswap", type = int,
|
|
help = "Swap frequency used in LAMMPS temper command")
|
|
|
|
parser.add_argument("-nw", "--nwrite", type = int, default = 1,
|
|
help = "Trajectory writing frequency used \
|
|
in LAMMPS dump command")
|
|
|
|
parser.add_argument("-np", "--nprod", type = int, default = 0,
|
|
help = "Number of timesteps to save in the reordered\
|
|
trajectories.\
|
|
This should be in units of the LAMMPS timestep")
|
|
|
|
parser.add_argument("-logw", "--logw", action = 'store_true',
|
|
help = "Supplying this flag \
|
|
calculates *canonical* (NVT ensemble) log weights")
|
|
|
|
parser.add_argument("-e", "--enefn",
|
|
help = "File that has n_replica x n_frames array\
|
|
of total potential energies")
|
|
|
|
parser.add_argument("-kB", "--boltzmann_const",
|
|
type = float, default = 0.001987,
|
|
help = "Boltzmann constant in appropriate units. \
|
|
Default is kcal/mol")
|
|
|
|
parser.add_argument("-ot", "--out_temps", nargs = '+', type = np.float64,
|
|
help = "Reorder trajectories at these temperatures.\n \
|
|
Default is all temperatures used in the simulation")
|
|
|
|
parser.add_argument("-od", "--outdir", default = ".",
|
|
help = "All output will be saved to this directory")
|
|
|
|
# parse inputs
|
|
args = parser.parse_args()
|
|
traj_prefix = os.path.abspath(args.prefix)
|
|
logfn = os.path.abspath(args.logfn)
|
|
tempfn = os.path.abspath(args.tempfn)
|
|
|
|
nswap = args.nswap
|
|
writefreq = args.nwrite
|
|
nprod = args.nprod
|
|
|
|
enefn = args.enefn
|
|
if not enefn is None: enefn = os.path.abspath(enefn)
|
|
get_logw = args.logw
|
|
kB = args.boltzmann_const
|
|
|
|
out_temps = args.out_temps
|
|
outdir = os.path.abspath(args.outdir)
|
|
if not os.path.isdir(outdir):
|
|
if me == ROOT: os.mkdir(outdir)
|
|
|
|
# check that all input files are present (only on the ROOT proc)
|
|
if me == ROOT:
|
|
if not os.path.isfile(tempfn):
|
|
raise IOError("Temperature file %s not found." % tempfn)
|
|
elif not os.path.isfile(logfn):
|
|
raise IOError("LAMMPS log file %s not found." % logfn)
|
|
elif get_logw and not os.path.isfile(enefn):
|
|
raise IOError("Canonical log-weight calculation requested but\
|
|
energy file %s not found" % enefn)
|
|
|
|
# get (unordered) trajectories
|
|
temps = np.loadtxt(tempfn)
|
|
ntemps = len(temps)
|
|
intrajfns = ["%s.%d.lammpstrj" % (traj_prefix, k) for k in range(ntemps)]
|
|
# check if the trajs. (or their zipped versions are present)
|
|
for i in range(ntemps):
|
|
this_intrajfn = intrajfns[i]
|
|
x = this_intrajfn + ".gz"
|
|
if os.path.isfile(this_intrajfn): continue
|
|
elif os.path.isfile(this_intrajfn + ".gz"):
|
|
intrajfns[i] = this_intrajfn + ".gz"
|
|
elif os.path.isfile(this_intrajfn + ".bz2"):
|
|
intrajfns[i] = this_intrajfn + ".bz2"
|
|
else:
|
|
if me == ROOT:
|
|
raise IOError("Trajectory for replica # %d missing" % i)
|
|
|
|
# set output filenames
|
|
outprefix = os.path.join(outdir, traj_prefix.split('/')[-1])
|
|
outtrajfns = ["%s.%3.2f.lammpstrj.gz" % \
|
|
(outprefix, _get_nearest_temp(temps, t)) \
|
|
for t in out_temps]
|
|
byteindfns = [os.path.join(outdir, ".byteind_%d.gz" % k) \
|
|
for k in range(ntemps)]
|
|
frametuplefn = outprefix + '.frametuple.pickle'
|
|
if get_logw:
|
|
logwfn = outprefix + ".logw.pickle"
|
|
|
|
|
|
# get a list of all frames at a particular temp visited by each replica
|
|
# this is fast so run only on ROOT proc.
|
|
master_frametuple_dict = {}
|
|
if me == ROOT:
|
|
master_frametuple_dict = get_replica_frames(logfn = logfn,
|
|
temps = temps,
|
|
nswap = nswap,
|
|
writefreq = writefreq)
|
|
# save to a pickle from the ROOT proc
|
|
with open(frametuplefn, 'wb') as of:
|
|
pickle.dump(master_frametuple_dict, of)
|
|
|
|
# broadcast to all procs
|
|
master_frametuple_dict = comm.bcast(master_frametuple_dict, root = ROOT)
|
|
|
|
# define a chunk of replicas to process on each proc
|
|
CHUNKSIZE_1 = int(ntemps/nproc)
|
|
if me < nproc - 1:
|
|
my_rep_inds = range( (me*CHUNKSIZE_1), (me+1)*CHUNKSIZE_1 )
|
|
else:
|
|
my_rep_inds = range( (me*CHUNKSIZE_1), ntemps )
|
|
|
|
# get byte indices from replica (un-ordered) trajs. in parallel
|
|
get_byte_index(rep_inds = my_rep_inds,
|
|
byteindfns = byteindfns,
|
|
intrajfns = intrajfns)
|
|
|
|
# block until all procs have finished
|
|
comm.barrier()
|
|
|
|
# open all replica files for reading
|
|
infobjs = [readwrite(i, "rb") for i in intrajfns]
|
|
|
|
# open all byteindex files
|
|
byte_inds = dict( (i, np.loadtxt(fn)) for i, fn in enumerate(byteindfns) )
|
|
|
|
# define a chunk of output trajs. to process for each proc.
|
|
# # of reordered trajs. to write may be less than the total # of replicas
|
|
# which is usually equal to the requested nproc. If that is indeed the case,
|
|
# retire excess procs
|
|
n_out_temps = len(out_temps)
|
|
CHUNKSIZE_2 = int(n_out_temps / nproc)
|
|
if CHUNKSIZE_2 == 0:
|
|
nproc_active = n_out_temps
|
|
CHUNKSIZE_2 = 1
|
|
if me == ROOT:
|
|
print("\nReleasing %d excess procs" % (nproc - nproc_active))
|
|
else:
|
|
nproc_active = nproc
|
|
if me < nproc_active-1:
|
|
my_temp_inds = range( (me*CHUNKSIZE_2), (me+1)*CHUNKSIZE_1 )
|
|
else:
|
|
my_temp_inds = range( (me*CHUNKSIZE_2), n_out_temps)
|
|
|
|
# retire the excess procs
|
|
# dont' forget to close any open file objects
|
|
if me >= nproc_active:
|
|
for fobj in infobjs: fobj.close()
|
|
exit()
|
|
|
|
# write reordered trajectories to disk from active procs in parallel
|
|
write_reordered_traj(temp_inds = my_temp_inds,
|
|
byte_inds = byte_inds,
|
|
outtemps = out_temps, temps = temps,
|
|
frametuple_dict = master_frametuple_dict,
|
|
nprod = nprod, writefreq = writefreq,
|
|
outtrajfns = outtrajfns,
|
|
infobjs = infobjs)
|
|
|
|
# calculate canonical log-weights if requested
|
|
# usually this is very fast so retire all but the ROOT proc
|
|
if not get_logw: exit()
|
|
if not me == ROOT: exit()
|
|
|
|
logw = get_canonical_logw(enefn = enefn, temps = temps,
|
|
frametuple_dict = master_frametuple_dict,
|
|
nprod = nprod, writefreq = writefreq,
|
|
kB = kB)
|
|
|
|
|
|
# save the logweights to a pickle
|
|
with open(logwfn, 'wb') as of:
|
|
pickle.dump(logw, of)
|
|
|
|
|