lammps/lib/colvars/colvarcomp.cpp

193 lines
6.3 KiB
C++

/// -*- c++ -*-
#include "colvarmodule.h"
#include "colvarvalue.h"
#include "colvar.h"
#include "colvarcomp.h"
colvar::cvc::cvc()
: sup_coeff(1.0),
sup_np(1),
b_enabled(true),
b_periodic(false),
b_inverse_gradients(false),
b_Jacobian_derivative(false),
b_debug_gradients(false)
{}
colvar::cvc::cvc(std::string const &conf)
: sup_coeff(1.0),
sup_np(1),
b_enabled(true),
b_periodic(false),
b_inverse_gradients(false),
b_Jacobian_derivative(false),
b_debug_gradients(false)
{
if (cvm::debug())
cvm::log("Initializing cvc base object.\n");
get_keyval(conf, "name", this->name, std::string(""), parse_silent);
get_keyval(conf, "componentCoeff", sup_coeff, 1.0);
get_keyval(conf, "componentExp", sup_np, 1);
get_keyval(conf, "period", period, 0.0);
get_keyval(conf, "wrapAround", wrap_center, 0.0);
get_keyval(conf, "debugGradients", b_debug_gradients, false, parse_silent);
if (cvm::debug())
cvm::log("Done initializing cvc base object.\n");
}
void colvar::cvc::parse_group(std::string const &conf,
char const *group_key,
cvm::atom_group &group,
bool optional)
{
if (key_lookup(conf, group_key)) {
// TODO turn on scalable flag for group objects in cvc init function
group.key = group_key;
if (group.parse(conf) != COLVARS_OK) {
cvm::error("Error parsing definition for atom group \""+
std::string(group_key)+"\".\n");
return;
}
} else {
if (! optional) {
cvm::error("Error: definition for atom group \""+
std::string(group_key)+"\" not found.\n");
return;
}
}
}
colvar::cvc::~cvc()
{}
void colvar::cvc::calc_force_invgrads()
{
cvm::fatal_error("Error: calculation of inverse gradients is not implemented "
"for colvar components of type \""+function_type+"\".\n");
}
void colvar::cvc::calc_Jacobian_derivative()
{
cvm::fatal_error("Error: calculation of inverse gradients is not implemented "
"for colvar components of type \""+function_type+"\".\n");
}
void colvar::cvc::debug_gradients(cvm::atom_group &group)
{
// this function should work for any scalar variable:
// the only difference will be the name of the atom group (here, "group")
if (group.b_dummy) return;
cvm::rotation const rot_0 = group.rot;
cvm::rotation const rot_inv = group.rot.inverse();
cvm::real x_0 = x.real_value;
if ((x.type() == colvarvalue::type_vector) && (x.size() == 1)) x_0 = x[0];
// cvm::log("gradients = "+cvm::to_str (gradients)+"\n");
// it only makes sense to debug the fit gradients
// when the fitting group is the same as this group
if (group.b_rotate || group.b_center)
if (group.b_fit_gradients && (group.ref_pos_group == NULL)) {
group.calc_fit_gradients();
if (group.b_rotate) {
// fit_gradients are in the original frame, we should print them in the rotated frame
for (size_t j = 0; j < group.fit_gradients.size(); j++) {
group.fit_gradients[j] = rot_0.rotate(group.fit_gradients[j]);
}
}
cvm::log("fit_gradients = "+cvm::to_str(group.fit_gradients)+"\n");
if (group.b_rotate) {
for (size_t j = 0; j < group.fit_gradients.size(); j++) {
group.fit_gradients[j] = rot_inv.rotate(group.fit_gradients[j]);
}
}
}
for (size_t ia = 0; ia < group.size(); ia++) {
// tests are best conducted in the unrotated (simulation) frame
cvm::rvector const atom_grad = group.b_rotate ?
rot_inv.rotate(group[ia].grad) :
group[ia].grad;
for (size_t id = 0; id < 3; id++) {
// (re)read original positions
group.read_positions();
// change one coordinate
group[ia].pos[id] += cvm::debug_gradients_step_size;
group.calc_required_properties();
calc_value();
cvm::real x_1 = x.real_value;
if ((x.type() == colvarvalue::type_vector) && (x.size() == 1)) x_1 = x[0];
cvm::log("Atom "+cvm::to_str(ia)+", component "+cvm::to_str(id)+":\n");
cvm::log("dx(actual) = "+cvm::to_str(x_1 - x_0,
21, 14)+"\n");
//cvm::real const dx_pred = (group.fit_gradients.size() && (group.ref_pos_group == NULL)) ?
cvm::real const dx_pred = (group.fit_gradients.size()) ?
(cvm::debug_gradients_step_size * (atom_grad[id] + group.fit_gradients[ia][id])) :
(cvm::debug_gradients_step_size * atom_grad[id]);
cvm::log("dx(interp) = "+cvm::to_str(dx_pred,
21, 14)+"\n");
cvm::log("|dx(actual) - dx(interp)|/|dx(actual)| = "+
cvm::to_str(std::fabs(x_1 - x_0 - dx_pred) /
std::fabs(x_1 - x_0), 12, 5)+"\n");
}
}
/*
* The code below is WIP
*/
// if (group.ref_pos_group != NULL) {
// cvm::atom_group &ref = *group.ref_pos_group;
// group.calc_fit_gradients();
//
// for (size_t ia = 0; ia < ref.size(); ia++) {
//
// for (size_t id = 0; id < 3; id++) {
// // (re)read original positions
// group.read_positions();
// ref.read_positions();
// // change one coordinate
// ref[ia].pos[id] += cvm::debug_gradients_step_size;
// group.update();
// calc_value();
// cvm::real const x_1 = x.real_value;
// cvm::log("refPosGroup atom "+cvm::to_str(ia)+", component "+cvm::to_str (id)+":\n");
// cvm::log("dx(actual) = "+cvm::to_str (x_1 - x_0,
// 21, 14)+"\n");
// //cvm::real const dx_pred = (group.fit_gradients.size() && (group.ref_pos_group == NULL)) ?
// // cvm::real const dx_pred = (group.fit_gradients.size()) ?
// // (cvm::debug_gradients_step_size * (atom_grad[id] + group.fit_gradients[ia][id])) :
// // (cvm::debug_gradients_step_size * atom_grad[id]);
// cvm::real const dx_pred = cvm::debug_gradients_step_size * ref.fit_gradients[ia][id];
// cvm::log("dx(interp) = "+cvm::to_str (dx_pred,
// 21, 14)+"\n");
// cvm::log ("|dx(actual) - dx(interp)|/|dx(actual)| = "+
// cvm::to_str(std::fabs (x_1 - x_0 - dx_pred) /
// std::fabs (x_1 - x_0),
// 12, 5)+
// ".\n");
// }
// }
// }
return;
}