lammps/lib/gpu/lal_gayberne_lj.cu

429 lines
13 KiB
Plaintext

// **************************************************************************
// gayberne_lj.cu
// -------------------
// W. Michael Brown (ORNL)
//
// Device code for Gay-Berne - Lennard-Jones potential acceleration
//
// __________________________________________________________________________
// This file is part of the LAMMPS Accelerator Library (LAMMPS_AL)
// __________________________________________________________________________
//
// begin :
// email : brownw@ornl.gov
// ***************************************************************************/
#ifdef NV_KERNEL
#include "lal_ellipsoid_extra.h"
#endif
__kernel void k_gayberne_sphere_ellipsoid(const __global numtyp4 *restrict x_,
const __global numtyp4 *restrict q,
const __global numtyp4 *restrict shape,
const __global numtyp4 *restrict well,
const __global numtyp *restrict gum,
const __global numtyp2 *restrict sig_eps,
const int ntypes,
const __global numtyp *restrict lshape,
const __global int *dev_nbor,
const int stride,
__global acctyp4 *restrict ans,
__global acctyp *restrict engv,
__global int *restrict err_flag,
const int eflag, const int vflag,
const int start, const int inum,
const int t_per_atom) {
int tid, ii, offset;
atom_info(t_per_atom,ii,tid,offset);
ii+=start;
__local numtyp sp_lj[4];
sp_lj[0]=gum[3];
sp_lj[1]=gum[4];
sp_lj[2]=gum[5];
sp_lj[3]=gum[6];
acctyp energy=(acctyp)0;
acctyp4 f;
f.x=(acctyp)0;
f.y=(acctyp)0;
f.z=(acctyp)0;
acctyp virial[6];
for (int i=0; i<6; i++)
virial[i]=(acctyp)0;
if (ii<inum) {
const __global int *nbor, *nbor_end;
int i, numj;
__local int n_stride;
nbor_info_e(dev_nbor,stride,t_per_atom,ii,offset,i,numj,
n_stride,nbor_end,nbor);
numtyp4 ix; fetch4(ix,i,pos_tex);
int itype=ix.w;
numtyp oner=shape[itype].x;
numtyp one_well=well[itype].x;
numtyp factor_lj;
for ( ; nbor<nbor_end; nbor+=n_stride) {
int j=*nbor;
factor_lj = sp_lj[sbmask(j)];
j &= NEIGHMASK;
numtyp4 jx; fetch4(jx,j,pos_tex);
int jtype=jx.w;
// Compute r12
numtyp r12[3];
r12[0] = jx.x-ix.x;
r12[1] = jx.y-ix.y;
r12[2] = jx.z-ix.z;
numtyp ir = gpu_dot3(r12,r12);
ir = ucl_rsqrt(ir);
numtyp r = ucl_recip(ir);
numtyp r12hat[3];
r12hat[0]=r12[0]*ir;
r12hat[1]=r12[1]*ir;
r12hat[2]=r12[2]*ir;
numtyp a2[9];
gpu_quat_to_mat_trans(q,j,a2);
numtyp u_r, dUr[3], eta;
{ // Compute U_r, dUr, eta, and teta
// Compute g12
numtyp g12[9];
{
{
numtyp g2[9];
gpu_diag_times3(shape[jtype],a2,g12);
gpu_transpose_times3(a2,g12,g2);
g12[0]=g2[0]+oner;
g12[4]=g2[4]+oner;
g12[8]=g2[8]+oner;
g12[1]=g2[1];
g12[2]=g2[2];
g12[3]=g2[3];
g12[5]=g2[5];
g12[6]=g2[6];
g12[7]=g2[7];
}
{ // Compute U_r and dUr
// Compute kappa
numtyp kappa[3];
gpu_mldivide3(g12,r12,kappa,err_flag);
// -- kappa is now / r
kappa[0]*=ir;
kappa[1]*=ir;
kappa[2]*=ir;
// energy
// compute u_r and dUr
numtyp uslj_rsq;
{
// Compute distance of closest approach
numtyp h12, sigma12;
sigma12 = gpu_dot3(r12hat,kappa);
sigma12 = ucl_rsqrt((numtyp)0.5*sigma12);
h12 = r-sigma12;
// -- kappa is now ok
kappa[0]*=r;
kappa[1]*=r;
kappa[2]*=r;
int mtype=fast_mul(ntypes,itype)+jtype;
numtyp sigma = sig_eps[mtype].x;
numtyp epsilon = sig_eps[mtype].y;
numtyp varrho = sigma/(h12+gum[0]*sigma);
numtyp varrho6 = varrho*varrho*varrho;
varrho6*=varrho6;
numtyp varrho12 = varrho6*varrho6;
u_r = (numtyp)4.0*epsilon*(varrho12-varrho6);
numtyp temp1 = ((numtyp)2.0*varrho12*varrho-varrho6*varrho)/sigma;
temp1 = temp1*(numtyp)24.0*epsilon;
uslj_rsq = temp1*sigma12*sigma12*sigma12*(numtyp)0.5;
numtyp temp2 = gpu_dot3(kappa,r12hat);
uslj_rsq = uslj_rsq*ir*ir;
dUr[0] = temp1*r12hat[0]+uslj_rsq*(kappa[0]-temp2*r12hat[0]);
dUr[1] = temp1*r12hat[1]+uslj_rsq*(kappa[1]-temp2*r12hat[1]);
dUr[2] = temp1*r12hat[2]+uslj_rsq*(kappa[2]-temp2*r12hat[2]);
}
}
}
// Compute eta
{
eta = (numtyp)2.0*lshape[itype]*lshape[jtype];
numtyp det_g12 = gpu_det3(g12);
eta = ucl_powr(eta/det_g12,gum[1]);
}
}
numtyp chi, dchi[3];
{ // Compute chi and dchi
// Compute b12
numtyp b12[9];
{
numtyp b2[9];
gpu_diag_times3(well[jtype],a2,b12);
gpu_transpose_times3(a2,b12,b2);
b12[0]=b2[0]+one_well;
b12[4]=b2[4]+one_well;
b12[8]=b2[8]+one_well;
b12[1]=b2[1];
b12[2]=b2[2];
b12[3]=b2[3];
b12[5]=b2[5];
b12[6]=b2[6];
b12[7]=b2[7];
}
// compute chi_12
numtyp iota[3];
gpu_mldivide3(b12,r12,iota,err_flag);
// -- iota is now iota/r
iota[0]*=ir;
iota[1]*=ir;
iota[2]*=ir;
chi = gpu_dot3(r12hat,iota);
chi = ucl_powr(chi*(numtyp)2.0,gum[2]);
// -- iota is now ok
iota[0]*=r;
iota[1]*=r;
iota[2]*=r;
numtyp temp1 = gpu_dot3(iota,r12hat);
numtyp temp2 = (numtyp)-4.0*ir*ir*gum[2]*ucl_powr(chi,(gum[2]-(numtyp)1.0)/
gum[2]);
dchi[0] = temp2*(iota[0]-temp1*r12hat[0]);
dchi[1] = temp2*(iota[1]-temp1*r12hat[1]);
dchi[2] = temp2*(iota[2]-temp1*r12hat[2]);
}
numtyp temp2 = factor_lj*eta*chi;
if (eflag>0)
energy+=u_r*temp2;
numtyp temp1 = -eta*u_r*factor_lj;
if (vflag>0) {
r12[0]*=-1;
r12[1]*=-1;
r12[2]*=-1;
numtyp ft=temp1*dchi[0]-temp2*dUr[0];
f.x+=ft;
virial[0]+=r12[0]*ft;
ft=temp1*dchi[1]-temp2*dUr[1];
f.y+=ft;
virial[1]+=r12[1]*ft;
virial[3]+=r12[0]*ft;
ft=temp1*dchi[2]-temp2*dUr[2];
f.z+=ft;
virial[2]+=r12[2]*ft;
virial[4]+=r12[0]*ft;
virial[5]+=r12[1]*ft;
} else {
f.x+=temp1*dchi[0]-temp2*dUr[0];
f.y+=temp1*dchi[1]-temp2*dUr[1];
f.z+=temp1*dchi[2]-temp2*dUr[2];
}
} // for nbor
store_answers(f,energy,virial,ii,inum,tid,t_per_atom,offset,eflag,vflag,
ans,engv);
} // if ii
}
__kernel void k_gayberne_lj(const __global numtyp4 *restrict x_,
const __global numtyp4 *restrict lj1,
const __global numtyp4 *restrict lj3,
const int lj_types,
const __global numtyp *restrict gum,
const int stride,
const __global int *dev_ij,
__global acctyp4 *restrict ans,
__global acctyp *restrict engv,
__global int *restrict err_flag,
const int eflag, const int vflag, const int start,
const int inum, const int t_per_atom) {
int tid, ii, offset;
atom_info(t_per_atom,ii,tid,offset);
ii+=start;
__local numtyp sp_lj[4];
sp_lj[0]=gum[3];
sp_lj[1]=gum[4];
sp_lj[2]=gum[5];
sp_lj[3]=gum[6];
acctyp energy=(acctyp)0;
acctyp4 f;
f.x=(acctyp)0;
f.y=(acctyp)0;
f.z=(acctyp)0;
acctyp virial[6];
for (int i=0; i<6; i++)
virial[i]=(acctyp)0;
if (ii<inum) {
const __global int *nbor, *list_end;
int i, numj;
__local int n_stride;
nbor_info_e(dev_ij,stride,t_per_atom,ii,offset,i,numj,
n_stride,list_end,nbor);
numtyp4 ix; fetch4(ix,i,pos_tex);
int itype=ix.w;
numtyp factor_lj;
for ( ; nbor<list_end; nbor+=n_stride) {
int j=*nbor;
factor_lj = sp_lj[sbmask(j)];
j &= NEIGHMASK;
numtyp4 jx; fetch4(jx,j,pos_tex);
int jtype=jx.w;
// Compute r12
numtyp delx = ix.x-jx.x;
numtyp dely = ix.y-jx.y;
numtyp delz = ix.z-jx.z;
numtyp r2inv = delx*delx+dely*dely+delz*delz;
int ii=itype*lj_types+jtype;
if (r2inv<lj1[ii].z && lj1[ii].w==SPHERE_SPHERE) {
r2inv=ucl_recip(r2inv);
numtyp r6inv = r2inv*r2inv*r2inv;
numtyp force = r2inv*r6inv*(lj1[ii].x*r6inv-lj1[ii].y);
force*=factor_lj;
f.x+=delx*force;
f.y+=dely*force;
f.z+=delz*force;
if (eflag>0) {
numtyp e=r6inv*(lj3[ii].x*r6inv-lj3[ii].y);
energy+=factor_lj*(e-lj3[ii].z);
}
if (vflag>0) {
virial[0] += delx*delx*force;
virial[1] += dely*dely*force;
virial[2] += delz*delz*force;
virial[3] += delx*dely*force;
virial[4] += delx*delz*force;
virial[5] += dely*delz*force;
}
}
} // for nbor
acc_answers(f,energy,virial,ii,inum,tid,t_per_atom,offset,eflag,vflag,
ans,engv);
} // if ii
}
__kernel void k_gayberne_lj_fast(const __global numtyp4 *restrict x_,
const __global numtyp4 *restrict lj1_in,
const __global numtyp4 *restrict lj3_in,
const __global numtyp *restrict gum,
const int stride,
const __global int *dev_ij,
__global acctyp4 *restrict ans,
__global acctyp *restrict engv,
__global int *restrict err_flag,
const int eflag, const int vflag,
const int start, const int inum,
const int t_per_atom) {
int tid, ii, offset;
atom_info(t_per_atom,ii,tid,offset);
ii+=start;
__local numtyp sp_lj[4];
__local numtyp4 lj1[MAX_SHARED_TYPES*MAX_SHARED_TYPES];
__local numtyp4 lj3[MAX_SHARED_TYPES*MAX_SHARED_TYPES];
if (tid<4)
sp_lj[tid]=gum[tid+3];
if (tid<MAX_SHARED_TYPES*MAX_SHARED_TYPES) {
lj1[tid]=lj1_in[tid];
if (eflag>0)
lj3[tid]=lj3_in[tid];
}
acctyp energy=(acctyp)0;
acctyp4 f;
f.x=(acctyp)0;
f.y=(acctyp)0;
f.z=(acctyp)0;
acctyp virial[6];
for (int i=0; i<6; i++)
virial[i]=(acctyp)0;
__syncthreads();
if (ii<inum) {
const __global int *nbor, *list_end;
int i, numj;
__local int n_stride;
nbor_info_e(dev_ij,stride,t_per_atom,ii,offset,i,numj,
n_stride,list_end,nbor);
numtyp4 ix; fetch4(ix,i,pos_tex);
int iw=ix.w;
int itype=fast_mul((int)MAX_SHARED_TYPES,iw);
numtyp factor_lj;
for ( ; nbor<list_end; nbor+=n_stride) {
int j=*nbor;
factor_lj = sp_lj[sbmask(j)];
j &= NEIGHMASK;
numtyp4 jx; fetch4(jx,j,pos_tex);
int mtype=itype+jx.w;
// Compute r12
numtyp delx = ix.x-jx.x;
numtyp dely = ix.y-jx.y;
numtyp delz = ix.z-jx.z;
numtyp r2inv = delx*delx+dely*dely+delz*delz;
if (r2inv<lj1[mtype].z && lj1[mtype].w==SPHERE_SPHERE) {
r2inv=ucl_recip(r2inv);
numtyp r6inv = r2inv*r2inv*r2inv;
numtyp force = factor_lj*r2inv*r6inv*(lj1[mtype].x*r6inv-lj1[mtype].y);
f.x+=delx*force;
f.y+=dely*force;
f.z+=delz*force;
if (eflag>0) {
numtyp e=r6inv*(lj3[mtype].x*r6inv-lj3[mtype].y);
energy+=factor_lj*(e-lj3[mtype].z);
}
if (vflag>0) {
virial[0] += delx*delx*force;
virial[1] += dely*dely*force;
virial[2] += delz*delz*force;
virial[3] += delx*dely*force;
virial[4] += delx*delz*force;
virial[5] += dely*delz*force;
}
}
} // for nbor
acc_answers(f,energy,virial,ii,inum,tid,t_per_atom,offset,eflag,vflag,
ans,engv);
} // if ii
}