lammps/lib/cuda/fix_shake_cuda.cu

298 lines
11 KiB
Plaintext

/* ----------------------------------------------------------------------
LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
Original Version:
http://lammps.sandia.gov, Sandia National Laboratories
Steve Plimpton, sjplimp@sandia.gov
See the README file in the top-level LAMMPS directory.
-----------------------------------------------------------------------
USER-CUDA Package and associated modifications:
https://sourceforge.net/projects/lammpscuda/
Christian Trott, christian.trott@tu-ilmenau.de
Lars Winterfeld, lars.winterfeld@tu-ilmenau.de
Theoretical Physics II, University of Technology Ilmenau, Germany
See the README file in the USER-CUDA directory.
This software is distributed under the GNU General Public License.
------------------------------------------------------------------------- */
#include <stdio.h>
#define MY_PREFIX fix_shake_cuda
#include "cuda_shared.h"
#include "cuda_common.h"
#include "crm_cuda_utils.cu"
#include "fix_shake_cuda_cu.h"
#include "cuda_pair_virial_kernel_nc.cu"
#define _shake_atom MY_AP(shake_atom)
#define _shake_type MY_AP(shake_type)
#define _shake_flag MY_AP(shake_flag)
#define _xshake MY_AP(xshake)
#define _dtfsq MY_AP(dtfsq)
#define _bond_distance MY_AP(bond_distance)
#define _angle_distance MY_AP(angle_distance)
#define _max_iter MY_AP(max_iter)
#define _tolerance MY_AP(tolerance)
__device__ __constant__ int* _shake_atom;
__device__ __constant__ int* _shake_type;
__device__ __constant__ int* _shake_flag;
__device__ __constant__ X_FLOAT3* _xshake;
__device__ __constant__ F_FLOAT _dtfsq;
__device__ __constant__ X_FLOAT* _bond_distance;
__device__ __constant__ X_FLOAT* _angle_distance;
__device__ __constant__ int _max_iter;
__device__ __constant__ X_FLOAT _tolerance;
#include "fix_shake_cuda_kernel.cu"
void Cuda_FixShakeCuda_UpdateNmax(cuda_shared_data* sdata)
{
cudaMemcpyToSymbol(MY_AP(x) , & sdata->atom.x .dev_data, sizeof(X_FLOAT*));
cudaMemcpyToSymbol(MY_AP(v) , & sdata->atom.v .dev_data, sizeof(V_FLOAT*));
cudaMemcpyToSymbol(MY_AP(f) , & sdata->atom.f .dev_data, sizeof(F_FLOAT*));
cudaMemcpyToSymbol(MY_AP(mask) , & sdata->atom.mask .dev_data, sizeof(int*));
cudaMemcpyToSymbol(MY_AP(tag) , & sdata->atom.tag .dev_data, sizeof(int*));
cudaMemcpyToSymbol(MY_AP(nlocal) , & sdata->atom.nlocal , sizeof(int));
cudaMemcpyToSymbol(MY_AP(nmax) , & sdata->atom.nmax , sizeof(int));
cudaMemcpyToSymbol(MY_AP(rmass) , & sdata->atom.rmass.dev_data, sizeof(V_FLOAT*));
cudaMemcpyToSymbol(MY_AP(type) , & sdata->atom.type .dev_data, sizeof(int*));
cudaMemcpyToSymbol(MY_AP(map_array), & sdata->atom.map_array .dev_data, sizeof(int*));
cudaMemcpyToSymbol(MY_AP(vatom) , & sdata->atom.vatom.dev_data, sizeof(ENERGY_FLOAT*));
cudaMemcpyToSymbol(MY_AP(debugdata), & sdata->debugdata , sizeof(int*));
}
void Cuda_FixShakeCuda_UpdateDomain(cuda_shared_data* sdata)
{
cudaMemcpyToSymbol(MY_AP(periodicity), sdata->domain.periodicity , sizeof(int) * 3);
cudaMemcpyToSymbol(MY_AP(prd) , sdata->domain.prd , sizeof(X_FLOAT) * 3);
cudaMemcpyToSymbol(MY_AP(triclinic) , &sdata->domain.triclinic , sizeof(int));
cudaMemcpyToSymbol(MY_AP(h) , sdata->domain.h , sizeof(X_FLOAT) * 6);
}
void Cuda_FixShakeCuda_UpdateBuffer(cuda_shared_data* sdata, int size)
{
if(sdata->buffersize < size) {
MYDBG(printf("Cuda_FixShakeCuda Resizing Buffer at %p with %i kB to\n", sdata->buffer, sdata->buffersize);)
CudaWrapper_FreeCudaData(sdata->buffer, sdata->buffersize);
sdata->buffer = CudaWrapper_AllocCudaData(size);
sdata->buffersize = size;
sdata->buffer_new++;
MYDBG(printf("New buffer at %p with %i kB\n", sdata->buffer, sdata->buffersize);)
}
cudaMemcpyToSymbol(MY_AP(buffer) , & sdata->buffer, sizeof(int*));
}
void Cuda_FixShakeCuda_Init(cuda_shared_data* sdata, X_FLOAT dtv, F_FLOAT dtfsq,
void* shake_flag, void* shake_atom, void* shake_type, void* xshake,
void* bond_distance, void* angle_distance, void* virial,
int max_iter, X_FLOAT tolerance)
{
Cuda_FixShakeCuda_UpdateNmax(sdata);
Cuda_FixShakeCuda_UpdateDomain(sdata);
cudaMemcpyToSymbol(MY_AP(shake_atom) , & shake_atom , sizeof(void*));
cudaMemcpyToSymbol(MY_AP(shake_type) , & shake_type , sizeof(void*));
cudaMemcpyToSymbol(MY_AP(shake_flag) , & shake_flag , sizeof(void*));
cudaMemcpyToSymbol(MY_AP(xshake) , & xshake , sizeof(void*));
cudaMemcpyToSymbol(MY_AP(dtv) , & dtv , sizeof(X_FLOAT));
cudaMemcpyToSymbol(MY_AP(dtfsq) , & dtfsq , sizeof(F_FLOAT));
cudaMemcpyToSymbol(MY_AP(bond_distance) , & bond_distance , sizeof(void*));
cudaMemcpyToSymbol(MY_AP(angle_distance) , & angle_distance , sizeof(void*));
cudaMemcpyToSymbol(MY_AP(virial) , & virial , sizeof(void*));
cudaMemcpyToSymbol(MY_AP(flag) , &sdata->flag , sizeof(int*));
cudaMemcpyToSymbol(MY_AP(max_iter) , &max_iter , sizeof(int));
cudaMemcpyToSymbol(MY_AP(tolerance) , &tolerance , sizeof(X_FLOAT));
if(sdata->atom.mass_host)
cudaMemcpyToSymbol(MY_AP(mass), & sdata->atom.mass.dev_data , sizeof(V_FLOAT*));
cudaMemcpyToSymbol(MY_AP(rmass_flag), & sdata->atom.rmass_flag , sizeof(int)); //
cudaMemcpyToSymbol(MY_AP(flag) , &sdata->flag, sizeof(int*));
}
void Cuda_FixShakeCuda_UnconstrainedUpdate(cuda_shared_data* sdata)
{
if(sdata->atom.update_nmax)
Cuda_FixShakeCuda_UpdateNmax(sdata);
if(sdata->atom.update_nlocal)
cudaMemcpyToSymbol(MY_AP(nlocal) , & sdata->atom.nlocal , sizeof(int));
if(sdata->buffer_new)
Cuda_FixShakeCuda_UpdateBuffer(sdata, 10 * sizeof(double));
int3 layout = getgrid(sdata->atom.nlocal);
dim3 threads(layout.z, 1, 1);
dim3 grid(layout.x, layout.y, 1);
FixShakeCuda_UnconstrainedUpdate_Kernel <<< grid, threads>>> ();
cudaThreadSynchronize();
CUT_CHECK_ERROR("FixShakeCuda_UnconstrainedUpdate: Kernel execution failed");
}
void Cuda_FixShakeCuda_Shake(cuda_shared_data* sdata, int vflag, int vflag_atom, int* list, int nlist)
{
if(sdata->atom.update_nmax)
Cuda_FixShakeCuda_UpdateNmax(sdata);
if(sdata->domain.update)
Cuda_FixShakeCuda_UpdateDomain(sdata);
if(sdata->atom.update_nlocal)
cudaMemcpyToSymbol(MY_AP(nlocal) , & sdata->atom.nlocal , sizeof(int));
int3 layout = getgrid(sdata->atom.nlocal, 6 * sizeof(ENERGY_FLOAT), 64);
dim3 threads(layout.z, 1, 1);
dim3 grid(layout.x, layout.y, 1);
if(sdata->buffer_new)
Cuda_FixShakeCuda_UpdateBuffer(sdata, grid.x * grid.y * 6 * sizeof(ENERGY_FLOAT));
BindXTypeTexture(sdata);
FixShakeCuda_Shake_Kernel <<< grid, threads, 6* threads.x* sizeof(ENERGY_FLOAT)>>> (vflag, vflag_atom, list, nlist);
cudaThreadSynchronize();
CUT_CHECK_ERROR("FixShakeCuda_Shake: Kernel execution failed");
if(vflag) {
int n = grid.x * grid.y;
grid.x = 6;
grid.y = 1;
threads.x = 256;
MY_AP(PairVirialCompute_reduce) <<< grid, threads, threads.x* sizeof(ENERGY_FLOAT)>>>(n);
cudaThreadSynchronize();
CUT_CHECK_ERROR("Cuda_FixShakeCuda: (no binning) virial compute Kernel execution failed");
}
}
int Cuda_FixShakeCuda_PackComm(cuda_shared_data* sdata, int n, int iswap, void* buf_send, int* pbc, int pbc_flag)
{
if(sdata->atom.update_nmax)
Cuda_FixShakeCuda_UpdateNmax(sdata);
if(sdata->atom.update_nlocal)
cudaMemcpyToSymbol(MY_AP(nlocal) , & sdata->atom.nlocal , sizeof(int));
int size = n * 3 * sizeof(X_FLOAT);
if(sdata->buffer_new or (size > sdata->buffersize))
Cuda_FixShakeCuda_UpdateBuffer(sdata, size);
X_FLOAT dx = 0.0;
X_FLOAT dy = 0.0;
X_FLOAT dz = 0.0;
if(pbc_flag != 0) {
if(sdata->domain.triclinic == 0) {
dx = pbc[0] * sdata->domain.prd[0];
dy = pbc[1] * sdata->domain.prd[1];
dz = pbc[2] * sdata->domain.prd[2];
} else {
dx = pbc[0] * sdata->domain.prd[0] + pbc[5] * sdata->domain.xy + pbc[4] * sdata->domain.xz;
dy = pbc[1] * sdata->domain.prd[1] + pbc[3] * sdata->domain.yz;
dz = pbc[2] * sdata->domain.prd[2];
}
}
int3 layout = getgrid(n);
dim3 threads(layout.z, 1, 1);
dim3 grid(layout.x, layout.y, 1);
if(sdata->atom.nlocal > 0) {
cudaMemset(sdata->flag, 0, sizeof(int));
FixShakeCuda_PackComm_Kernel <<< grid, threads, 0>>>((int*) sdata->comm.sendlist.dev_data, n, sdata->comm.maxlistlength, iswap, dx, dy, dz);
cudaThreadSynchronize();
cudaMemcpy(buf_send, sdata->buffer, n * 3 * sizeof(X_FLOAT), cudaMemcpyDeviceToHost);
int aflag;
cudaMemcpy(&aflag, sdata->flag, sizeof(int), cudaMemcpyDeviceToHost);
if(aflag != 0) printf("aflag PackComm: %i\n", aflag);
CUT_CHECK_ERROR("Cuda_FixShakeCuda_PackComm: Kernel execution failed");
}
return 3 * n;
}
int Cuda_FixShakeCuda_PackComm_Self(cuda_shared_data* sdata, int n, int iswap, int first, int* pbc, int pbc_flag)
{
if(sdata->atom.update_nmax)
Cuda_FixShakeCuda_UpdateNmax(sdata);
if(sdata->atom.update_nlocal)
cudaMemcpyToSymbol(MY_AP(nlocal) , & sdata->atom.nlocal , sizeof(int));
int size = n * 3 * sizeof(X_FLOAT);
if(sdata->buffer_new or (size > sdata->buffersize))
Cuda_FixShakeCuda_UpdateBuffer(sdata, size);
static int count = -1;
count++;
X_FLOAT dx = 0.0;
X_FLOAT dy = 0.0;
X_FLOAT dz = 0.0;
if(pbc_flag != 0) {
if(sdata->domain.triclinic == 0) {
dx = pbc[0] * sdata->domain.prd[0];
dy = pbc[1] * sdata->domain.prd[1];
dz = pbc[2] * sdata->domain.prd[2];
} else {
dx = pbc[0] * sdata->domain.prd[0] + pbc[5] * sdata->domain.xy + pbc[4] * sdata->domain.xz;
dy = pbc[1] * sdata->domain.prd[1] + pbc[3] * sdata->domain.yz;
dz = pbc[2] * sdata->domain.prd[2];
}
}
int3 layout = getgrid(n);
dim3 threads(layout.z, 1, 1);
dim3 grid(layout.x, layout.y, 1);
if(sdata->atom.nlocal > 0) {
FixShakeCuda_PackComm_Self_Kernel <<< grid, threads, 0>>>((int*) sdata->comm.sendlist.dev_data, n, sdata->comm.maxlistlength, iswap, dx, dy, dz, first);
cudaThreadSynchronize();
CUT_CHECK_ERROR("Cuda_CommCuda_PackComm_Self: Kernel execution failed");
}
return 3 * n;
}
void Cuda_FixShakeCuda_UnpackComm(cuda_shared_data* sdata, int n, int first, void* buf_recv)
{
if(sdata->atom.update_nmax)
Cuda_FixShakeCuda_UpdateNmax(sdata);
if(sdata->atom.update_nlocal)
cudaMemcpyToSymbol(MY_AP(nlocal) , & sdata->atom.nlocal , sizeof(int));
int size = n * 3 * sizeof(X_FLOAT);
if(sdata->buffer_new or (size > sdata->buffersize))
Cuda_FixShakeCuda_UpdateBuffer(sdata, size);
int3 layout = getgrid(n);
dim3 threads(layout.z, 1, 1);
dim3 grid(layout.x, layout.y, 1);
if(sdata->atom.nlocal > 0) {
cudaMemcpy(sdata->buffer, (void*)buf_recv, n * 3 * sizeof(X_FLOAT), cudaMemcpyHostToDevice);
FixShakeCuda_UnpackComm_Kernel <<< grid, threads, 0>>>(n, first);
cudaThreadSynchronize();
CUT_CHECK_ERROR("Cuda_FixShakeCuda_UnpackComm: Kernel execution failed");
}
}