lammps/lib/linalg/zlarfg.f

204 lines
5.3 KiB
Fortran

*> \brief \b ZLARFG generates an elementary reflector (Householder matrix).
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download ZLARFG + dependencies
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zlarfg.f">
*> [TGZ]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zlarfg.f">
*> [ZIP]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zlarfg.f">
*> [TXT]</a>
*> \endhtmlonly
*
* Definition:
* ===========
*
* SUBROUTINE ZLARFG( N, ALPHA, X, INCX, TAU )
*
* .. Scalar Arguments ..
* INTEGER INCX, N
* COMPLEX*16 ALPHA, TAU
* ..
* .. Array Arguments ..
* COMPLEX*16 X( * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> ZLARFG generates a complex elementary reflector H of order n, such
*> that
*>
*> H**H * ( alpha ) = ( beta ), H**H * H = I.
*> ( x ) ( 0 )
*>
*> where alpha and beta are scalars, with beta real, and x is an
*> (n-1)-element complex vector. H is represented in the form
*>
*> H = I - tau * ( 1 ) * ( 1 v**H ) ,
*> ( v )
*>
*> where tau is a complex scalar and v is a complex (n-1)-element
*> vector. Note that H is not hermitian.
*>
*> If the elements of x are all zero and alpha is real, then tau = 0
*> and H is taken to be the unit matrix.
*>
*> Otherwise 1 <= real(tau) <= 2 and abs(tau-1) <= 1 .
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The order of the elementary reflector.
*> \endverbatim
*>
*> \param[in,out] ALPHA
*> \verbatim
*> ALPHA is COMPLEX*16
*> On entry, the value alpha.
*> On exit, it is overwritten with the value beta.
*> \endverbatim
*>
*> \param[in,out] X
*> \verbatim
*> X is COMPLEX*16 array, dimension
*> (1+(N-2)*abs(INCX))
*> On entry, the vector x.
*> On exit, it is overwritten with the vector v.
*> \endverbatim
*>
*> \param[in] INCX
*> \verbatim
*> INCX is INTEGER
*> The increment between elements of X. INCX > 0.
*> \endverbatim
*>
*> \param[out] TAU
*> \verbatim
*> TAU is COMPLEX*16
*> The value tau.
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date December 2016
*
*> \ingroup complex16OTHERauxiliary
*
* =====================================================================
SUBROUTINE ZLARFG( N, ALPHA, X, INCX, TAU )
*
* -- LAPACK auxiliary routine (version 3.7.0) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* December 2016
*
* .. Scalar Arguments ..
INTEGER INCX, N
COMPLEX*16 ALPHA, TAU
* ..
* .. Array Arguments ..
COMPLEX*16 X( * )
* ..
*
* =====================================================================
*
* .. Parameters ..
DOUBLE PRECISION ONE, ZERO
PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 )
* ..
* .. Local Scalars ..
INTEGER J, KNT
DOUBLE PRECISION ALPHI, ALPHR, BETA, RSAFMN, SAFMIN, XNORM
* ..
* .. External Functions ..
DOUBLE PRECISION DLAMCH, DLAPY3, DZNRM2
COMPLEX*16 ZLADIV
EXTERNAL DLAMCH, DLAPY3, DZNRM2, ZLADIV
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS, DBLE, DCMPLX, DIMAG, SIGN
* ..
* .. External Subroutines ..
EXTERNAL ZDSCAL, ZSCAL
* ..
* .. Executable Statements ..
*
IF( N.LE.0 ) THEN
TAU = ZERO
RETURN
END IF
*
XNORM = DZNRM2( N-1, X, INCX )
ALPHR = DBLE( ALPHA )
ALPHI = DIMAG( ALPHA )
*
IF( XNORM.EQ.ZERO .AND. ALPHI.EQ.ZERO ) THEN
*
* H = I
*
TAU = ZERO
ELSE
*
* general case
*
BETA = -SIGN( DLAPY3( ALPHR, ALPHI, XNORM ), ALPHR )
SAFMIN = DLAMCH( 'S' ) / DLAMCH( 'E' )
RSAFMN = ONE / SAFMIN
*
KNT = 0
IF( ABS( BETA ).LT.SAFMIN ) THEN
*
* XNORM, BETA may be inaccurate; scale X and recompute them
*
10 CONTINUE
KNT = KNT + 1
CALL ZDSCAL( N-1, RSAFMN, X, INCX )
BETA = BETA*RSAFMN
ALPHI = ALPHI*RSAFMN
ALPHR = ALPHR*RSAFMN
IF( ABS( BETA ).LT.SAFMIN )
$ GO TO 10
*
* New BETA is at most 1, at least SAFMIN
*
XNORM = DZNRM2( N-1, X, INCX )
ALPHA = DCMPLX( ALPHR, ALPHI )
BETA = -SIGN( DLAPY3( ALPHR, ALPHI, XNORM ), ALPHR )
END IF
TAU = DCMPLX( ( BETA-ALPHR ) / BETA, -ALPHI / BETA )
ALPHA = ZLADIV( DCMPLX( ONE ), ALPHA-BETA )
CALL ZSCAL( N-1, ALPHA, X, INCX )
*
* If ALPHA is subnormal, it may lose relative accuracy
*
DO 20 J = 1, KNT
BETA = BETA*SAFMIN
20 CONTINUE
ALPHA = BETA
END IF
*
RETURN
*
* End of ZLARFG
*
END