forked from lijiext/lammps
231 lines
6.4 KiB
Fortran
231 lines
6.4 KiB
Fortran
*> \brief \b DPOTF2 computes the Cholesky factorization of a symmetric/Hermitian positive definite matrix (unblocked algorithm).
|
|
*
|
|
* =========== DOCUMENTATION ===========
|
|
*
|
|
* Online html documentation available at
|
|
* http://www.netlib.org/lapack/explore-html/
|
|
*
|
|
*> \htmlonly
|
|
*> Download DPOTF2 + dependencies
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dpotf2.f">
|
|
*> [TGZ]</a>
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dpotf2.f">
|
|
*> [ZIP]</a>
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dpotf2.f">
|
|
*> [TXT]</a>
|
|
*> \endhtmlonly
|
|
*
|
|
* Definition:
|
|
* ===========
|
|
*
|
|
* SUBROUTINE DPOTF2( UPLO, N, A, LDA, INFO )
|
|
*
|
|
* .. Scalar Arguments ..
|
|
* CHARACTER UPLO
|
|
* INTEGER INFO, LDA, N
|
|
* ..
|
|
* .. Array Arguments ..
|
|
* DOUBLE PRECISION A( LDA, * )
|
|
* ..
|
|
*
|
|
*
|
|
*> \par Purpose:
|
|
* =============
|
|
*>
|
|
*> \verbatim
|
|
*>
|
|
*> DPOTF2 computes the Cholesky factorization of a real symmetric
|
|
*> positive definite matrix A.
|
|
*>
|
|
*> The factorization has the form
|
|
*> A = U**T * U , if UPLO = 'U', or
|
|
*> A = L * L**T, if UPLO = 'L',
|
|
*> where U is an upper triangular matrix and L is lower triangular.
|
|
*>
|
|
*> This is the unblocked version of the algorithm, calling Level 2 BLAS.
|
|
*> \endverbatim
|
|
*
|
|
* Arguments:
|
|
* ==========
|
|
*
|
|
*> \param[in] UPLO
|
|
*> \verbatim
|
|
*> UPLO is CHARACTER*1
|
|
*> Specifies whether the upper or lower triangular part of the
|
|
*> symmetric matrix A is stored.
|
|
*> = 'U': Upper triangular
|
|
*> = 'L': Lower triangular
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] N
|
|
*> \verbatim
|
|
*> N is INTEGER
|
|
*> The order of the matrix A. N >= 0.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in,out] A
|
|
*> \verbatim
|
|
*> A is DOUBLE PRECISION array, dimension (LDA,N)
|
|
*> On entry, the symmetric matrix A. If UPLO = 'U', the leading
|
|
*> n by n upper triangular part of A contains the upper
|
|
*> triangular part of the matrix A, and the strictly lower
|
|
*> triangular part of A is not referenced. If UPLO = 'L', the
|
|
*> leading n by n lower triangular part of A contains the lower
|
|
*> triangular part of the matrix A, and the strictly upper
|
|
*> triangular part of A is not referenced.
|
|
*>
|
|
*> On exit, if INFO = 0, the factor U or L from the Cholesky
|
|
*> factorization A = U**T *U or A = L*L**T.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LDA
|
|
*> \verbatim
|
|
*> LDA is INTEGER
|
|
*> The leading dimension of the array A. LDA >= max(1,N).
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] INFO
|
|
*> \verbatim
|
|
*> INFO is INTEGER
|
|
*> = 0: successful exit
|
|
*> < 0: if INFO = -k, the k-th argument had an illegal value
|
|
*> > 0: if INFO = k, the leading minor of order k is not
|
|
*> positive definite, and the factorization could not be
|
|
*> completed.
|
|
*> \endverbatim
|
|
*
|
|
* Authors:
|
|
* ========
|
|
*
|
|
*> \author Univ. of Tennessee
|
|
*> \author Univ. of California Berkeley
|
|
*> \author Univ. of Colorado Denver
|
|
*> \author NAG Ltd.
|
|
*
|
|
*> \date December 2016
|
|
*
|
|
*> \ingroup doublePOcomputational
|
|
*
|
|
* =====================================================================
|
|
SUBROUTINE DPOTF2( UPLO, N, A, LDA, INFO )
|
|
*
|
|
* -- LAPACK computational routine (version 3.7.0) --
|
|
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
|
* December 2016
|
|
*
|
|
* .. Scalar Arguments ..
|
|
CHARACTER UPLO
|
|
INTEGER INFO, LDA, N
|
|
* ..
|
|
* .. Array Arguments ..
|
|
DOUBLE PRECISION A( LDA, * )
|
|
* ..
|
|
*
|
|
* =====================================================================
|
|
*
|
|
* .. Parameters ..
|
|
DOUBLE PRECISION ONE, ZERO
|
|
PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 )
|
|
* ..
|
|
* .. Local Scalars ..
|
|
LOGICAL UPPER
|
|
INTEGER J
|
|
DOUBLE PRECISION AJJ
|
|
* ..
|
|
* .. External Functions ..
|
|
LOGICAL LSAME, DISNAN
|
|
DOUBLE PRECISION DDOT
|
|
EXTERNAL LSAME, DDOT, DISNAN
|
|
* ..
|
|
* .. External Subroutines ..
|
|
EXTERNAL DGEMV, DSCAL, XERBLA
|
|
* ..
|
|
* .. Intrinsic Functions ..
|
|
INTRINSIC MAX, SQRT
|
|
* ..
|
|
* .. Executable Statements ..
|
|
*
|
|
* Test the input parameters.
|
|
*
|
|
INFO = 0
|
|
UPPER = LSAME( UPLO, 'U' )
|
|
IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
|
|
INFO = -1
|
|
ELSE IF( N.LT.0 ) THEN
|
|
INFO = -2
|
|
ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
|
|
INFO = -4
|
|
END IF
|
|
IF( INFO.NE.0 ) THEN
|
|
CALL XERBLA( 'DPOTF2', -INFO )
|
|
RETURN
|
|
END IF
|
|
*
|
|
* Quick return if possible
|
|
*
|
|
IF( N.EQ.0 )
|
|
$ RETURN
|
|
*
|
|
IF( UPPER ) THEN
|
|
*
|
|
* Compute the Cholesky factorization A = U**T *U.
|
|
*
|
|
DO 10 J = 1, N
|
|
*
|
|
* Compute U(J,J) and test for non-positive-definiteness.
|
|
*
|
|
AJJ = A( J, J ) - DDOT( J-1, A( 1, J ), 1, A( 1, J ), 1 )
|
|
IF( AJJ.LE.ZERO.OR.DISNAN( AJJ ) ) THEN
|
|
A( J, J ) = AJJ
|
|
GO TO 30
|
|
END IF
|
|
AJJ = SQRT( AJJ )
|
|
A( J, J ) = AJJ
|
|
*
|
|
* Compute elements J+1:N of row J.
|
|
*
|
|
IF( J.LT.N ) THEN
|
|
CALL DGEMV( 'Transpose', J-1, N-J, -ONE, A( 1, J+1 ),
|
|
$ LDA, A( 1, J ), 1, ONE, A( J, J+1 ), LDA )
|
|
CALL DSCAL( N-J, ONE / AJJ, A( J, J+1 ), LDA )
|
|
END IF
|
|
10 CONTINUE
|
|
ELSE
|
|
*
|
|
* Compute the Cholesky factorization A = L*L**T.
|
|
*
|
|
DO 20 J = 1, N
|
|
*
|
|
* Compute L(J,J) and test for non-positive-definiteness.
|
|
*
|
|
AJJ = A( J, J ) - DDOT( J-1, A( J, 1 ), LDA, A( J, 1 ),
|
|
$ LDA )
|
|
IF( AJJ.LE.ZERO.OR.DISNAN( AJJ ) ) THEN
|
|
A( J, J ) = AJJ
|
|
GO TO 30
|
|
END IF
|
|
AJJ = SQRT( AJJ )
|
|
A( J, J ) = AJJ
|
|
*
|
|
* Compute elements J+1:N of column J.
|
|
*
|
|
IF( J.LT.N ) THEN
|
|
CALL DGEMV( 'No transpose', N-J, J-1, -ONE, A( J+1, 1 ),
|
|
$ LDA, A( J, 1 ), LDA, ONE, A( J+1, J ), 1 )
|
|
CALL DSCAL( N-J, ONE / AJJ, A( J+1, J ), 1 )
|
|
END IF
|
|
20 CONTINUE
|
|
END IF
|
|
GO TO 40
|
|
*
|
|
30 CONTINUE
|
|
INFO = J
|
|
*
|
|
40 CONTINUE
|
|
RETURN
|
|
*
|
|
* End of DPOTF2
|
|
*
|
|
END
|