forked from lijiext/lammps
341 lines
9.2 KiB
Fortran
341 lines
9.2 KiB
Fortran
*> \brief \b DORMQR
|
|
*
|
|
* =========== DOCUMENTATION ===========
|
|
*
|
|
* Online html documentation available at
|
|
* http://www.netlib.org/lapack/explore-html/
|
|
*
|
|
*> \htmlonly
|
|
*> Download DORMQR + dependencies
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dormqr.f">
|
|
*> [TGZ]</a>
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dormqr.f">
|
|
*> [ZIP]</a>
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dormqr.f">
|
|
*> [TXT]</a>
|
|
*> \endhtmlonly
|
|
*
|
|
* Definition:
|
|
* ===========
|
|
*
|
|
* SUBROUTINE DORMQR( SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC,
|
|
* WORK, LWORK, INFO )
|
|
*
|
|
* .. Scalar Arguments ..
|
|
* CHARACTER SIDE, TRANS
|
|
* INTEGER INFO, K, LDA, LDC, LWORK, M, N
|
|
* ..
|
|
* .. Array Arguments ..
|
|
* DOUBLE PRECISION A( LDA, * ), C( LDC, * ), TAU( * ), WORK( * )
|
|
* ..
|
|
*
|
|
*
|
|
*> \par Purpose:
|
|
* =============
|
|
*>
|
|
*> \verbatim
|
|
*>
|
|
*> DORMQR overwrites the general real M-by-N matrix C with
|
|
*>
|
|
*> SIDE = 'L' SIDE = 'R'
|
|
*> TRANS = 'N': Q * C C * Q
|
|
*> TRANS = 'T': Q**T * C C * Q**T
|
|
*>
|
|
*> where Q is a real orthogonal matrix defined as the product of k
|
|
*> elementary reflectors
|
|
*>
|
|
*> Q = H(1) H(2) . . . H(k)
|
|
*>
|
|
*> as returned by DGEQRF. Q is of order M if SIDE = 'L' and of order N
|
|
*> if SIDE = 'R'.
|
|
*> \endverbatim
|
|
*
|
|
* Arguments:
|
|
* ==========
|
|
*
|
|
*> \param[in] SIDE
|
|
*> \verbatim
|
|
*> SIDE is CHARACTER*1
|
|
*> = 'L': apply Q or Q**T from the Left;
|
|
*> = 'R': apply Q or Q**T from the Right.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] TRANS
|
|
*> \verbatim
|
|
*> TRANS is CHARACTER*1
|
|
*> = 'N': No transpose, apply Q;
|
|
*> = 'T': Transpose, apply Q**T.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] M
|
|
*> \verbatim
|
|
*> M is INTEGER
|
|
*> The number of rows of the matrix C. M >= 0.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] N
|
|
*> \verbatim
|
|
*> N is INTEGER
|
|
*> The number of columns of the matrix C. N >= 0.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] K
|
|
*> \verbatim
|
|
*> K is INTEGER
|
|
*> The number of elementary reflectors whose product defines
|
|
*> the matrix Q.
|
|
*> If SIDE = 'L', M >= K >= 0;
|
|
*> if SIDE = 'R', N >= K >= 0.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] A
|
|
*> \verbatim
|
|
*> A is DOUBLE PRECISION array, dimension (LDA,K)
|
|
*> The i-th column must contain the vector which defines the
|
|
*> elementary reflector H(i), for i = 1,2,...,k, as returned by
|
|
*> DGEQRF in the first k columns of its array argument A.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LDA
|
|
*> \verbatim
|
|
*> LDA is INTEGER
|
|
*> The leading dimension of the array A.
|
|
*> If SIDE = 'L', LDA >= max(1,M);
|
|
*> if SIDE = 'R', LDA >= max(1,N).
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] TAU
|
|
*> \verbatim
|
|
*> TAU is DOUBLE PRECISION array, dimension (K)
|
|
*> TAU(i) must contain the scalar factor of the elementary
|
|
*> reflector H(i), as returned by DGEQRF.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in,out] C
|
|
*> \verbatim
|
|
*> C is DOUBLE PRECISION array, dimension (LDC,N)
|
|
*> On entry, the M-by-N matrix C.
|
|
*> On exit, C is overwritten by Q*C or Q**T*C or C*Q**T or C*Q.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LDC
|
|
*> \verbatim
|
|
*> LDC is INTEGER
|
|
*> The leading dimension of the array C. LDC >= max(1,M).
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] WORK
|
|
*> \verbatim
|
|
*> WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK))
|
|
*> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LWORK
|
|
*> \verbatim
|
|
*> LWORK is INTEGER
|
|
*> The dimension of the array WORK.
|
|
*> If SIDE = 'L', LWORK >= max(1,N);
|
|
*> if SIDE = 'R', LWORK >= max(1,M).
|
|
*> For good performance, LWORK should generally be larger.
|
|
*>
|
|
*> If LWORK = -1, then a workspace query is assumed; the routine
|
|
*> only calculates the optimal size of the WORK array, returns
|
|
*> this value as the first entry of the WORK array, and no error
|
|
*> message related to LWORK is issued by XERBLA.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] INFO
|
|
*> \verbatim
|
|
*> INFO is INTEGER
|
|
*> = 0: successful exit
|
|
*> < 0: if INFO = -i, the i-th argument had an illegal value
|
|
*> \endverbatim
|
|
*
|
|
* Authors:
|
|
* ========
|
|
*
|
|
*> \author Univ. of Tennessee
|
|
*> \author Univ. of California Berkeley
|
|
*> \author Univ. of Colorado Denver
|
|
*> \author NAG Ltd.
|
|
*
|
|
*> \date December 2016
|
|
*
|
|
*> \ingroup doubleOTHERcomputational
|
|
*
|
|
* =====================================================================
|
|
SUBROUTINE DORMQR( SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC,
|
|
$ WORK, LWORK, INFO )
|
|
*
|
|
* -- LAPACK computational routine (version 3.7.0) --
|
|
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
|
* December 2016
|
|
*
|
|
* .. Scalar Arguments ..
|
|
CHARACTER SIDE, TRANS
|
|
INTEGER INFO, K, LDA, LDC, LWORK, M, N
|
|
* ..
|
|
* .. Array Arguments ..
|
|
DOUBLE PRECISION A( LDA, * ), C( LDC, * ), TAU( * ), WORK( * )
|
|
* ..
|
|
*
|
|
* =====================================================================
|
|
*
|
|
* .. Parameters ..
|
|
INTEGER NBMAX, LDT, TSIZE
|
|
PARAMETER ( NBMAX = 64, LDT = NBMAX+1,
|
|
$ TSIZE = LDT*NBMAX )
|
|
* ..
|
|
* .. Local Scalars ..
|
|
LOGICAL LEFT, LQUERY, NOTRAN
|
|
INTEGER I, I1, I2, I3, IB, IC, IINFO, IWT, JC, LDWORK,
|
|
$ LWKOPT, MI, NB, NBMIN, NI, NQ, NW
|
|
* ..
|
|
* .. External Functions ..
|
|
LOGICAL LSAME
|
|
INTEGER ILAENV
|
|
EXTERNAL LSAME, ILAENV
|
|
* ..
|
|
* .. External Subroutines ..
|
|
EXTERNAL DLARFB, DLARFT, DORM2R, XERBLA
|
|
* ..
|
|
* .. Intrinsic Functions ..
|
|
INTRINSIC MAX, MIN
|
|
* ..
|
|
* .. Executable Statements ..
|
|
*
|
|
* Test the input arguments
|
|
*
|
|
INFO = 0
|
|
LEFT = LSAME( SIDE, 'L' )
|
|
NOTRAN = LSAME( TRANS, 'N' )
|
|
LQUERY = ( LWORK.EQ.-1 )
|
|
*
|
|
* NQ is the order of Q and NW is the minimum dimension of WORK
|
|
*
|
|
IF( LEFT ) THEN
|
|
NQ = M
|
|
NW = N
|
|
ELSE
|
|
NQ = N
|
|
NW = M
|
|
END IF
|
|
IF( .NOT.LEFT .AND. .NOT.LSAME( SIDE, 'R' ) ) THEN
|
|
INFO = -1
|
|
ELSE IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'T' ) ) THEN
|
|
INFO = -2
|
|
ELSE IF( M.LT.0 ) THEN
|
|
INFO = -3
|
|
ELSE IF( N.LT.0 ) THEN
|
|
INFO = -4
|
|
ELSE IF( K.LT.0 .OR. K.GT.NQ ) THEN
|
|
INFO = -5
|
|
ELSE IF( LDA.LT.MAX( 1, NQ ) ) THEN
|
|
INFO = -7
|
|
ELSE IF( LDC.LT.MAX( 1, M ) ) THEN
|
|
INFO = -10
|
|
ELSE IF( LWORK.LT.MAX( 1, NW ) .AND. .NOT.LQUERY ) THEN
|
|
INFO = -12
|
|
END IF
|
|
*
|
|
IF( INFO.EQ.0 ) THEN
|
|
*
|
|
* Compute the workspace requirements
|
|
*
|
|
NB = MIN( NBMAX, ILAENV( 1, 'DORMQR', SIDE // TRANS, M, N, K,
|
|
$ -1 ) )
|
|
LWKOPT = MAX( 1, NW )*NB + TSIZE
|
|
WORK( 1 ) = LWKOPT
|
|
END IF
|
|
*
|
|
IF( INFO.NE.0 ) THEN
|
|
CALL XERBLA( 'DORMQR', -INFO )
|
|
RETURN
|
|
ELSE IF( LQUERY ) THEN
|
|
RETURN
|
|
END IF
|
|
*
|
|
* Quick return if possible
|
|
*
|
|
IF( M.EQ.0 .OR. N.EQ.0 .OR. K.EQ.0 ) THEN
|
|
WORK( 1 ) = 1
|
|
RETURN
|
|
END IF
|
|
*
|
|
NBMIN = 2
|
|
LDWORK = NW
|
|
IF( NB.GT.1 .AND. NB.LT.K ) THEN
|
|
IF( LWORK.LT.NW*NB+TSIZE ) THEN
|
|
NB = (LWORK-TSIZE) / LDWORK
|
|
NBMIN = MAX( 2, ILAENV( 2, 'DORMQR', SIDE // TRANS, M, N, K,
|
|
$ -1 ) )
|
|
END IF
|
|
END IF
|
|
*
|
|
IF( NB.LT.NBMIN .OR. NB.GE.K ) THEN
|
|
*
|
|
* Use unblocked code
|
|
*
|
|
CALL DORM2R( SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC, WORK,
|
|
$ IINFO )
|
|
ELSE
|
|
*
|
|
* Use blocked code
|
|
*
|
|
IWT = 1 + NW*NB
|
|
IF( ( LEFT .AND. .NOT.NOTRAN ) .OR.
|
|
$ ( .NOT.LEFT .AND. NOTRAN ) ) THEN
|
|
I1 = 1
|
|
I2 = K
|
|
I3 = NB
|
|
ELSE
|
|
I1 = ( ( K-1 ) / NB )*NB + 1
|
|
I2 = 1
|
|
I3 = -NB
|
|
END IF
|
|
*
|
|
IF( LEFT ) THEN
|
|
NI = N
|
|
JC = 1
|
|
ELSE
|
|
MI = M
|
|
IC = 1
|
|
END IF
|
|
*
|
|
DO 10 I = I1, I2, I3
|
|
IB = MIN( NB, K-I+1 )
|
|
*
|
|
* Form the triangular factor of the block reflector
|
|
* H = H(i) H(i+1) . . . H(i+ib-1)
|
|
*
|
|
CALL DLARFT( 'Forward', 'Columnwise', NQ-I+1, IB, A( I, I ),
|
|
$ LDA, TAU( I ), WORK( IWT ), LDT )
|
|
IF( LEFT ) THEN
|
|
*
|
|
* H or H**T is applied to C(i:m,1:n)
|
|
*
|
|
MI = M - I + 1
|
|
IC = I
|
|
ELSE
|
|
*
|
|
* H or H**T is applied to C(1:m,i:n)
|
|
*
|
|
NI = N - I + 1
|
|
JC = I
|
|
END IF
|
|
*
|
|
* Apply H or H**T
|
|
*
|
|
CALL DLARFB( SIDE, TRANS, 'Forward', 'Columnwise', MI, NI,
|
|
$ IB, A( I, I ), LDA, WORK( IWT ), LDT,
|
|
$ C( IC, JC ), LDC, WORK, LDWORK )
|
|
10 CONTINUE
|
|
END IF
|
|
WORK( 1 ) = LWKOPT
|
|
RETURN
|
|
*
|
|
* End of DORMQR
|
|
*
|
|
END
|