forked from lijiext/lammps
338 lines
9.6 KiB
Fortran
338 lines
9.6 KiB
Fortran
*> \brief \b DORGBR
|
|
*
|
|
* =========== DOCUMENTATION ===========
|
|
*
|
|
* Online html documentation available at
|
|
* http://www.netlib.org/lapack/explore-html/
|
|
*
|
|
*> \htmlonly
|
|
*> Download DORGBR + dependencies
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dorgbr.f">
|
|
*> [TGZ]</a>
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dorgbr.f">
|
|
*> [ZIP]</a>
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dorgbr.f">
|
|
*> [TXT]</a>
|
|
*> \endhtmlonly
|
|
*
|
|
* Definition:
|
|
* ===========
|
|
*
|
|
* SUBROUTINE DORGBR( VECT, M, N, K, A, LDA, TAU, WORK, LWORK, INFO )
|
|
*
|
|
* .. Scalar Arguments ..
|
|
* CHARACTER VECT
|
|
* INTEGER INFO, K, LDA, LWORK, M, N
|
|
* ..
|
|
* .. Array Arguments ..
|
|
* DOUBLE PRECISION A( LDA, * ), TAU( * ), WORK( * )
|
|
* ..
|
|
*
|
|
*
|
|
*> \par Purpose:
|
|
* =============
|
|
*>
|
|
*> \verbatim
|
|
*>
|
|
*> DORGBR generates one of the real orthogonal matrices Q or P**T
|
|
*> determined by DGEBRD when reducing a real matrix A to bidiagonal
|
|
*> form: A = Q * B * P**T. Q and P**T are defined as products of
|
|
*> elementary reflectors H(i) or G(i) respectively.
|
|
*>
|
|
*> If VECT = 'Q', A is assumed to have been an M-by-K matrix, and Q
|
|
*> is of order M:
|
|
*> if m >= k, Q = H(1) H(2) . . . H(k) and DORGBR returns the first n
|
|
*> columns of Q, where m >= n >= k;
|
|
*> if m < k, Q = H(1) H(2) . . . H(m-1) and DORGBR returns Q as an
|
|
*> M-by-M matrix.
|
|
*>
|
|
*> If VECT = 'P', A is assumed to have been a K-by-N matrix, and P**T
|
|
*> is of order N:
|
|
*> if k < n, P**T = G(k) . . . G(2) G(1) and DORGBR returns the first m
|
|
*> rows of P**T, where n >= m >= k;
|
|
*> if k >= n, P**T = G(n-1) . . . G(2) G(1) and DORGBR returns P**T as
|
|
*> an N-by-N matrix.
|
|
*> \endverbatim
|
|
*
|
|
* Arguments:
|
|
* ==========
|
|
*
|
|
*> \param[in] VECT
|
|
*> \verbatim
|
|
*> VECT is CHARACTER*1
|
|
*> Specifies whether the matrix Q or the matrix P**T is
|
|
*> required, as defined in the transformation applied by DGEBRD:
|
|
*> = 'Q': generate Q;
|
|
*> = 'P': generate P**T.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] M
|
|
*> \verbatim
|
|
*> M is INTEGER
|
|
*> The number of rows of the matrix Q or P**T to be returned.
|
|
*> M >= 0.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] N
|
|
*> \verbatim
|
|
*> N is INTEGER
|
|
*> The number of columns of the matrix Q or P**T to be returned.
|
|
*> N >= 0.
|
|
*> If VECT = 'Q', M >= N >= min(M,K);
|
|
*> if VECT = 'P', N >= M >= min(N,K).
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] K
|
|
*> \verbatim
|
|
*> K is INTEGER
|
|
*> If VECT = 'Q', the number of columns in the original M-by-K
|
|
*> matrix reduced by DGEBRD.
|
|
*> If VECT = 'P', the number of rows in the original K-by-N
|
|
*> matrix reduced by DGEBRD.
|
|
*> K >= 0.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in,out] A
|
|
*> \verbatim
|
|
*> A is DOUBLE PRECISION array, dimension (LDA,N)
|
|
*> On entry, the vectors which define the elementary reflectors,
|
|
*> as returned by DGEBRD.
|
|
*> On exit, the M-by-N matrix Q or P**T.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LDA
|
|
*> \verbatim
|
|
*> LDA is INTEGER
|
|
*> The leading dimension of the array A. LDA >= max(1,M).
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] TAU
|
|
*> \verbatim
|
|
*> TAU is DOUBLE PRECISION array, dimension
|
|
*> (min(M,K)) if VECT = 'Q'
|
|
*> (min(N,K)) if VECT = 'P'
|
|
*> TAU(i) must contain the scalar factor of the elementary
|
|
*> reflector H(i) or G(i), which determines Q or P**T, as
|
|
*> returned by DGEBRD in its array argument TAUQ or TAUP.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] WORK
|
|
*> \verbatim
|
|
*> WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK))
|
|
*> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LWORK
|
|
*> \verbatim
|
|
*> LWORK is INTEGER
|
|
*> The dimension of the array WORK. LWORK >= max(1,min(M,N)).
|
|
*> For optimum performance LWORK >= min(M,N)*NB, where NB
|
|
*> is the optimal blocksize.
|
|
*>
|
|
*> If LWORK = -1, then a workspace query is assumed; the routine
|
|
*> only calculates the optimal size of the WORK array, returns
|
|
*> this value as the first entry of the WORK array, and no error
|
|
*> message related to LWORK is issued by XERBLA.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] INFO
|
|
*> \verbatim
|
|
*> INFO is INTEGER
|
|
*> = 0: successful exit
|
|
*> < 0: if INFO = -i, the i-th argument had an illegal value
|
|
*> \endverbatim
|
|
*
|
|
* Authors:
|
|
* ========
|
|
*
|
|
*> \author Univ. of Tennessee
|
|
*> \author Univ. of California Berkeley
|
|
*> \author Univ. of Colorado Denver
|
|
*> \author NAG Ltd.
|
|
*
|
|
*> \date April 2012
|
|
*
|
|
*> \ingroup doubleGBcomputational
|
|
*
|
|
* =====================================================================
|
|
SUBROUTINE DORGBR( VECT, M, N, K, A, LDA, TAU, WORK, LWORK, INFO )
|
|
*
|
|
* -- LAPACK computational routine (version 3.7.0) --
|
|
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
|
* April 2012
|
|
*
|
|
* .. Scalar Arguments ..
|
|
CHARACTER VECT
|
|
INTEGER INFO, K, LDA, LWORK, M, N
|
|
* ..
|
|
* .. Array Arguments ..
|
|
DOUBLE PRECISION A( LDA, * ), TAU( * ), WORK( * )
|
|
* ..
|
|
*
|
|
* =====================================================================
|
|
*
|
|
* .. Parameters ..
|
|
DOUBLE PRECISION ZERO, ONE
|
|
PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 )
|
|
* ..
|
|
* .. Local Scalars ..
|
|
LOGICAL LQUERY, WANTQ
|
|
INTEGER I, IINFO, J, LWKOPT, MN
|
|
* ..
|
|
* .. External Functions ..
|
|
LOGICAL LSAME
|
|
EXTERNAL LSAME
|
|
* ..
|
|
* .. External Subroutines ..
|
|
EXTERNAL DORGLQ, DORGQR, XERBLA
|
|
* ..
|
|
* .. Intrinsic Functions ..
|
|
INTRINSIC MAX, MIN
|
|
* ..
|
|
* .. Executable Statements ..
|
|
*
|
|
* Test the input arguments
|
|
*
|
|
INFO = 0
|
|
WANTQ = LSAME( VECT, 'Q' )
|
|
MN = MIN( M, N )
|
|
LQUERY = ( LWORK.EQ.-1 )
|
|
IF( .NOT.WANTQ .AND. .NOT.LSAME( VECT, 'P' ) ) THEN
|
|
INFO = -1
|
|
ELSE IF( M.LT.0 ) THEN
|
|
INFO = -2
|
|
ELSE IF( N.LT.0 .OR. ( WANTQ .AND. ( N.GT.M .OR. N.LT.MIN( M,
|
|
$ K ) ) ) .OR. ( .NOT.WANTQ .AND. ( M.GT.N .OR. M.LT.
|
|
$ MIN( N, K ) ) ) ) THEN
|
|
INFO = -3
|
|
ELSE IF( K.LT.0 ) THEN
|
|
INFO = -4
|
|
ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
|
|
INFO = -6
|
|
ELSE IF( LWORK.LT.MAX( 1, MN ) .AND. .NOT.LQUERY ) THEN
|
|
INFO = -9
|
|
END IF
|
|
*
|
|
IF( INFO.EQ.0 ) THEN
|
|
WORK( 1 ) = 1
|
|
IF( WANTQ ) THEN
|
|
IF( M.GE.K ) THEN
|
|
CALL DORGQR( M, N, K, A, LDA, TAU, WORK, -1, IINFO )
|
|
ELSE
|
|
IF( M.GT.1 ) THEN
|
|
CALL DORGQR( M-1, M-1, M-1, A( 2, 2 ), LDA, TAU, WORK,
|
|
$ -1, IINFO )
|
|
END IF
|
|
END IF
|
|
ELSE
|
|
IF( K.LT.N ) THEN
|
|
CALL DORGLQ( M, N, K, A, LDA, TAU, WORK, -1, IINFO )
|
|
ELSE
|
|
IF( N.GT.1 ) THEN
|
|
CALL DORGLQ( N-1, N-1, N-1, A( 2, 2 ), LDA, TAU, WORK,
|
|
$ -1, IINFO )
|
|
END IF
|
|
END IF
|
|
END IF
|
|
LWKOPT = WORK( 1 )
|
|
LWKOPT = MAX (LWKOPT, MN)
|
|
END IF
|
|
*
|
|
IF( INFO.NE.0 ) THEN
|
|
CALL XERBLA( 'DORGBR', -INFO )
|
|
RETURN
|
|
ELSE IF( LQUERY ) THEN
|
|
WORK( 1 ) = LWKOPT
|
|
RETURN
|
|
END IF
|
|
*
|
|
* Quick return if possible
|
|
*
|
|
IF( M.EQ.0 .OR. N.EQ.0 ) THEN
|
|
WORK( 1 ) = 1
|
|
RETURN
|
|
END IF
|
|
*
|
|
IF( WANTQ ) THEN
|
|
*
|
|
* Form Q, determined by a call to DGEBRD to reduce an m-by-k
|
|
* matrix
|
|
*
|
|
IF( M.GE.K ) THEN
|
|
*
|
|
* If m >= k, assume m >= n >= k
|
|
*
|
|
CALL DORGQR( M, N, K, A, LDA, TAU, WORK, LWORK, IINFO )
|
|
*
|
|
ELSE
|
|
*
|
|
* If m < k, assume m = n
|
|
*
|
|
* Shift the vectors which define the elementary reflectors one
|
|
* column to the right, and set the first row and column of Q
|
|
* to those of the unit matrix
|
|
*
|
|
DO 20 J = M, 2, -1
|
|
A( 1, J ) = ZERO
|
|
DO 10 I = J + 1, M
|
|
A( I, J ) = A( I, J-1 )
|
|
10 CONTINUE
|
|
20 CONTINUE
|
|
A( 1, 1 ) = ONE
|
|
DO 30 I = 2, M
|
|
A( I, 1 ) = ZERO
|
|
30 CONTINUE
|
|
IF( M.GT.1 ) THEN
|
|
*
|
|
* Form Q(2:m,2:m)
|
|
*
|
|
CALL DORGQR( M-1, M-1, M-1, A( 2, 2 ), LDA, TAU, WORK,
|
|
$ LWORK, IINFO )
|
|
END IF
|
|
END IF
|
|
ELSE
|
|
*
|
|
* Form P**T, determined by a call to DGEBRD to reduce a k-by-n
|
|
* matrix
|
|
*
|
|
IF( K.LT.N ) THEN
|
|
*
|
|
* If k < n, assume k <= m <= n
|
|
*
|
|
CALL DORGLQ( M, N, K, A, LDA, TAU, WORK, LWORK, IINFO )
|
|
*
|
|
ELSE
|
|
*
|
|
* If k >= n, assume m = n
|
|
*
|
|
* Shift the vectors which define the elementary reflectors one
|
|
* row downward, and set the first row and column of P**T to
|
|
* those of the unit matrix
|
|
*
|
|
A( 1, 1 ) = ONE
|
|
DO 40 I = 2, N
|
|
A( I, 1 ) = ZERO
|
|
40 CONTINUE
|
|
DO 60 J = 2, N
|
|
DO 50 I = J - 1, 2, -1
|
|
A( I, J ) = A( I-1, J )
|
|
50 CONTINUE
|
|
A( 1, J ) = ZERO
|
|
60 CONTINUE
|
|
IF( N.GT.1 ) THEN
|
|
*
|
|
* Form P**T(2:n,2:n)
|
|
*
|
|
CALL DORGLQ( N-1, N-1, N-1, A( 2, 2 ), LDA, TAU, WORK,
|
|
$ LWORK, IINFO )
|
|
END IF
|
|
END IF
|
|
END IF
|
|
WORK( 1 ) = LWKOPT
|
|
RETURN
|
|
*
|
|
* End of DORGBR
|
|
*
|
|
END
|