forked from lijiext/lammps
540 lines
16 KiB
Fortran
540 lines
16 KiB
Fortran
*> \brief \b DLAED2 used by sstedc. Merges eigenvalues and deflates secular equation. Used when the original matrix is tridiagonal.
|
|
*
|
|
* =========== DOCUMENTATION ===========
|
|
*
|
|
* Online html documentation available at
|
|
* http://www.netlib.org/lapack/explore-html/
|
|
*
|
|
*> \htmlonly
|
|
*> Download DLAED2 + dependencies
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlaed2.f">
|
|
*> [TGZ]</a>
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlaed2.f">
|
|
*> [ZIP]</a>
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlaed2.f">
|
|
*> [TXT]</a>
|
|
*> \endhtmlonly
|
|
*
|
|
* Definition:
|
|
* ===========
|
|
*
|
|
* SUBROUTINE DLAED2( K, N, N1, D, Q, LDQ, INDXQ, RHO, Z, DLAMDA, W,
|
|
* Q2, INDX, INDXC, INDXP, COLTYP, INFO )
|
|
*
|
|
* .. Scalar Arguments ..
|
|
* INTEGER INFO, K, LDQ, N, N1
|
|
* DOUBLE PRECISION RHO
|
|
* ..
|
|
* .. Array Arguments ..
|
|
* INTEGER COLTYP( * ), INDX( * ), INDXC( * ), INDXP( * ),
|
|
* $ INDXQ( * )
|
|
* DOUBLE PRECISION D( * ), DLAMDA( * ), Q( LDQ, * ), Q2( * ),
|
|
* $ W( * ), Z( * )
|
|
* ..
|
|
*
|
|
*
|
|
*> \par Purpose:
|
|
* =============
|
|
*>
|
|
*> \verbatim
|
|
*>
|
|
*> DLAED2 merges the two sets of eigenvalues together into a single
|
|
*> sorted set. Then it tries to deflate the size of the problem.
|
|
*> There are two ways in which deflation can occur: when two or more
|
|
*> eigenvalues are close together or if there is a tiny entry in the
|
|
*> Z vector. For each such occurrence the order of the related secular
|
|
*> equation problem is reduced by one.
|
|
*> \endverbatim
|
|
*
|
|
* Arguments:
|
|
* ==========
|
|
*
|
|
*> \param[out] K
|
|
*> \verbatim
|
|
*> K is INTEGER
|
|
*> The number of non-deflated eigenvalues, and the order of the
|
|
*> related secular equation. 0 <= K <=N.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] N
|
|
*> \verbatim
|
|
*> N is INTEGER
|
|
*> The dimension of the symmetric tridiagonal matrix. N >= 0.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] N1
|
|
*> \verbatim
|
|
*> N1 is INTEGER
|
|
*> The location of the last eigenvalue in the leading sub-matrix.
|
|
*> min(1,N) <= N1 <= N/2.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in,out] D
|
|
*> \verbatim
|
|
*> D is DOUBLE PRECISION array, dimension (N)
|
|
*> On entry, D contains the eigenvalues of the two submatrices to
|
|
*> be combined.
|
|
*> On exit, D contains the trailing (N-K) updated eigenvalues
|
|
*> (those which were deflated) sorted into increasing order.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in,out] Q
|
|
*> \verbatim
|
|
*> Q is DOUBLE PRECISION array, dimension (LDQ, N)
|
|
*> On entry, Q contains the eigenvectors of two submatrices in
|
|
*> the two square blocks with corners at (1,1), (N1,N1)
|
|
*> and (N1+1, N1+1), (N,N).
|
|
*> On exit, Q contains the trailing (N-K) updated eigenvectors
|
|
*> (those which were deflated) in its last N-K columns.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LDQ
|
|
*> \verbatim
|
|
*> LDQ is INTEGER
|
|
*> The leading dimension of the array Q. LDQ >= max(1,N).
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in,out] INDXQ
|
|
*> \verbatim
|
|
*> INDXQ is INTEGER array, dimension (N)
|
|
*> The permutation which separately sorts the two sub-problems
|
|
*> in D into ascending order. Note that elements in the second
|
|
*> half of this permutation must first have N1 added to their
|
|
*> values. Destroyed on exit.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in,out] RHO
|
|
*> \verbatim
|
|
*> RHO is DOUBLE PRECISION
|
|
*> On entry, the off-diagonal element associated with the rank-1
|
|
*> cut which originally split the two submatrices which are now
|
|
*> being recombined.
|
|
*> On exit, RHO has been modified to the value required by
|
|
*> DLAED3.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] Z
|
|
*> \verbatim
|
|
*> Z is DOUBLE PRECISION array, dimension (N)
|
|
*> On entry, Z contains the updating vector (the last
|
|
*> row of the first sub-eigenvector matrix and the first row of
|
|
*> the second sub-eigenvector matrix).
|
|
*> On exit, the contents of Z have been destroyed by the updating
|
|
*> process.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] DLAMDA
|
|
*> \verbatim
|
|
*> DLAMDA is DOUBLE PRECISION array, dimension (N)
|
|
*> A copy of the first K eigenvalues which will be used by
|
|
*> DLAED3 to form the secular equation.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] W
|
|
*> \verbatim
|
|
*> W is DOUBLE PRECISION array, dimension (N)
|
|
*> The first k values of the final deflation-altered z-vector
|
|
*> which will be passed to DLAED3.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] Q2
|
|
*> \verbatim
|
|
*> Q2 is DOUBLE PRECISION array, dimension (N1**2+(N-N1)**2)
|
|
*> A copy of the first K eigenvectors which will be used by
|
|
*> DLAED3 in a matrix multiply (DGEMM) to solve for the new
|
|
*> eigenvectors.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] INDX
|
|
*> \verbatim
|
|
*> INDX is INTEGER array, dimension (N)
|
|
*> The permutation used to sort the contents of DLAMDA into
|
|
*> ascending order.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] INDXC
|
|
*> \verbatim
|
|
*> INDXC is INTEGER array, dimension (N)
|
|
*> The permutation used to arrange the columns of the deflated
|
|
*> Q matrix into three groups: the first group contains non-zero
|
|
*> elements only at and above N1, the second contains
|
|
*> non-zero elements only below N1, and the third is dense.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] INDXP
|
|
*> \verbatim
|
|
*> INDXP is INTEGER array, dimension (N)
|
|
*> The permutation used to place deflated values of D at the end
|
|
*> of the array. INDXP(1:K) points to the nondeflated D-values
|
|
*> and INDXP(K+1:N) points to the deflated eigenvalues.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] COLTYP
|
|
*> \verbatim
|
|
*> COLTYP is INTEGER array, dimension (N)
|
|
*> During execution, a label which will indicate which of the
|
|
*> following types a column in the Q2 matrix is:
|
|
*> 1 : non-zero in the upper half only;
|
|
*> 2 : dense;
|
|
*> 3 : non-zero in the lower half only;
|
|
*> 4 : deflated.
|
|
*> On exit, COLTYP(i) is the number of columns of type i,
|
|
*> for i=1 to 4 only.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] INFO
|
|
*> \verbatim
|
|
*> INFO is INTEGER
|
|
*> = 0: successful exit.
|
|
*> < 0: if INFO = -i, the i-th argument had an illegal value.
|
|
*> \endverbatim
|
|
*
|
|
* Authors:
|
|
* ========
|
|
*
|
|
*> \author Univ. of Tennessee
|
|
*> \author Univ. of California Berkeley
|
|
*> \author Univ. of Colorado Denver
|
|
*> \author NAG Ltd.
|
|
*
|
|
*> \date December 2016
|
|
*
|
|
*> \ingroup auxOTHERcomputational
|
|
*
|
|
*> \par Contributors:
|
|
* ==================
|
|
*>
|
|
*> Jeff Rutter, Computer Science Division, University of California
|
|
*> at Berkeley, USA \n
|
|
*> Modified by Francoise Tisseur, University of Tennessee
|
|
*>
|
|
* =====================================================================
|
|
SUBROUTINE DLAED2( K, N, N1, D, Q, LDQ, INDXQ, RHO, Z, DLAMDA, W,
|
|
$ Q2, INDX, INDXC, INDXP, COLTYP, INFO )
|
|
*
|
|
* -- LAPACK computational routine (version 3.7.0) --
|
|
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
|
* December 2016
|
|
*
|
|
* .. Scalar Arguments ..
|
|
INTEGER INFO, K, LDQ, N, N1
|
|
DOUBLE PRECISION RHO
|
|
* ..
|
|
* .. Array Arguments ..
|
|
INTEGER COLTYP( * ), INDX( * ), INDXC( * ), INDXP( * ),
|
|
$ INDXQ( * )
|
|
DOUBLE PRECISION D( * ), DLAMDA( * ), Q( LDQ, * ), Q2( * ),
|
|
$ W( * ), Z( * )
|
|
* ..
|
|
*
|
|
* =====================================================================
|
|
*
|
|
* .. Parameters ..
|
|
DOUBLE PRECISION MONE, ZERO, ONE, TWO, EIGHT
|
|
PARAMETER ( MONE = -1.0D0, ZERO = 0.0D0, ONE = 1.0D0,
|
|
$ TWO = 2.0D0, EIGHT = 8.0D0 )
|
|
* ..
|
|
* .. Local Arrays ..
|
|
INTEGER CTOT( 4 ), PSM( 4 )
|
|
* ..
|
|
* .. Local Scalars ..
|
|
INTEGER CT, I, IMAX, IQ1, IQ2, J, JMAX, JS, K2, N1P1,
|
|
$ N2, NJ, PJ
|
|
DOUBLE PRECISION C, EPS, S, T, TAU, TOL
|
|
* ..
|
|
* .. External Functions ..
|
|
INTEGER IDAMAX
|
|
DOUBLE PRECISION DLAMCH, DLAPY2
|
|
EXTERNAL IDAMAX, DLAMCH, DLAPY2
|
|
* ..
|
|
* .. External Subroutines ..
|
|
EXTERNAL DCOPY, DLACPY, DLAMRG, DROT, DSCAL, XERBLA
|
|
* ..
|
|
* .. Intrinsic Functions ..
|
|
INTRINSIC ABS, MAX, MIN, SQRT
|
|
* ..
|
|
* .. Executable Statements ..
|
|
*
|
|
* Test the input parameters.
|
|
*
|
|
INFO = 0
|
|
*
|
|
IF( N.LT.0 ) THEN
|
|
INFO = -2
|
|
ELSE IF( LDQ.LT.MAX( 1, N ) ) THEN
|
|
INFO = -6
|
|
ELSE IF( MIN( 1, ( N / 2 ) ).GT.N1 .OR. ( N / 2 ).LT.N1 ) THEN
|
|
INFO = -3
|
|
END IF
|
|
IF( INFO.NE.0 ) THEN
|
|
CALL XERBLA( 'DLAED2', -INFO )
|
|
RETURN
|
|
END IF
|
|
*
|
|
* Quick return if possible
|
|
*
|
|
IF( N.EQ.0 )
|
|
$ RETURN
|
|
*
|
|
N2 = N - N1
|
|
N1P1 = N1 + 1
|
|
*
|
|
IF( RHO.LT.ZERO ) THEN
|
|
CALL DSCAL( N2, MONE, Z( N1P1 ), 1 )
|
|
END IF
|
|
*
|
|
* Normalize z so that norm(z) = 1. Since z is the concatenation of
|
|
* two normalized vectors, norm2(z) = sqrt(2).
|
|
*
|
|
T = ONE / SQRT( TWO )
|
|
CALL DSCAL( N, T, Z, 1 )
|
|
*
|
|
* RHO = ABS( norm(z)**2 * RHO )
|
|
*
|
|
RHO = ABS( TWO*RHO )
|
|
*
|
|
* Sort the eigenvalues into increasing order
|
|
*
|
|
DO 10 I = N1P1, N
|
|
INDXQ( I ) = INDXQ( I ) + N1
|
|
10 CONTINUE
|
|
*
|
|
* re-integrate the deflated parts from the last pass
|
|
*
|
|
DO 20 I = 1, N
|
|
DLAMDA( I ) = D( INDXQ( I ) )
|
|
20 CONTINUE
|
|
CALL DLAMRG( N1, N2, DLAMDA, 1, 1, INDXC )
|
|
DO 30 I = 1, N
|
|
INDX( I ) = INDXQ( INDXC( I ) )
|
|
30 CONTINUE
|
|
*
|
|
* Calculate the allowable deflation tolerance
|
|
*
|
|
IMAX = IDAMAX( N, Z, 1 )
|
|
JMAX = IDAMAX( N, D, 1 )
|
|
EPS = DLAMCH( 'Epsilon' )
|
|
TOL = EIGHT*EPS*MAX( ABS( D( JMAX ) ), ABS( Z( IMAX ) ) )
|
|
*
|
|
* If the rank-1 modifier is small enough, no more needs to be done
|
|
* except to reorganize Q so that its columns correspond with the
|
|
* elements in D.
|
|
*
|
|
IF( RHO*ABS( Z( IMAX ) ).LE.TOL ) THEN
|
|
K = 0
|
|
IQ2 = 1
|
|
DO 40 J = 1, N
|
|
I = INDX( J )
|
|
CALL DCOPY( N, Q( 1, I ), 1, Q2( IQ2 ), 1 )
|
|
DLAMDA( J ) = D( I )
|
|
IQ2 = IQ2 + N
|
|
40 CONTINUE
|
|
CALL DLACPY( 'A', N, N, Q2, N, Q, LDQ )
|
|
CALL DCOPY( N, DLAMDA, 1, D, 1 )
|
|
GO TO 190
|
|
END IF
|
|
*
|
|
* If there are multiple eigenvalues then the problem deflates. Here
|
|
* the number of equal eigenvalues are found. As each equal
|
|
* eigenvalue is found, an elementary reflector is computed to rotate
|
|
* the corresponding eigensubspace so that the corresponding
|
|
* components of Z are zero in this new basis.
|
|
*
|
|
DO 50 I = 1, N1
|
|
COLTYP( I ) = 1
|
|
50 CONTINUE
|
|
DO 60 I = N1P1, N
|
|
COLTYP( I ) = 3
|
|
60 CONTINUE
|
|
*
|
|
*
|
|
K = 0
|
|
K2 = N + 1
|
|
DO 70 J = 1, N
|
|
NJ = INDX( J )
|
|
IF( RHO*ABS( Z( NJ ) ).LE.TOL ) THEN
|
|
*
|
|
* Deflate due to small z component.
|
|
*
|
|
K2 = K2 - 1
|
|
COLTYP( NJ ) = 4
|
|
INDXP( K2 ) = NJ
|
|
IF( J.EQ.N )
|
|
$ GO TO 100
|
|
ELSE
|
|
PJ = NJ
|
|
GO TO 80
|
|
END IF
|
|
70 CONTINUE
|
|
80 CONTINUE
|
|
J = J + 1
|
|
NJ = INDX( J )
|
|
IF( J.GT.N )
|
|
$ GO TO 100
|
|
IF( RHO*ABS( Z( NJ ) ).LE.TOL ) THEN
|
|
*
|
|
* Deflate due to small z component.
|
|
*
|
|
K2 = K2 - 1
|
|
COLTYP( NJ ) = 4
|
|
INDXP( K2 ) = NJ
|
|
ELSE
|
|
*
|
|
* Check if eigenvalues are close enough to allow deflation.
|
|
*
|
|
S = Z( PJ )
|
|
C = Z( NJ )
|
|
*
|
|
* Find sqrt(a**2+b**2) without overflow or
|
|
* destructive underflow.
|
|
*
|
|
TAU = DLAPY2( C, S )
|
|
T = D( NJ ) - D( PJ )
|
|
C = C / TAU
|
|
S = -S / TAU
|
|
IF( ABS( T*C*S ).LE.TOL ) THEN
|
|
*
|
|
* Deflation is possible.
|
|
*
|
|
Z( NJ ) = TAU
|
|
Z( PJ ) = ZERO
|
|
IF( COLTYP( NJ ).NE.COLTYP( PJ ) )
|
|
$ COLTYP( NJ ) = 2
|
|
COLTYP( PJ ) = 4
|
|
CALL DROT( N, Q( 1, PJ ), 1, Q( 1, NJ ), 1, C, S )
|
|
T = D( PJ )*C**2 + D( NJ )*S**2
|
|
D( NJ ) = D( PJ )*S**2 + D( NJ )*C**2
|
|
D( PJ ) = T
|
|
K2 = K2 - 1
|
|
I = 1
|
|
90 CONTINUE
|
|
IF( K2+I.LE.N ) THEN
|
|
IF( D( PJ ).LT.D( INDXP( K2+I ) ) ) THEN
|
|
INDXP( K2+I-1 ) = INDXP( K2+I )
|
|
INDXP( K2+I ) = PJ
|
|
I = I + 1
|
|
GO TO 90
|
|
ELSE
|
|
INDXP( K2+I-1 ) = PJ
|
|
END IF
|
|
ELSE
|
|
INDXP( K2+I-1 ) = PJ
|
|
END IF
|
|
PJ = NJ
|
|
ELSE
|
|
K = K + 1
|
|
DLAMDA( K ) = D( PJ )
|
|
W( K ) = Z( PJ )
|
|
INDXP( K ) = PJ
|
|
PJ = NJ
|
|
END IF
|
|
END IF
|
|
GO TO 80
|
|
100 CONTINUE
|
|
*
|
|
* Record the last eigenvalue.
|
|
*
|
|
K = K + 1
|
|
DLAMDA( K ) = D( PJ )
|
|
W( K ) = Z( PJ )
|
|
INDXP( K ) = PJ
|
|
*
|
|
* Count up the total number of the various types of columns, then
|
|
* form a permutation which positions the four column types into
|
|
* four uniform groups (although one or more of these groups may be
|
|
* empty).
|
|
*
|
|
DO 110 J = 1, 4
|
|
CTOT( J ) = 0
|
|
110 CONTINUE
|
|
DO 120 J = 1, N
|
|
CT = COLTYP( J )
|
|
CTOT( CT ) = CTOT( CT ) + 1
|
|
120 CONTINUE
|
|
*
|
|
* PSM(*) = Position in SubMatrix (of types 1 through 4)
|
|
*
|
|
PSM( 1 ) = 1
|
|
PSM( 2 ) = 1 + CTOT( 1 )
|
|
PSM( 3 ) = PSM( 2 ) + CTOT( 2 )
|
|
PSM( 4 ) = PSM( 3 ) + CTOT( 3 )
|
|
K = N - CTOT( 4 )
|
|
*
|
|
* Fill out the INDXC array so that the permutation which it induces
|
|
* will place all type-1 columns first, all type-2 columns next,
|
|
* then all type-3's, and finally all type-4's.
|
|
*
|
|
DO 130 J = 1, N
|
|
JS = INDXP( J )
|
|
CT = COLTYP( JS )
|
|
INDX( PSM( CT ) ) = JS
|
|
INDXC( PSM( CT ) ) = J
|
|
PSM( CT ) = PSM( CT ) + 1
|
|
130 CONTINUE
|
|
*
|
|
* Sort the eigenvalues and corresponding eigenvectors into DLAMDA
|
|
* and Q2 respectively. The eigenvalues/vectors which were not
|
|
* deflated go into the first K slots of DLAMDA and Q2 respectively,
|
|
* while those which were deflated go into the last N - K slots.
|
|
*
|
|
I = 1
|
|
IQ1 = 1
|
|
IQ2 = 1 + ( CTOT( 1 )+CTOT( 2 ) )*N1
|
|
DO 140 J = 1, CTOT( 1 )
|
|
JS = INDX( I )
|
|
CALL DCOPY( N1, Q( 1, JS ), 1, Q2( IQ1 ), 1 )
|
|
Z( I ) = D( JS )
|
|
I = I + 1
|
|
IQ1 = IQ1 + N1
|
|
140 CONTINUE
|
|
*
|
|
DO 150 J = 1, CTOT( 2 )
|
|
JS = INDX( I )
|
|
CALL DCOPY( N1, Q( 1, JS ), 1, Q2( IQ1 ), 1 )
|
|
CALL DCOPY( N2, Q( N1+1, JS ), 1, Q2( IQ2 ), 1 )
|
|
Z( I ) = D( JS )
|
|
I = I + 1
|
|
IQ1 = IQ1 + N1
|
|
IQ2 = IQ2 + N2
|
|
150 CONTINUE
|
|
*
|
|
DO 160 J = 1, CTOT( 3 )
|
|
JS = INDX( I )
|
|
CALL DCOPY( N2, Q( N1+1, JS ), 1, Q2( IQ2 ), 1 )
|
|
Z( I ) = D( JS )
|
|
I = I + 1
|
|
IQ2 = IQ2 + N2
|
|
160 CONTINUE
|
|
*
|
|
IQ1 = IQ2
|
|
DO 170 J = 1, CTOT( 4 )
|
|
JS = INDX( I )
|
|
CALL DCOPY( N, Q( 1, JS ), 1, Q2( IQ2 ), 1 )
|
|
IQ2 = IQ2 + N
|
|
Z( I ) = D( JS )
|
|
I = I + 1
|
|
170 CONTINUE
|
|
*
|
|
* The deflated eigenvalues and their corresponding vectors go back
|
|
* into the last N - K slots of D and Q respectively.
|
|
*
|
|
IF( K.LT.N ) THEN
|
|
CALL DLACPY( 'A', N, CTOT( 4 ), Q2( IQ1 ), N,
|
|
$ Q( 1, K+1 ), LDQ )
|
|
CALL DCOPY( N-K, Z( K+1 ), 1, D( K+1 ), 1 )
|
|
END IF
|
|
*
|
|
* Copy CTOT into COLTYP for referencing in DLAED3.
|
|
*
|
|
DO 180 J = 1, 4
|
|
COLTYP( J ) = CTOT( J )
|
|
180 CONTINUE
|
|
*
|
|
190 CONTINUE
|
|
RETURN
|
|
*
|
|
* End of DLAED2
|
|
*
|
|
END
|