forked from lijiext/lammps
275 lines
8.3 KiB
Fortran
275 lines
8.3 KiB
Fortran
*> \brief \b DLAED1 used by sstedc. Computes the updated eigensystem of a diagonal matrix after modification by a rank-one symmetric matrix. Used when the original matrix is tridiagonal.
|
|
*
|
|
* =========== DOCUMENTATION ===========
|
|
*
|
|
* Online html documentation available at
|
|
* http://www.netlib.org/lapack/explore-html/
|
|
*
|
|
*> \htmlonly
|
|
*> Download DLAED1 + dependencies
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlaed1.f">
|
|
*> [TGZ]</a>
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlaed1.f">
|
|
*> [ZIP]</a>
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlaed1.f">
|
|
*> [TXT]</a>
|
|
*> \endhtmlonly
|
|
*
|
|
* Definition:
|
|
* ===========
|
|
*
|
|
* SUBROUTINE DLAED1( N, D, Q, LDQ, INDXQ, RHO, CUTPNT, WORK, IWORK,
|
|
* INFO )
|
|
*
|
|
* .. Scalar Arguments ..
|
|
* INTEGER CUTPNT, INFO, LDQ, N
|
|
* DOUBLE PRECISION RHO
|
|
* ..
|
|
* .. Array Arguments ..
|
|
* INTEGER INDXQ( * ), IWORK( * )
|
|
* DOUBLE PRECISION D( * ), Q( LDQ, * ), WORK( * )
|
|
* ..
|
|
*
|
|
*
|
|
*> \par Purpose:
|
|
* =============
|
|
*>
|
|
*> \verbatim
|
|
*>
|
|
*> DLAED1 computes the updated eigensystem of a diagonal
|
|
*> matrix after modification by a rank-one symmetric matrix. This
|
|
*> routine is used only for the eigenproblem which requires all
|
|
*> eigenvalues and eigenvectors of a tridiagonal matrix. DLAED7 handles
|
|
*> the case in which eigenvalues only or eigenvalues and eigenvectors
|
|
*> of a full symmetric matrix (which was reduced to tridiagonal form)
|
|
*> are desired.
|
|
*>
|
|
*> T = Q(in) ( D(in) + RHO * Z*Z**T ) Q**T(in) = Q(out) * D(out) * Q**T(out)
|
|
*>
|
|
*> where Z = Q**T*u, u is a vector of length N with ones in the
|
|
*> CUTPNT and CUTPNT + 1 th elements and zeros elsewhere.
|
|
*>
|
|
*> The eigenvectors of the original matrix are stored in Q, and the
|
|
*> eigenvalues are in D. The algorithm consists of three stages:
|
|
*>
|
|
*> The first stage consists of deflating the size of the problem
|
|
*> when there are multiple eigenvalues or if there is a zero in
|
|
*> the Z vector. For each such occurrence the dimension of the
|
|
*> secular equation problem is reduced by one. This stage is
|
|
*> performed by the routine DLAED2.
|
|
*>
|
|
*> The second stage consists of calculating the updated
|
|
*> eigenvalues. This is done by finding the roots of the secular
|
|
*> equation via the routine DLAED4 (as called by DLAED3).
|
|
*> This routine also calculates the eigenvectors of the current
|
|
*> problem.
|
|
*>
|
|
*> The final stage consists of computing the updated eigenvectors
|
|
*> directly using the updated eigenvalues. The eigenvectors for
|
|
*> the current problem are multiplied with the eigenvectors from
|
|
*> the overall problem.
|
|
*> \endverbatim
|
|
*
|
|
* Arguments:
|
|
* ==========
|
|
*
|
|
*> \param[in] N
|
|
*> \verbatim
|
|
*> N is INTEGER
|
|
*> The dimension of the symmetric tridiagonal matrix. N >= 0.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in,out] D
|
|
*> \verbatim
|
|
*> D is DOUBLE PRECISION array, dimension (N)
|
|
*> On entry, the eigenvalues of the rank-1-perturbed matrix.
|
|
*> On exit, the eigenvalues of the repaired matrix.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in,out] Q
|
|
*> \verbatim
|
|
*> Q is DOUBLE PRECISION array, dimension (LDQ,N)
|
|
*> On entry, the eigenvectors of the rank-1-perturbed matrix.
|
|
*> On exit, the eigenvectors of the repaired tridiagonal matrix.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LDQ
|
|
*> \verbatim
|
|
*> LDQ is INTEGER
|
|
*> The leading dimension of the array Q. LDQ >= max(1,N).
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in,out] INDXQ
|
|
*> \verbatim
|
|
*> INDXQ is INTEGER array, dimension (N)
|
|
*> On entry, the permutation which separately sorts the two
|
|
*> subproblems in D into ascending order.
|
|
*> On exit, the permutation which will reintegrate the
|
|
*> subproblems back into sorted order,
|
|
*> i.e. D( INDXQ( I = 1, N ) ) will be in ascending order.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] RHO
|
|
*> \verbatim
|
|
*> RHO is DOUBLE PRECISION
|
|
*> The subdiagonal entry used to create the rank-1 modification.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] CUTPNT
|
|
*> \verbatim
|
|
*> CUTPNT is INTEGER
|
|
*> The location of the last eigenvalue in the leading sub-matrix.
|
|
*> min(1,N) <= CUTPNT <= N/2.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] WORK
|
|
*> \verbatim
|
|
*> WORK is DOUBLE PRECISION array, dimension (4*N + N**2)
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] IWORK
|
|
*> \verbatim
|
|
*> IWORK is INTEGER array, dimension (4*N)
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] INFO
|
|
*> \verbatim
|
|
*> INFO is INTEGER
|
|
*> = 0: successful exit.
|
|
*> < 0: if INFO = -i, the i-th argument had an illegal value.
|
|
*> > 0: if INFO = 1, an eigenvalue did not converge
|
|
*> \endverbatim
|
|
*
|
|
* Authors:
|
|
* ========
|
|
*
|
|
*> \author Univ. of Tennessee
|
|
*> \author Univ. of California Berkeley
|
|
*> \author Univ. of Colorado Denver
|
|
*> \author NAG Ltd.
|
|
*
|
|
*> \date June 2016
|
|
*
|
|
*> \ingroup auxOTHERcomputational
|
|
*
|
|
*> \par Contributors:
|
|
* ==================
|
|
*>
|
|
*> Jeff Rutter, Computer Science Division, University of California
|
|
*> at Berkeley, USA \n
|
|
*> Modified by Francoise Tisseur, University of Tennessee
|
|
*>
|
|
* =====================================================================
|
|
SUBROUTINE DLAED1( N, D, Q, LDQ, INDXQ, RHO, CUTPNT, WORK, IWORK,
|
|
$ INFO )
|
|
*
|
|
* -- LAPACK computational routine (version 3.7.0) --
|
|
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
|
* June 2016
|
|
*
|
|
* .. Scalar Arguments ..
|
|
INTEGER CUTPNT, INFO, LDQ, N
|
|
DOUBLE PRECISION RHO
|
|
* ..
|
|
* .. Array Arguments ..
|
|
INTEGER INDXQ( * ), IWORK( * )
|
|
DOUBLE PRECISION D( * ), Q( LDQ, * ), WORK( * )
|
|
* ..
|
|
*
|
|
* =====================================================================
|
|
*
|
|
* .. Local Scalars ..
|
|
INTEGER COLTYP, I, IDLMDA, INDX, INDXC, INDXP, IQ2, IS,
|
|
$ IW, IZ, K, N1, N2, ZPP1
|
|
* ..
|
|
* .. External Subroutines ..
|
|
EXTERNAL DCOPY, DLAED2, DLAED3, DLAMRG, XERBLA
|
|
* ..
|
|
* .. Intrinsic Functions ..
|
|
INTRINSIC MAX, MIN
|
|
* ..
|
|
* .. Executable Statements ..
|
|
*
|
|
* Test the input parameters.
|
|
*
|
|
INFO = 0
|
|
*
|
|
IF( N.LT.0 ) THEN
|
|
INFO = -1
|
|
ELSE IF( LDQ.LT.MAX( 1, N ) ) THEN
|
|
INFO = -4
|
|
ELSE IF( MIN( 1, N / 2 ).GT.CUTPNT .OR. ( N / 2 ).LT.CUTPNT ) THEN
|
|
INFO = -7
|
|
END IF
|
|
IF( INFO.NE.0 ) THEN
|
|
CALL XERBLA( 'DLAED1', -INFO )
|
|
RETURN
|
|
END IF
|
|
*
|
|
* Quick return if possible
|
|
*
|
|
IF( N.EQ.0 )
|
|
$ RETURN
|
|
*
|
|
* The following values are integer pointers which indicate
|
|
* the portion of the workspace
|
|
* used by a particular array in DLAED2 and DLAED3.
|
|
*
|
|
IZ = 1
|
|
IDLMDA = IZ + N
|
|
IW = IDLMDA + N
|
|
IQ2 = IW + N
|
|
*
|
|
INDX = 1
|
|
INDXC = INDX + N
|
|
COLTYP = INDXC + N
|
|
INDXP = COLTYP + N
|
|
*
|
|
*
|
|
* Form the z-vector which consists of the last row of Q_1 and the
|
|
* first row of Q_2.
|
|
*
|
|
CALL DCOPY( CUTPNT, Q( CUTPNT, 1 ), LDQ, WORK( IZ ), 1 )
|
|
ZPP1 = CUTPNT + 1
|
|
CALL DCOPY( N-CUTPNT, Q( ZPP1, ZPP1 ), LDQ, WORK( IZ+CUTPNT ), 1 )
|
|
*
|
|
* Deflate eigenvalues.
|
|
*
|
|
CALL DLAED2( K, N, CUTPNT, D, Q, LDQ, INDXQ, RHO, WORK( IZ ),
|
|
$ WORK( IDLMDA ), WORK( IW ), WORK( IQ2 ),
|
|
$ IWORK( INDX ), IWORK( INDXC ), IWORK( INDXP ),
|
|
$ IWORK( COLTYP ), INFO )
|
|
*
|
|
IF( INFO.NE.0 )
|
|
$ GO TO 20
|
|
*
|
|
* Solve Secular Equation.
|
|
*
|
|
IF( K.NE.0 ) THEN
|
|
IS = ( IWORK( COLTYP )+IWORK( COLTYP+1 ) )*CUTPNT +
|
|
$ ( IWORK( COLTYP+1 )+IWORK( COLTYP+2 ) )*( N-CUTPNT ) + IQ2
|
|
CALL DLAED3( K, N, CUTPNT, D, Q, LDQ, RHO, WORK( IDLMDA ),
|
|
$ WORK( IQ2 ), IWORK( INDXC ), IWORK( COLTYP ),
|
|
$ WORK( IW ), WORK( IS ), INFO )
|
|
IF( INFO.NE.0 )
|
|
$ GO TO 20
|
|
*
|
|
* Prepare the INDXQ sorting permutation.
|
|
*
|
|
N1 = K
|
|
N2 = N - K
|
|
CALL DLAMRG( N1, N2, D, 1, -1, INDXQ )
|
|
ELSE
|
|
DO 10 I = 1, N
|
|
INDXQ( I ) = I
|
|
10 CONTINUE
|
|
END IF
|
|
*
|
|
20 CONTINUE
|
|
RETURN
|
|
*
|
|
* End of DLAED1
|
|
*
|
|
END
|