forked from lijiext/lammps
703 lines
21 KiB
Fortran
703 lines
21 KiB
Fortran
SUBROUTINE DLATRS( UPLO, TRANS, DIAG, NORMIN, N, A, LDA, X, SCALE,
|
|
$ CNORM, INFO )
|
|
*
|
|
* -- LAPACK auxiliary routine (version 3.2) --
|
|
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
|
* November 2006
|
|
*
|
|
* .. Scalar Arguments ..
|
|
CHARACTER DIAG, NORMIN, TRANS, UPLO
|
|
INTEGER INFO, LDA, N
|
|
DOUBLE PRECISION SCALE
|
|
* ..
|
|
* .. Array Arguments ..
|
|
DOUBLE PRECISION A( LDA, * ), CNORM( * ), X( * )
|
|
* ..
|
|
*
|
|
* Purpose
|
|
* =======
|
|
*
|
|
* DLATRS solves one of the triangular systems
|
|
*
|
|
* A *x = s*b or A'*x = s*b
|
|
*
|
|
* with scaling to prevent overflow. Here A is an upper or lower
|
|
* triangular matrix, A' denotes the transpose of A, x and b are
|
|
* n-element vectors, and s is a scaling factor, usually less than
|
|
* or equal to 1, chosen so that the components of x will be less than
|
|
* the overflow threshold. If the unscaled problem will not cause
|
|
* overflow, the Level 2 BLAS routine DTRSV is called. If the matrix A
|
|
* is singular (A(j,j) = 0 for some j), then s is set to 0 and a
|
|
* non-trivial solution to A*x = 0 is returned.
|
|
*
|
|
* Arguments
|
|
* =========
|
|
*
|
|
* UPLO (input) CHARACTER*1
|
|
* Specifies whether the matrix A is upper or lower triangular.
|
|
* = 'U': Upper triangular
|
|
* = 'L': Lower triangular
|
|
*
|
|
* TRANS (input) CHARACTER*1
|
|
* Specifies the operation applied to A.
|
|
* = 'N': Solve A * x = s*b (No transpose)
|
|
* = 'T': Solve A'* x = s*b (Transpose)
|
|
* = 'C': Solve A'* x = s*b (Conjugate transpose = Transpose)
|
|
*
|
|
* DIAG (input) CHARACTER*1
|
|
* Specifies whether or not the matrix A is unit triangular.
|
|
* = 'N': Non-unit triangular
|
|
* = 'U': Unit triangular
|
|
*
|
|
* NORMIN (input) CHARACTER*1
|
|
* Specifies whether CNORM has been set or not.
|
|
* = 'Y': CNORM contains the column norms on entry
|
|
* = 'N': CNORM is not set on entry. On exit, the norms will
|
|
* be computed and stored in CNORM.
|
|
*
|
|
* N (input) INTEGER
|
|
* The order of the matrix A. N >= 0.
|
|
*
|
|
* A (input) DOUBLE PRECISION array, dimension (LDA,N)
|
|
* The triangular matrix A. If UPLO = 'U', the leading n by n
|
|
* upper triangular part of the array A contains the upper
|
|
* triangular matrix, and the strictly lower triangular part of
|
|
* A is not referenced. If UPLO = 'L', the leading n by n lower
|
|
* triangular part of the array A contains the lower triangular
|
|
* matrix, and the strictly upper triangular part of A is not
|
|
* referenced. If DIAG = 'U', the diagonal elements of A are
|
|
* also not referenced and are assumed to be 1.
|
|
*
|
|
* LDA (input) INTEGER
|
|
* The leading dimension of the array A. LDA >= max (1,N).
|
|
*
|
|
* X (input/output) DOUBLE PRECISION array, dimension (N)
|
|
* On entry, the right hand side b of the triangular system.
|
|
* On exit, X is overwritten by the solution vector x.
|
|
*
|
|
* SCALE (output) DOUBLE PRECISION
|
|
* The scaling factor s for the triangular system
|
|
* A * x = s*b or A'* x = s*b.
|
|
* If SCALE = 0, the matrix A is singular or badly scaled, and
|
|
* the vector x is an exact or approximate solution to A*x = 0.
|
|
*
|
|
* CNORM (input or output) DOUBLE PRECISION array, dimension (N)
|
|
*
|
|
* If NORMIN = 'Y', CNORM is an input argument and CNORM(j)
|
|
* contains the norm of the off-diagonal part of the j-th column
|
|
* of A. If TRANS = 'N', CNORM(j) must be greater than or equal
|
|
* to the infinity-norm, and if TRANS = 'T' or 'C', CNORM(j)
|
|
* must be greater than or equal to the 1-norm.
|
|
*
|
|
* If NORMIN = 'N', CNORM is an output argument and CNORM(j)
|
|
* returns the 1-norm of the offdiagonal part of the j-th column
|
|
* of A.
|
|
*
|
|
* INFO (output) INTEGER
|
|
* = 0: successful exit
|
|
* < 0: if INFO = -k, the k-th argument had an illegal value
|
|
*
|
|
* Further Details
|
|
* ======= =======
|
|
*
|
|
* A rough bound on x is computed; if that is less than overflow, DTRSV
|
|
* is called, otherwise, specific code is used which checks for possible
|
|
* overflow or divide-by-zero at every operation.
|
|
*
|
|
* A columnwise scheme is used for solving A*x = b. The basic algorithm
|
|
* if A is lower triangular is
|
|
*
|
|
* x[1:n] := b[1:n]
|
|
* for j = 1, ..., n
|
|
* x(j) := x(j) / A(j,j)
|
|
* x[j+1:n] := x[j+1:n] - x(j) * A[j+1:n,j]
|
|
* end
|
|
*
|
|
* Define bounds on the components of x after j iterations of the loop:
|
|
* M(j) = bound on x[1:j]
|
|
* G(j) = bound on x[j+1:n]
|
|
* Initially, let M(0) = 0 and G(0) = max{x(i), i=1,...,n}.
|
|
*
|
|
* Then for iteration j+1 we have
|
|
* M(j+1) <= G(j) / | A(j+1,j+1) |
|
|
* G(j+1) <= G(j) + M(j+1) * | A[j+2:n,j+1] |
|
|
* <= G(j) ( 1 + CNORM(j+1) / | A(j+1,j+1) | )
|
|
*
|
|
* where CNORM(j+1) is greater than or equal to the infinity-norm of
|
|
* column j+1 of A, not counting the diagonal. Hence
|
|
*
|
|
* G(j) <= G(0) product ( 1 + CNORM(i) / | A(i,i) | )
|
|
* 1<=i<=j
|
|
* and
|
|
*
|
|
* |x(j)| <= ( G(0) / |A(j,j)| ) product ( 1 + CNORM(i) / |A(i,i)| )
|
|
* 1<=i< j
|
|
*
|
|
* Since |x(j)| <= M(j), we use the Level 2 BLAS routine DTRSV if the
|
|
* reciprocal of the largest M(j), j=1,..,n, is larger than
|
|
* max(underflow, 1/overflow).
|
|
*
|
|
* The bound on x(j) is also used to determine when a step in the
|
|
* columnwise method can be performed without fear of overflow. If
|
|
* the computed bound is greater than a large constant, x is scaled to
|
|
* prevent overflow, but if the bound overflows, x is set to 0, x(j) to
|
|
* 1, and scale to 0, and a non-trivial solution to A*x = 0 is found.
|
|
*
|
|
* Similarly, a row-wise scheme is used to solve A'*x = b. The basic
|
|
* algorithm for A upper triangular is
|
|
*
|
|
* for j = 1, ..., n
|
|
* x(j) := ( b(j) - A[1:j-1,j]' * x[1:j-1] ) / A(j,j)
|
|
* end
|
|
*
|
|
* We simultaneously compute two bounds
|
|
* G(j) = bound on ( b(i) - A[1:i-1,i]' * x[1:i-1] ), 1<=i<=j
|
|
* M(j) = bound on x(i), 1<=i<=j
|
|
*
|
|
* The initial values are G(0) = 0, M(0) = max{b(i), i=1,..,n}, and we
|
|
* add the constraint G(j) >= G(j-1) and M(j) >= M(j-1) for j >= 1.
|
|
* Then the bound on x(j) is
|
|
*
|
|
* M(j) <= M(j-1) * ( 1 + CNORM(j) ) / | A(j,j) |
|
|
*
|
|
* <= M(0) * product ( ( 1 + CNORM(i) ) / |A(i,i)| )
|
|
* 1<=i<=j
|
|
*
|
|
* and we can safely call DTRSV if 1/M(n) and 1/G(n) are both greater
|
|
* than max(underflow, 1/overflow).
|
|
*
|
|
* =====================================================================
|
|
*
|
|
* .. Parameters ..
|
|
DOUBLE PRECISION ZERO, HALF, ONE
|
|
PARAMETER ( ZERO = 0.0D+0, HALF = 0.5D+0, ONE = 1.0D+0 )
|
|
* ..
|
|
* .. Local Scalars ..
|
|
LOGICAL NOTRAN, NOUNIT, UPPER
|
|
INTEGER I, IMAX, J, JFIRST, JINC, JLAST
|
|
DOUBLE PRECISION BIGNUM, GROW, REC, SMLNUM, SUMJ, TJJ, TJJS,
|
|
$ TMAX, TSCAL, USCAL, XBND, XJ, XMAX
|
|
* ..
|
|
* .. External Functions ..
|
|
LOGICAL LSAME
|
|
INTEGER IDAMAX
|
|
DOUBLE PRECISION DASUM, DDOT, DLAMCH
|
|
EXTERNAL LSAME, IDAMAX, DASUM, DDOT, DLAMCH
|
|
* ..
|
|
* .. External Subroutines ..
|
|
EXTERNAL DAXPY, DSCAL, DTRSV, XERBLA
|
|
* ..
|
|
* .. Intrinsic Functions ..
|
|
INTRINSIC ABS, MAX, MIN
|
|
* ..
|
|
* .. Executable Statements ..
|
|
*
|
|
INFO = 0
|
|
UPPER = LSAME( UPLO, 'U' )
|
|
NOTRAN = LSAME( TRANS, 'N' )
|
|
NOUNIT = LSAME( DIAG, 'N' )
|
|
*
|
|
* Test the input parameters.
|
|
*
|
|
IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
|
|
INFO = -1
|
|
ELSE IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'T' ) .AND. .NOT.
|
|
$ LSAME( TRANS, 'C' ) ) THEN
|
|
INFO = -2
|
|
ELSE IF( .NOT.NOUNIT .AND. .NOT.LSAME( DIAG, 'U' ) ) THEN
|
|
INFO = -3
|
|
ELSE IF( .NOT.LSAME( NORMIN, 'Y' ) .AND. .NOT.
|
|
$ LSAME( NORMIN, 'N' ) ) THEN
|
|
INFO = -4
|
|
ELSE IF( N.LT.0 ) THEN
|
|
INFO = -5
|
|
ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
|
|
INFO = -7
|
|
END IF
|
|
IF( INFO.NE.0 ) THEN
|
|
CALL XERBLA( 'DLATRS', -INFO )
|
|
RETURN
|
|
END IF
|
|
*
|
|
* Quick return if possible
|
|
*
|
|
IF( N.EQ.0 )
|
|
$ RETURN
|
|
*
|
|
* Determine machine dependent parameters to control overflow.
|
|
*
|
|
SMLNUM = DLAMCH( 'Safe minimum' ) / DLAMCH( 'Precision' )
|
|
BIGNUM = ONE / SMLNUM
|
|
SCALE = ONE
|
|
*
|
|
IF( LSAME( NORMIN, 'N' ) ) THEN
|
|
*
|
|
* Compute the 1-norm of each column, not including the diagonal.
|
|
*
|
|
IF( UPPER ) THEN
|
|
*
|
|
* A is upper triangular.
|
|
*
|
|
DO 10 J = 1, N
|
|
CNORM( J ) = DASUM( J-1, A( 1, J ), 1 )
|
|
10 CONTINUE
|
|
ELSE
|
|
*
|
|
* A is lower triangular.
|
|
*
|
|
DO 20 J = 1, N - 1
|
|
CNORM( J ) = DASUM( N-J, A( J+1, J ), 1 )
|
|
20 CONTINUE
|
|
CNORM( N ) = ZERO
|
|
END IF
|
|
END IF
|
|
*
|
|
* Scale the column norms by TSCAL if the maximum element in CNORM is
|
|
* greater than BIGNUM.
|
|
*
|
|
IMAX = IDAMAX( N, CNORM, 1 )
|
|
TMAX = CNORM( IMAX )
|
|
IF( TMAX.LE.BIGNUM ) THEN
|
|
TSCAL = ONE
|
|
ELSE
|
|
TSCAL = ONE / ( SMLNUM*TMAX )
|
|
CALL DSCAL( N, TSCAL, CNORM, 1 )
|
|
END IF
|
|
*
|
|
* Compute a bound on the computed solution vector to see if the
|
|
* Level 2 BLAS routine DTRSV can be used.
|
|
*
|
|
J = IDAMAX( N, X, 1 )
|
|
XMAX = ABS( X( J ) )
|
|
XBND = XMAX
|
|
IF( NOTRAN ) THEN
|
|
*
|
|
* Compute the growth in A * x = b.
|
|
*
|
|
IF( UPPER ) THEN
|
|
JFIRST = N
|
|
JLAST = 1
|
|
JINC = -1
|
|
ELSE
|
|
JFIRST = 1
|
|
JLAST = N
|
|
JINC = 1
|
|
END IF
|
|
*
|
|
IF( TSCAL.NE.ONE ) THEN
|
|
GROW = ZERO
|
|
GO TO 50
|
|
END IF
|
|
*
|
|
IF( NOUNIT ) THEN
|
|
*
|
|
* A is non-unit triangular.
|
|
*
|
|
* Compute GROW = 1/G(j) and XBND = 1/M(j).
|
|
* Initially, G(0) = max{x(i), i=1,...,n}.
|
|
*
|
|
GROW = ONE / MAX( XBND, SMLNUM )
|
|
XBND = GROW
|
|
DO 30 J = JFIRST, JLAST, JINC
|
|
*
|
|
* Exit the loop if the growth factor is too small.
|
|
*
|
|
IF( GROW.LE.SMLNUM )
|
|
$ GO TO 50
|
|
*
|
|
* M(j) = G(j-1) / abs(A(j,j))
|
|
*
|
|
TJJ = ABS( A( J, J ) )
|
|
XBND = MIN( XBND, MIN( ONE, TJJ )*GROW )
|
|
IF( TJJ+CNORM( J ).GE.SMLNUM ) THEN
|
|
*
|
|
* G(j) = G(j-1)*( 1 + CNORM(j) / abs(A(j,j)) )
|
|
*
|
|
GROW = GROW*( TJJ / ( TJJ+CNORM( J ) ) )
|
|
ELSE
|
|
*
|
|
* G(j) could overflow, set GROW to 0.
|
|
*
|
|
GROW = ZERO
|
|
END IF
|
|
30 CONTINUE
|
|
GROW = XBND
|
|
ELSE
|
|
*
|
|
* A is unit triangular.
|
|
*
|
|
* Compute GROW = 1/G(j), where G(0) = max{x(i), i=1,...,n}.
|
|
*
|
|
GROW = MIN( ONE, ONE / MAX( XBND, SMLNUM ) )
|
|
DO 40 J = JFIRST, JLAST, JINC
|
|
*
|
|
* Exit the loop if the growth factor is too small.
|
|
*
|
|
IF( GROW.LE.SMLNUM )
|
|
$ GO TO 50
|
|
*
|
|
* G(j) = G(j-1)*( 1 + CNORM(j) )
|
|
*
|
|
GROW = GROW*( ONE / ( ONE+CNORM( J ) ) )
|
|
40 CONTINUE
|
|
END IF
|
|
50 CONTINUE
|
|
*
|
|
ELSE
|
|
*
|
|
* Compute the growth in A' * x = b.
|
|
*
|
|
IF( UPPER ) THEN
|
|
JFIRST = 1
|
|
JLAST = N
|
|
JINC = 1
|
|
ELSE
|
|
JFIRST = N
|
|
JLAST = 1
|
|
JINC = -1
|
|
END IF
|
|
*
|
|
IF( TSCAL.NE.ONE ) THEN
|
|
GROW = ZERO
|
|
GO TO 80
|
|
END IF
|
|
*
|
|
IF( NOUNIT ) THEN
|
|
*
|
|
* A is non-unit triangular.
|
|
*
|
|
* Compute GROW = 1/G(j) and XBND = 1/M(j).
|
|
* Initially, M(0) = max{x(i), i=1,...,n}.
|
|
*
|
|
GROW = ONE / MAX( XBND, SMLNUM )
|
|
XBND = GROW
|
|
DO 60 J = JFIRST, JLAST, JINC
|
|
*
|
|
* Exit the loop if the growth factor is too small.
|
|
*
|
|
IF( GROW.LE.SMLNUM )
|
|
$ GO TO 80
|
|
*
|
|
* G(j) = max( G(j-1), M(j-1)*( 1 + CNORM(j) ) )
|
|
*
|
|
XJ = ONE + CNORM( J )
|
|
GROW = MIN( GROW, XBND / XJ )
|
|
*
|
|
* M(j) = M(j-1)*( 1 + CNORM(j) ) / abs(A(j,j))
|
|
*
|
|
TJJ = ABS( A( J, J ) )
|
|
IF( XJ.GT.TJJ )
|
|
$ XBND = XBND*( TJJ / XJ )
|
|
60 CONTINUE
|
|
GROW = MIN( GROW, XBND )
|
|
ELSE
|
|
*
|
|
* A is unit triangular.
|
|
*
|
|
* Compute GROW = 1/G(j), where G(0) = max{x(i), i=1,...,n}.
|
|
*
|
|
GROW = MIN( ONE, ONE / MAX( XBND, SMLNUM ) )
|
|
DO 70 J = JFIRST, JLAST, JINC
|
|
*
|
|
* Exit the loop if the growth factor is too small.
|
|
*
|
|
IF( GROW.LE.SMLNUM )
|
|
$ GO TO 80
|
|
*
|
|
* G(j) = ( 1 + CNORM(j) )*G(j-1)
|
|
*
|
|
XJ = ONE + CNORM( J )
|
|
GROW = GROW / XJ
|
|
70 CONTINUE
|
|
END IF
|
|
80 CONTINUE
|
|
END IF
|
|
*
|
|
IF( ( GROW*TSCAL ).GT.SMLNUM ) THEN
|
|
*
|
|
* Use the Level 2 BLAS solve if the reciprocal of the bound on
|
|
* elements of X is not too small.
|
|
*
|
|
CALL DTRSV( UPLO, TRANS, DIAG, N, A, LDA, X, 1 )
|
|
ELSE
|
|
*
|
|
* Use a Level 1 BLAS solve, scaling intermediate results.
|
|
*
|
|
IF( XMAX.GT.BIGNUM ) THEN
|
|
*
|
|
* Scale X so that its components are less than or equal to
|
|
* BIGNUM in absolute value.
|
|
*
|
|
SCALE = BIGNUM / XMAX
|
|
CALL DSCAL( N, SCALE, X, 1 )
|
|
XMAX = BIGNUM
|
|
END IF
|
|
*
|
|
IF( NOTRAN ) THEN
|
|
*
|
|
* Solve A * x = b
|
|
*
|
|
DO 110 J = JFIRST, JLAST, JINC
|
|
*
|
|
* Compute x(j) = b(j) / A(j,j), scaling x if necessary.
|
|
*
|
|
XJ = ABS( X( J ) )
|
|
IF( NOUNIT ) THEN
|
|
TJJS = A( J, J )*TSCAL
|
|
ELSE
|
|
TJJS = TSCAL
|
|
IF( TSCAL.EQ.ONE )
|
|
$ GO TO 100
|
|
END IF
|
|
TJJ = ABS( TJJS )
|
|
IF( TJJ.GT.SMLNUM ) THEN
|
|
*
|
|
* abs(A(j,j)) > SMLNUM:
|
|
*
|
|
IF( TJJ.LT.ONE ) THEN
|
|
IF( XJ.GT.TJJ*BIGNUM ) THEN
|
|
*
|
|
* Scale x by 1/b(j).
|
|
*
|
|
REC = ONE / XJ
|
|
CALL DSCAL( N, REC, X, 1 )
|
|
SCALE = SCALE*REC
|
|
XMAX = XMAX*REC
|
|
END IF
|
|
END IF
|
|
X( J ) = X( J ) / TJJS
|
|
XJ = ABS( X( J ) )
|
|
ELSE IF( TJJ.GT.ZERO ) THEN
|
|
*
|
|
* 0 < abs(A(j,j)) <= SMLNUM:
|
|
*
|
|
IF( XJ.GT.TJJ*BIGNUM ) THEN
|
|
*
|
|
* Scale x by (1/abs(x(j)))*abs(A(j,j))*BIGNUM
|
|
* to avoid overflow when dividing by A(j,j).
|
|
*
|
|
REC = ( TJJ*BIGNUM ) / XJ
|
|
IF( CNORM( J ).GT.ONE ) THEN
|
|
*
|
|
* Scale by 1/CNORM(j) to avoid overflow when
|
|
* multiplying x(j) times column j.
|
|
*
|
|
REC = REC / CNORM( J )
|
|
END IF
|
|
CALL DSCAL( N, REC, X, 1 )
|
|
SCALE = SCALE*REC
|
|
XMAX = XMAX*REC
|
|
END IF
|
|
X( J ) = X( J ) / TJJS
|
|
XJ = ABS( X( J ) )
|
|
ELSE
|
|
*
|
|
* A(j,j) = 0: Set x(1:n) = 0, x(j) = 1, and
|
|
* scale = 0, and compute a solution to A*x = 0.
|
|
*
|
|
DO 90 I = 1, N
|
|
X( I ) = ZERO
|
|
90 CONTINUE
|
|
X( J ) = ONE
|
|
XJ = ONE
|
|
SCALE = ZERO
|
|
XMAX = ZERO
|
|
END IF
|
|
100 CONTINUE
|
|
*
|
|
* Scale x if necessary to avoid overflow when adding a
|
|
* multiple of column j of A.
|
|
*
|
|
IF( XJ.GT.ONE ) THEN
|
|
REC = ONE / XJ
|
|
IF( CNORM( J ).GT.( BIGNUM-XMAX )*REC ) THEN
|
|
*
|
|
* Scale x by 1/(2*abs(x(j))).
|
|
*
|
|
REC = REC*HALF
|
|
CALL DSCAL( N, REC, X, 1 )
|
|
SCALE = SCALE*REC
|
|
END IF
|
|
ELSE IF( XJ*CNORM( J ).GT.( BIGNUM-XMAX ) ) THEN
|
|
*
|
|
* Scale x by 1/2.
|
|
*
|
|
CALL DSCAL( N, HALF, X, 1 )
|
|
SCALE = SCALE*HALF
|
|
END IF
|
|
*
|
|
IF( UPPER ) THEN
|
|
IF( J.GT.1 ) THEN
|
|
*
|
|
* Compute the update
|
|
* x(1:j-1) := x(1:j-1) - x(j) * A(1:j-1,j)
|
|
*
|
|
CALL DAXPY( J-1, -X( J )*TSCAL, A( 1, J ), 1, X,
|
|
$ 1 )
|
|
I = IDAMAX( J-1, X, 1 )
|
|
XMAX = ABS( X( I ) )
|
|
END IF
|
|
ELSE
|
|
IF( J.LT.N ) THEN
|
|
*
|
|
* Compute the update
|
|
* x(j+1:n) := x(j+1:n) - x(j) * A(j+1:n,j)
|
|
*
|
|
CALL DAXPY( N-J, -X( J )*TSCAL, A( J+1, J ), 1,
|
|
$ X( J+1 ), 1 )
|
|
I = J + IDAMAX( N-J, X( J+1 ), 1 )
|
|
XMAX = ABS( X( I ) )
|
|
END IF
|
|
END IF
|
|
110 CONTINUE
|
|
*
|
|
ELSE
|
|
*
|
|
* Solve A' * x = b
|
|
*
|
|
DO 160 J = JFIRST, JLAST, JINC
|
|
*
|
|
* Compute x(j) = b(j) - sum A(k,j)*x(k).
|
|
* k<>j
|
|
*
|
|
XJ = ABS( X( J ) )
|
|
USCAL = TSCAL
|
|
REC = ONE / MAX( XMAX, ONE )
|
|
IF( CNORM( J ).GT.( BIGNUM-XJ )*REC ) THEN
|
|
*
|
|
* If x(j) could overflow, scale x by 1/(2*XMAX).
|
|
*
|
|
REC = REC*HALF
|
|
IF( NOUNIT ) THEN
|
|
TJJS = A( J, J )*TSCAL
|
|
ELSE
|
|
TJJS = TSCAL
|
|
END IF
|
|
TJJ = ABS( TJJS )
|
|
IF( TJJ.GT.ONE ) THEN
|
|
*
|
|
* Divide by A(j,j) when scaling x if A(j,j) > 1.
|
|
*
|
|
REC = MIN( ONE, REC*TJJ )
|
|
USCAL = USCAL / TJJS
|
|
END IF
|
|
IF( REC.LT.ONE ) THEN
|
|
CALL DSCAL( N, REC, X, 1 )
|
|
SCALE = SCALE*REC
|
|
XMAX = XMAX*REC
|
|
END IF
|
|
END IF
|
|
*
|
|
SUMJ = ZERO
|
|
IF( USCAL.EQ.ONE ) THEN
|
|
*
|
|
* If the scaling needed for A in the dot product is 1,
|
|
* call DDOT to perform the dot product.
|
|
*
|
|
IF( UPPER ) THEN
|
|
SUMJ = DDOT( J-1, A( 1, J ), 1, X, 1 )
|
|
ELSE IF( J.LT.N ) THEN
|
|
SUMJ = DDOT( N-J, A( J+1, J ), 1, X( J+1 ), 1 )
|
|
END IF
|
|
ELSE
|
|
*
|
|
* Otherwise, use in-line code for the dot product.
|
|
*
|
|
IF( UPPER ) THEN
|
|
DO 120 I = 1, J - 1
|
|
SUMJ = SUMJ + ( A( I, J )*USCAL )*X( I )
|
|
120 CONTINUE
|
|
ELSE IF( J.LT.N ) THEN
|
|
DO 130 I = J + 1, N
|
|
SUMJ = SUMJ + ( A( I, J )*USCAL )*X( I )
|
|
130 CONTINUE
|
|
END IF
|
|
END IF
|
|
*
|
|
IF( USCAL.EQ.TSCAL ) THEN
|
|
*
|
|
* Compute x(j) := ( x(j) - sumj ) / A(j,j) if 1/A(j,j)
|
|
* was not used to scale the dotproduct.
|
|
*
|
|
X( J ) = X( J ) - SUMJ
|
|
XJ = ABS( X( J ) )
|
|
IF( NOUNIT ) THEN
|
|
TJJS = A( J, J )*TSCAL
|
|
ELSE
|
|
TJJS = TSCAL
|
|
IF( TSCAL.EQ.ONE )
|
|
$ GO TO 150
|
|
END IF
|
|
*
|
|
* Compute x(j) = x(j) / A(j,j), scaling if necessary.
|
|
*
|
|
TJJ = ABS( TJJS )
|
|
IF( TJJ.GT.SMLNUM ) THEN
|
|
*
|
|
* abs(A(j,j)) > SMLNUM:
|
|
*
|
|
IF( TJJ.LT.ONE ) THEN
|
|
IF( XJ.GT.TJJ*BIGNUM ) THEN
|
|
*
|
|
* Scale X by 1/abs(x(j)).
|
|
*
|
|
REC = ONE / XJ
|
|
CALL DSCAL( N, REC, X, 1 )
|
|
SCALE = SCALE*REC
|
|
XMAX = XMAX*REC
|
|
END IF
|
|
END IF
|
|
X( J ) = X( J ) / TJJS
|
|
ELSE IF( TJJ.GT.ZERO ) THEN
|
|
*
|
|
* 0 < abs(A(j,j)) <= SMLNUM:
|
|
*
|
|
IF( XJ.GT.TJJ*BIGNUM ) THEN
|
|
*
|
|
* Scale x by (1/abs(x(j)))*abs(A(j,j))*BIGNUM.
|
|
*
|
|
REC = ( TJJ*BIGNUM ) / XJ
|
|
CALL DSCAL( N, REC, X, 1 )
|
|
SCALE = SCALE*REC
|
|
XMAX = XMAX*REC
|
|
END IF
|
|
X( J ) = X( J ) / TJJS
|
|
ELSE
|
|
*
|
|
* A(j,j) = 0: Set x(1:n) = 0, x(j) = 1, and
|
|
* scale = 0, and compute a solution to A'*x = 0.
|
|
*
|
|
DO 140 I = 1, N
|
|
X( I ) = ZERO
|
|
140 CONTINUE
|
|
X( J ) = ONE
|
|
SCALE = ZERO
|
|
XMAX = ZERO
|
|
END IF
|
|
150 CONTINUE
|
|
ELSE
|
|
*
|
|
* Compute x(j) := x(j) / A(j,j) - sumj if the dot
|
|
* product has already been divided by 1/A(j,j).
|
|
*
|
|
X( J ) = X( J ) / TJJS - SUMJ
|
|
END IF
|
|
XMAX = MAX( XMAX, ABS( X( J ) ) )
|
|
160 CONTINUE
|
|
END IF
|
|
SCALE = SCALE / TSCAL
|
|
END IF
|
|
*
|
|
* Scale the column norms by 1/TSCAL for return.
|
|
*
|
|
IF( TSCAL.NE.ONE ) THEN
|
|
CALL DSCAL( N, ONE / TSCAL, CNORM, 1 )
|
|
END IF
|
|
*
|
|
RETURN
|
|
*
|
|
* End of DLATRS
|
|
*
|
|
END
|