lammps/doc/pair_style_sw.txt

119 lines
3.9 KiB
Plaintext

"LAMMPS WWW Site"_lws - "LAMMPS Documentation"_ld - "LAMMPS Commands"_lc :c
:link(lws,http://lammps.sandia.gov)
:link(ld,Manual.html)
:link(lc,Section_commands.html#comm)
:line
pair_style sw command :h3
[Syntax:]
pair_style sw :pre
[Examples:]
pair_style sw
pair_coeff * * si.sw Si
pair_coeff * * SiC.sw Si C Si :pre
[Description:]
The {sw} style computes a 3-body "Stillinger-Weber"_#Stillinger
potential for the energy E of a system of atoms as
:c,image(Eqs/pair_sw.jpg)
where phi2 is a two-body term and phi3 is a three-body term. The
summations in the formula are over all neighbors J and K of atom I
within a cutoff distance = a*sigma.
Only a single pair_coeff command is used with the {sw} style which
specifies a Stillinger-Weber potential file with parameters for all
needed elements. These are mapped to LAMMPS atom types by specifying
N additional arguments after the filename in the pair_coeff command,
where N is the number of LAMMPS atom types:
filename
N element names = mapping of SW elements to atom types :ul
As an example, imagine the SiC.sw file has Stillinger-Weber values for
Si and C. If your LAMMPS simulation has 4 atoms types and you want
the 1st 3 to be Si, and the 4th to be C, you would use the following
pair_coeff command:
pair_coeff * * SiC.sw Si Si Si C :pre
The 1st 2 arguments must be * * so as to span all LAMMPS atom types.
The first three Si arguments map LAMMPS atom types 1,2,3 to the Si
element in the SW file. The final C argument maps LAMMPS atom type 4
to the C element in the SW file. If a mapping value is specified as
NULL, the mapping is not performed. This can be used when a {sw}
potential is used as part of the {hybrid} pair style. The NULL values
are placeholders for atom types that will be used with other
potentials.
Stillinger-Weber files in the {potentials} directory of the LAMMPS
distribution have a ".sw" suffix. Lines that are not blank or
comments (starting with #) define parameters for a triplet of
elements. The parameters in a single entry correspond to the two-body
and three-body coefficients in the formula above:
element 1 (the center atom in a 3-body interaction)
element 2
element 3
epsilon (energy units)
sigma (distance units)
a
lambda
gamma
costheta0
A
B
p
q :ul
The epsilon, sigma, a, A, B, p, and q parameters are for two-body
interactions. The lambda, gamma, and costheta0 parameters are for
three-body interactions. The non-annotated parameters are unitless.
The Stillinger-Weber potential file must contain entries for all the
elements listed in the pair_coeff command. It can also contain
entries for additional elements not being used in a particular
simulation; LAMMPS ignores those entries.
For a single-element simulation, only a single entry is required
(e.g. SiSiSi). For a two-element simulation, the file must contain 8
entries (for SiSiSi, SiSiC, SiCSi, SiCC, CSiSi, CSiC, CCSi, CCC), that
specify SW parameters for all permutations of the two elements
interacting in three-body configurations. Thus for 3 elements, 27
entries would be required, etc.
As annotated above, the first element in the entry is the center atom
in a three-body interaction. Thus an entry for SiCC means a Si atom
with 2 C atoms as neighbors. By symmetry, three-body parameters for
SiCSi and SiSiC entries should be the same. Two-body parameters for
an interaction come from the entry where the 2nd element is repeated.
Thus the two-body parameters for Si interacting with C, comes from the
SiCC entry. Again by symmetry, the two-body parameters in the SiCC
and CSiSi entries should thus be the same. Two-body parameters in
entries whose 2nd and 3rd element are different (e.g. SiCSi) are
ignored.
[Restrictions:]
This pair potential requires the "newton"_newton.html setting to be
"on" for pair interactions.
[Related commands:]
"pair_coeff"_pair_coeff.html
[Default:] none
:line
:link(Stillinger)
[(Stillinger)] Stillinger and Weber, Phys Rev B, 31, 5262 (1985).