lammps/lib/kokkos/TPL/cub/util_iterator.cuh

719 lines
22 KiB
Plaintext

/******************************************************************************
* Copyright (c) 2011, Duane Merrill. All rights reserved.
* Copyright (c) 2011-2013, NVIDIA CORPORATION. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of the NVIDIA CORPORATION nor the
* names of its contributors may be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
******************************************************************************/
/**
* \file
* Random-access iterator types
*/
#pragma once
#include "thread/thread_load.cuh"
#include "util_device.cuh"
#include "util_debug.cuh"
#include "util_namespace.cuh"
/// Optional outer namespace(s)
CUB_NS_PREFIX
/// CUB namespace
namespace cub {
/******************************************************************************
* Texture references
*****************************************************************************/
#ifndef DOXYGEN_SHOULD_SKIP_THIS // Do not document
// Anonymous namespace
namespace {
/// Templated texture reference type
template <typename T>
struct TexIteratorRef
{
// Texture reference type
typedef texture<T, cudaTextureType1D, cudaReadModeElementType> TexRef;
static TexRef ref;
/**
* Bind texture
*/
static cudaError_t BindTexture(void *d_in)
{
cudaChannelFormatDesc tex_desc = cudaCreateChannelDesc<T>();
if (d_in)
return (CubDebug(cudaBindTexture(NULL, ref, d_in, tex_desc)));
return cudaSuccess;
}
/**
* Unbind textures
*/
static cudaError_t UnbindTexture()
{
return CubDebug(cudaUnbindTexture(ref));
}
};
// Texture reference definitions
template <typename Value>
typename TexIteratorRef<Value>::TexRef TexIteratorRef<Value>::ref = 0;
} // Anonymous namespace
#endif // DOXYGEN_SHOULD_SKIP_THIS
/**
* \addtogroup UtilModule
* @{
*/
/******************************************************************************
* Iterators
*****************************************************************************/
/**
* \brief A simple random-access iterator pointing to a range of constant values
*
* \par Overview
* ConstantIteratorRA is a random-access iterator that when dereferenced, always
* returns the supplied constant of type \p OutputType.
*
* \tparam OutputType The value type of this iterator
*/
template <typename OutputType>
class ConstantIteratorRA
{
public:
#ifndef DOXYGEN_SHOULD_SKIP_THIS // Do not document
typedef ConstantIteratorRA self_type;
typedef OutputType value_type;
typedef OutputType reference;
typedef OutputType* pointer;
typedef std::random_access_iterator_tag iterator_category;
typedef int difference_type;
#endif // DOXYGEN_SHOULD_SKIP_THIS
private:
OutputType val;
public:
/// Constructor
__host__ __device__ __forceinline__ ConstantIteratorRA(
const OutputType &val) ///< Constant value for the iterator instance to report
:
val(val)
{}
#ifndef DOXYGEN_SHOULD_SKIP_THIS // Do not document
__host__ __device__ __forceinline__ self_type operator++()
{
self_type i = *this;
return i;
}
__host__ __device__ __forceinline__ self_type operator++(int junk)
{
return *this;
}
__host__ __device__ __forceinline__ reference operator*()
{
return val;
}
template <typename SizeT>
__host__ __device__ __forceinline__ self_type operator+(SizeT n)
{
return ConstantIteratorRA(val);
}
template <typename SizeT>
__host__ __device__ __forceinline__ self_type operator-(SizeT n)
{
return ConstantIteratorRA(val);
}
template <typename SizeT>
__host__ __device__ __forceinline__ reference operator[](SizeT n)
{
return ConstantIteratorRA(val);
}
__host__ __device__ __forceinline__ pointer operator->()
{
return &val;
}
__host__ __device__ __forceinline__ bool operator==(const self_type& rhs)
{
return (val == rhs.val);
}
__host__ __device__ __forceinline__ bool operator!=(const self_type& rhs)
{
return (val != rhs.val);
}
#endif // DOXYGEN_SHOULD_SKIP_THIS
};
/**
* \brief A simple random-access transform iterator for applying a transformation operator.
*
* \par Overview
* TransformIteratorRA is a random-access iterator that wraps both a native
* device pointer of type <tt>InputType*</tt> and a unary conversion functor of
* type \p ConversionOp. \p OutputType references are made by pulling \p InputType
* values through the \p ConversionOp instance.
*
* \tparam InputType The value type of the pointer being wrapped
* \tparam ConversionOp Unary functor type for mapping objects of type \p InputType to type \p OutputType. Must have member <tt>OutputType operator()(const InputType &datum)</tt>.
* \tparam OutputType The value type of this iterator
*/
template <typename OutputType, typename ConversionOp, typename InputType>
class TransformIteratorRA
{
public:
#ifndef DOXYGEN_SHOULD_SKIP_THIS // Do not document
typedef TransformIteratorRA self_type;
typedef OutputType value_type;
typedef OutputType reference;
typedef OutputType* pointer;
typedef std::random_access_iterator_tag iterator_category;
typedef int difference_type;
#endif // DOXYGEN_SHOULD_SKIP_THIS
private:
ConversionOp conversion_op;
InputType* ptr;
public:
/**
* \brief Constructor
* @param ptr Native pointer to wrap
* @param conversion_op Binary transformation functor
*/
__host__ __device__ __forceinline__ TransformIteratorRA(InputType* ptr, ConversionOp conversion_op) :
conversion_op(conversion_op),
ptr(ptr) {}
#ifndef DOXYGEN_SHOULD_SKIP_THIS // Do not document
__host__ __device__ __forceinline__ self_type operator++()
{
self_type i = *this;
ptr++;
return i;
}
__host__ __device__ __forceinline__ self_type operator++(int junk)
{
ptr++;
return *this;
}
__host__ __device__ __forceinline__ reference operator*()
{
return conversion_op(*ptr);
}
template <typename SizeT>
__host__ __device__ __forceinline__ self_type operator+(SizeT n)
{
TransformIteratorRA retval(ptr + n, conversion_op);
return retval;
}
template <typename SizeT>
__host__ __device__ __forceinline__ self_type operator-(SizeT n)
{
TransformIteratorRA retval(ptr - n, conversion_op);
return retval;
}
template <typename SizeT>
__host__ __device__ __forceinline__ reference operator[](SizeT n)
{
return conversion_op(ptr[n]);
}
__host__ __device__ __forceinline__ pointer operator->()
{
return &conversion_op(*ptr);
}
__host__ __device__ __forceinline__ bool operator==(const self_type& rhs)
{
return (ptr == rhs.ptr);
}
__host__ __device__ __forceinline__ bool operator!=(const self_type& rhs)
{
return (ptr != rhs.ptr);
}
#endif // DOXYGEN_SHOULD_SKIP_THIS
};
/**
* \brief A simple random-access iterator for loading primitive values through texture cache.
*
* \par Overview
* TexIteratorRA is a random-access iterator that wraps a native
* device pointer of type <tt>T*</tt>. References made through TexIteratorRA
* causes values to be pulled through texture cache.
*
* \par Usage Considerations
* - Can only be used with primitive types (e.g., \p char, \p int, \p float), with the exception of \p double
* - Only one TexIteratorRA or TexIteratorRA of a certain \p InputType can be bound at any given time (per host thread)
*
* \tparam InputType The value type of the pointer being wrapped
* \tparam ConversionOp Unary functor type for mapping objects of type \p InputType to type \p OutputType. Must have member <tt>OutputType operator()(const InputType &datum)</tt>.
* \tparam OutputType The value type of this iterator
*/
template <typename T>
class TexIteratorRA
{
public:
#ifndef DOXYGEN_SHOULD_SKIP_THIS // Do not document
typedef TexIteratorRA self_type;
typedef T value_type;
typedef T reference;
typedef T* pointer;
typedef std::random_access_iterator_tag iterator_category;
typedef int difference_type;
#endif // DOXYGEN_SHOULD_SKIP_THIS
/// Tag identifying iterator type as being texture-bindable
typedef void TexBindingTag;
private:
T* ptr;
size_t tex_align_offset;
cudaTextureObject_t tex_obj;
public:
/**
* \brief Constructor
*/
__host__ __device__ __forceinline__ TexIteratorRA()
:
ptr(NULL),
tex_align_offset(0),
tex_obj(0)
{}
/// \brief Bind iterator to texture reference
cudaError_t BindTexture(
T *ptr, ///< Native pointer to wrap that is aligned to cudaDeviceProp::textureAlignment
size_t bytes, ///< Number of items
size_t tex_align_offset = 0) ///< Offset (in items) from ptr denoting the position of the iterator
{
this->ptr = ptr;
this->tex_align_offset = tex_align_offset;
int ptx_version;
cudaError_t error = cudaSuccess;
if (CubDebug(error = PtxVersion(ptx_version))) return error;
if (ptx_version >= 300)
{
// Use texture object
cudaChannelFormatDesc channel_desc = cudaCreateChannelDesc<T>();
cudaResourceDesc res_desc;
cudaTextureDesc tex_desc;
memset(&res_desc, 0, sizeof(cudaResourceDesc));
memset(&tex_desc, 0, sizeof(cudaTextureDesc));
res_desc.resType = cudaResourceTypeLinear;
res_desc.res.linear.devPtr = ptr;
res_desc.res.linear.desc = channel_desc;
res_desc.res.linear.sizeInBytes = bytes;
tex_desc.readMode = cudaReadModeElementType;
return cudaCreateTextureObject(&tex_obj, &res_desc, &tex_desc, NULL);
}
else
{
// Use texture reference
return TexIteratorRef<T>::BindTexture(ptr);
}
}
/// \brief Unbind iterator to texture reference
cudaError_t UnbindTexture()
{
int ptx_version;
cudaError_t error = cudaSuccess;
if (CubDebug(error = PtxVersion(ptx_version))) return error;
if (ptx_version < 300)
{
// Use texture reference
return TexIteratorRef<T>::UnbindTexture();
}
else
{
// Use texture object
return cudaDestroyTextureObject(tex_obj);
}
}
#ifndef DOXYGEN_SHOULD_SKIP_THIS // Do not document
__host__ __device__ __forceinline__ self_type operator++()
{
self_type i = *this;
ptr++;
tex_align_offset++;
return i;
}
__host__ __device__ __forceinline__ self_type operator++(int junk)
{
ptr++;
tex_align_offset++;
return *this;
}
__host__ __device__ __forceinline__ reference operator*()
{
#if (CUB_PTX_ARCH == 0)
// Simply dereference the pointer on the host
return *ptr;
#elif (CUB_PTX_ARCH < 300)
// Use the texture reference
return tex1Dfetch(TexIteratorRef<T>::ref, tex_align_offset);
#else
// Use the texture object
return conversion_op(tex1Dfetch<InputType>(tex_obj, tex_align_offset));
#endif
}
template <typename SizeT>
__host__ __device__ __forceinline__ self_type operator+(SizeT n)
{
TexIteratorRA retval;
retval.ptr = ptr + n;
retval.tex_align_offset = tex_align_offset + n;
return retval;
}
template <typename SizeT>
__host__ __device__ __forceinline__ self_type operator-(SizeT n)
{
TexIteratorRA retval;
retval.ptr = ptr - n;
retval.tex_align_offset = tex_align_offset - n;
return retval;
}
template <typename SizeT>
__host__ __device__ __forceinline__ reference operator[](SizeT n)
{
#if (CUB_PTX_ARCH == 0)
// Simply dereference the pointer on the host
return ptr[n];
#elif (CUB_PTX_ARCH < 300)
// Use the texture reference
return tex1Dfetch(TexIteratorRef<T>::ref, tex_align_offset + n);
#else
// Use the texture object
return conversion_op(tex1Dfetch<InputType>(tex_obj, tex_align_offset + n));
#endif
}
__host__ __device__ __forceinline__ pointer operator->()
{
#if (CUB_PTX_ARCH == 0)
// Simply dereference the pointer on the host
return &(*ptr);
#elif (CUB_PTX_ARCH < 300)
// Use the texture reference
return &(tex1Dfetch(TexIteratorRef<T>::ref, tex_align_offset));
#else
// Use the texture object
return conversion_op(tex1Dfetch<InputType>(tex_obj, tex_align_offset));
#endif
}
__host__ __device__ __forceinline__ bool operator==(const self_type& rhs)
{
return (ptr == rhs.ptr);
}
__host__ __device__ __forceinline__ bool operator!=(const self_type& rhs)
{
return (ptr != rhs.ptr);
}
#endif // DOXYGEN_SHOULD_SKIP_THIS
};
/**
* \brief A simple random-access transform iterator for loading primitive values through texture cache and and subsequently applying a transformation operator.
*
* \par Overview
* TexTransformIteratorRA is a random-access iterator that wraps both a native
* device pointer of type <tt>InputType*</tt> and a unary conversion functor of
* type \p ConversionOp. \p OutputType references are made by pulling \p InputType
* values through the texture cache and then transformed them using the
* \p ConversionOp instance.
*
* \par Usage Considerations
* - Can only be used with primitive types (e.g., \p char, \p int, \p float), with the exception of \p double
* - Only one TexIteratorRA or TexTransformIteratorRA of a certain \p InputType can be bound at any given time (per host thread)
*
* \tparam InputType The value type of the pointer being wrapped
* \tparam ConversionOp Unary functor type for mapping objects of type \p InputType to type \p OutputType. Must have member <tt>OutputType operator()(const InputType &datum)</tt>.
* \tparam OutputType The value type of this iterator
*/
template <typename OutputType, typename ConversionOp, typename InputType>
class TexTransformIteratorRA
{
public:
#ifndef DOXYGEN_SHOULD_SKIP_THIS // Do not document
typedef TexTransformIteratorRA self_type;
typedef OutputType value_type;
typedef OutputType reference;
typedef OutputType* pointer;
typedef std::random_access_iterator_tag iterator_category;
typedef int difference_type;
#endif // DOXYGEN_SHOULD_SKIP_THIS
/// Tag identifying iterator type as being texture-bindable
typedef void TexBindingTag;
private:
ConversionOp conversion_op;
InputType* ptr;
size_t tex_align_offset;
cudaTextureObject_t tex_obj;
public:
/**
* \brief Constructor
*/
TexTransformIteratorRA(
ConversionOp conversion_op) ///< Binary transformation functor
:
conversion_op(conversion_op),
ptr(NULL),
tex_align_offset(0),
tex_obj(0)
{}
/// \brief Bind iterator to texture reference
cudaError_t BindTexture(
InputType* ptr, ///< Native pointer to wrap that is aligned to cudaDeviceProp::textureAlignment
size_t bytes, ///< Number of items
size_t tex_align_offset = 0) ///< Offset (in items) from ptr denoting the position of the iterator
{
this->ptr = ptr;
this->tex_align_offset = tex_align_offset;
int ptx_version;
cudaError_t error = cudaSuccess;
if (CubDebug(error = PtxVersion(ptx_version))) return error;
if (ptx_version >= 300)
{
// Use texture object
cudaChannelFormatDesc channel_desc = cudaCreateChannelDesc<InputType>();
cudaResourceDesc res_desc;
cudaTextureDesc tex_desc;
memset(&res_desc, 0, sizeof(cudaResourceDesc));
memset(&tex_desc, 0, sizeof(cudaTextureDesc));
res_desc.resType = cudaResourceTypeLinear;
res_desc.res.linear.devPtr = ptr;
res_desc.res.linear.desc = channel_desc;
res_desc.res.linear.sizeInBytes = bytes;
tex_desc.readMode = cudaReadModeElementType;
return cudaCreateTextureObject(&tex_obj, &res_desc, &tex_desc, NULL);
}
else
{
// Use texture reference
return TexIteratorRef<InputType>::BindTexture(ptr);
}
}
/// \brief Unbind iterator to texture reference
cudaError_t UnbindTexture()
{
int ptx_version;
cudaError_t error = cudaSuccess;
if (CubDebug(error = PtxVersion(ptx_version))) return error;
if (ptx_version >= 300)
{
// Use texture object
return cudaDestroyTextureObject(tex_obj);
}
else
{
// Use texture reference
return TexIteratorRef<InputType>::UnbindTexture();
}
}
#ifndef DOXYGEN_SHOULD_SKIP_THIS // Do not document
__host__ __device__ __forceinline__ self_type operator++()
{
self_type i = *this;
ptr++;
tex_align_offset++;
return i;
}
__host__ __device__ __forceinline__ self_type operator++(int junk)
{
ptr++;
tex_align_offset++;
return *this;
}
__host__ __device__ __forceinline__ reference operator*()
{
#if (CUB_PTX_ARCH == 0)
// Simply dereference the pointer on the host
return conversion_op(*ptr);
#elif (CUB_PTX_ARCH < 300)
// Use the texture reference
return conversion_op(tex1Dfetch(TexIteratorRef<InputType>::ref, tex_align_offset));
#else
// Use the texture object
return conversion_op(tex1Dfetch<InputType>(tex_obj, tex_align_offset));
#endif
}
template <typename SizeT>
__host__ __device__ __forceinline__ self_type operator+(SizeT n)
{
TexTransformIteratorRA retval(conversion_op);
retval.ptr = ptr + n;
retval.tex_align_offset = tex_align_offset + n;
return retval;
}
template <typename SizeT>
__host__ __device__ __forceinline__ self_type operator-(SizeT n)
{
TexTransformIteratorRA retval(conversion_op);
retval.ptr = ptr - n;
retval.tex_align_offset = tex_align_offset - n;
return retval;
}
template <typename SizeT>
__host__ __device__ __forceinline__ reference operator[](SizeT n)
{
#if (CUB_PTX_ARCH == 0)
// Simply dereference the pointer on the host
return conversion_op(ptr[n]);
#elif (CUB_PTX_ARCH < 300)
// Use the texture reference
return conversion_op(tex1Dfetch(TexIteratorRef<InputType>::ref, tex_align_offset + n));
#else
// Use the texture object
return conversion_op(tex1Dfetch<InputType>(tex_obj, tex_align_offset + n));
#endif
}
__host__ __device__ __forceinline__ pointer operator->()
{
#if (CUB_PTX_ARCH == 0)
// Simply dereference the pointer on the host
return &conversion_op(*ptr);
#elif (CUB_PTX_ARCH < 300)
// Use the texture reference
return &conversion_op(tex1Dfetch(TexIteratorRef<InputType>::ref, tex_align_offset));
#else
// Use the texture object
return &conversion_op(tex1Dfetch<InputType>(tex_obj, tex_align_offset));
#endif
}
__host__ __device__ __forceinline__ bool operator==(const self_type& rhs)
{
return (ptr == rhs.ptr);
}
__host__ __device__ __forceinline__ bool operator!=(const self_type& rhs)
{
return (ptr != rhs.ptr);
}
#endif // DOXYGEN_SHOULD_SKIP_THIS
};
/** @} */ // end group UtilModule
} // CUB namespace
CUB_NS_POSTFIX // Optional outer namespace(s)