lammps/lib/atc/ImplicitSolveOperator.cpp

161 lines
5.3 KiB
C++

// Header file for this class
#include "ImplicitSolveOperator.h"
// Other ATC includes
#include "ATC_Coupling.h"
#include "FE_Engine.h"
#include "PhysicsModel.h"
#include "PrescribedDataManager.h"
namespace ATC {
// --------------------------------------------------------------------
// --------------------------------------------------------------------
// ImplicitSolveOperator
// --------------------------------------------------------------------
// --------------------------------------------------------------------
ImplicitSolveOperator::
ImplicitSolveOperator(ATC_Coupling * atc,
/*const*/ FE_Engine * feEngine,
const PhysicsModel * physicsModel)
: atc_(atc),
feEngine_(feEngine),
physicsModel_(physicsModel)
{
// Nothing else to do here
}
// --------------------------------------------------------------------
// --------------------------------------------------------------------
// FieldImplicitSolveOperator
// --------------------------------------------------------------------
// --------------------------------------------------------------------
FieldImplicitSolveOperator::
FieldImplicitSolveOperator(ATC_Coupling * atc,
/*const*/ FE_Engine * feEngine,
FIELDS & fields,
const FieldName fieldName,
const Array2D< bool > & rhsMask,
const PhysicsModel * physicsModel,
double simTime,
double dt,
double alpha)
: ImplicitSolveOperator(atc, feEngine, physicsModel),
fieldName_(fieldName),
fields_(fields), // ref to fields
time_(simTime),
dt_(dt),
alpha_(alpha),
epsilon0_(1.0e-8)
{
// find field associated with ODE
rhsMask_.reset(NUM_FIELDS,NUM_FLUX);
rhsMask_ = false;
for (int i = 0; i < rhsMask.nCols(); i++) {
rhsMask_(fieldName_,i) = rhsMask(fieldName_,i);
}
massMask_.reset(1);
massMask_(0) = fieldName_;
// Save off current field
TnVect_ = column(fields_[fieldName_].quantity(),0);
// Allocate vectors for fields and rhs
int nNodes = atc_->num_nodes();
// copy fields
fieldsNp1_ = fields_;
// size rhs
int dof = fields_[fieldName_].nCols();
RnMap_ [fieldName_].reset(nNodes,dof);
RnpMap_[fieldName_].reset(nNodes,dof);
// Compute the RHS vector R(T^n)
// Set BCs on Rn, multiply by inverse mass and then extract its vector
atc_->compute_rhs_vector(rhsMask_, fields_, RnMap_,
FULL_DOMAIN, physicsModel_);
DENS_MAT & Rn = RnMap_[fieldName_].set_quantity();
atc_->prescribed_data_manager()
->set_fixed_dfield(time_, fieldName_, Rn);
atc_->apply_inverse_mass_matrix(Rn,fieldName_);
RnVect_ = column(Rn,0);
}
// --------------------------------------------------------------------
// operator *(Vector)
// --------------------------------------------------------------------
DENS_VEC
FieldImplicitSolveOperator::operator * (DENS_VEC x) const
{
// This method uses a matrix-free approach to approximate the
// multiplication by matrix A in the matrix equation Ax=b, where the
// matrix equation results from an implicit treatment of the
// fast field solve for the Two Temperature Model. In
// brief, if the ODE for the fast field can be written:
//
// dT/dt = R(T)
//
// A generalized discretization can be written:
//
// 1/dt * (T^n+1 - T^n) = alpha * R(T^n+1) + (1-alpha) * R(T^n)
//
// Taylor expanding the R(T^n+1) term and rearranging gives the
// equation to be solved for dT at each timestep:
//
// [1 - dt * alpha * dR/dT] * dT = dt * R(T^n)
//
// The operator defined in this method computes the left-hand side,
// given a vector dT. It uses a finite difference, matrix-free
// approximation of dR/dT * dT, giving:
//
// [1 - dt * alpha * dR/dT] * dT = dt * R(T^n)
// ~= dT - dt*alpha/epsilon * ( R(T^n + epsilon*dT) - R(T^n) )
//
// Compute epsilon
double epsilon = (x.norm() > 0.0) ? epsilon0_ * TnVect_.norm()/x.norm() : epsilon0_;
// Compute incremented vector = T + epsilon*dT
fieldsNp1_[fieldName_] = TnVect_ + epsilon * x;
// Evaluate R(b)
atc_->compute_rhs_vector(rhsMask_, fieldsNp1_, RnpMap_,
FULL_DOMAIN, physicsModel_);
DENS_MAT & Rnp = RnpMap_[fieldName_].set_quantity();
atc_->prescribed_data_manager()
->set_fixed_dfield(time_, fieldName_, Rnp);
atc_->apply_inverse_mass_matrix(Rnp,fieldName_);
RnpVect_ = column(Rnp,0);
// Compute full left hand side and return it
DENS_VEC Ax = x - dt_ * alpha_ / epsilon * (RnpVect_ - RnVect_);
return Ax;
}
// --------------------------------------------------------------------
// rhs
// --------------------------------------------------------------------
DENS_VEC
FieldImplicitSolveOperator::rhs()
{
// Return dt * R(T^n)
return dt_ * RnVect_;
}
// --------------------------------------------------------------------
// preconditioner
// --------------------------------------------------------------------
DIAG_MAT
FieldImplicitSolveOperator::preconditioner(FIELDS & fields)
{
// Just create and return identity matrix
int nNodes = atc_->num_nodes();
DENS_VEC ones(nNodes);
ones = 1.0;
DIAG_MAT identity(ones);
return identity;
}
} // namespace ATC