lammps/lib/gpu/lal_ellipsoid_extra.h

573 lines
25 KiB
C

// **************************************************************************
// ellipsoid_extra.h
// -------------------
// W. Michael Brown (ORNL)
//
// Device code for Ellipsoid math routines
//
// __________________________________________________________________________
// This file is part of the LAMMPS Accelerator Library (LAMMPS_AL)
// __________________________________________________________________________
//
// begin :
// email : brownw@ornl.gov
// ***************************************************************************/
#ifndef LAL_ELLIPSOID_EXTRA_H
#define LAL_ELLIPSOID_EXTRA_H
enum{SPHERE_SPHERE,SPHERE_ELLIPSE,ELLIPSE_SPHERE,ELLIPSE_ELLIPSE};
#ifdef NV_KERNEL
#include "lal_aux_fun1.h"
#ifndef _DOUBLE_DOUBLE
texture<float4> pos_tex, quat_tex;
#else
texture<int4,1> pos_tex, quat_tex;
#endif
#else
#define pos_tex x_
#define quat_tex qif
#endif
#define nbor_info_e(nbor_mem, nbor_stride, t_per_atom, ii, offset, \
i, numj, stride, list_end, nbor) \
nbor=nbor_mem+ii; \
i=*nbor; \
nbor+=nbor_stride; \
numj=*nbor; \
nbor+=nbor_stride; \
list_end=nbor+fast_mul(nbor_stride,numj); \
nbor+=fast_mul(offset,nbor_stride); \
stride=fast_mul(t_per_atom,nbor_stride);
#if (ARCH < 300)
#define store_answers_t(f, tor, energy, virial, ii, astride, tid, \
t_per_atom, offset, eflag, vflag, ans, engv) \
if (t_per_atom>1) { \
__local acctyp red_acc[7][BLOCK_PAIR]; \
red_acc[0][tid]=f.x; \
red_acc[1][tid]=f.y; \
red_acc[2][tid]=f.z; \
red_acc[3][tid]=tor.x; \
red_acc[4][tid]=tor.y; \
red_acc[5][tid]=tor.z; \
for (unsigned int s=t_per_atom/2; s>0; s>>=1) { \
if (offset < s) { \
for (int r=0; r<6; r++) \
red_acc[r][tid] += red_acc[r][tid+s]; \
} \
} \
f.x=red_acc[0][tid]; \
f.y=red_acc[1][tid]; \
f.z=red_acc[2][tid]; \
tor.x=red_acc[3][tid]; \
tor.y=red_acc[4][tid]; \
tor.z=red_acc[5][tid]; \
if (eflag>0 || vflag>0) { \
for (int r=0; r<6; r++) \
red_acc[r][tid]=virial[r]; \
red_acc[6][tid]=energy; \
for (unsigned int s=t_per_atom/2; s>0; s>>=1) { \
if (offset < s) { \
for (int r=0; r<7; r++) \
red_acc[r][tid] += red_acc[r][tid+s]; \
} \
} \
for (int r=0; r<6; r++) \
virial[r]=red_acc[r][tid]; \
energy=red_acc[6][tid]; \
} \
} \
if (offset==0) { \
__global acctyp *ap1=engv+ii; \
if (eflag>0) { \
*ap1=energy; \
ap1+=astride; \
} \
if (vflag>0) { \
for (int i=0; i<6; i++) { \
*ap1=virial[i]; \
ap1+=astride; \
} \
} \
ans[ii]=f; \
ans[ii+astride]=tor; \
}
#define acc_answers(f, energy, virial, ii, inum, tid, t_per_atom, offset, \
eflag, vflag, ans, engv) \
if (t_per_atom>1) { \
__local acctyp red_acc[6][BLOCK_PAIR]; \
red_acc[0][tid]=f.x; \
red_acc[1][tid]=f.y; \
red_acc[2][tid]=f.z; \
red_acc[3][tid]=energy; \
for (unsigned int s=t_per_atom/2; s>0; s>>=1) { \
if (offset < s) { \
for (int r=0; r<4; r++) \
red_acc[r][tid] += red_acc[r][tid+s]; \
} \
} \
f.x=red_acc[0][tid]; \
f.y=red_acc[1][tid]; \
f.z=red_acc[2][tid]; \
energy=red_acc[3][tid]; \
if (vflag>0) { \
for (int r=0; r<6; r++) \
red_acc[r][tid]=virial[r]; \
for (unsigned int s=t_per_atom/2; s>0; s>>=1) { \
if (offset < s) { \
for (int r=0; r<6; r++) \
red_acc[r][tid] += red_acc[r][tid+s]; \
} \
} \
for (int r=0; r<6; r++) \
virial[r]=red_acc[r][tid]; \
} \
} \
if (offset==0) { \
engv+=ii; \
if (eflag>0) { \
*engv+=energy; \
engv+=inum; \
} \
if (vflag>0) { \
for (int i=0; i<6; i++) { \
*engv+=virial[i]; \
engv+=inum; \
} \
} \
acctyp4 old=ans[ii]; \
old.x+=f.x; \
old.y+=f.y; \
old.z+=f.z; \
ans[ii]=old; \
}
#else
#define store_answers_t(f, tor, energy, virial, ii, astride, tid, \
t_per_atom, offset, eflag, vflag, ans, engv) \
if (t_per_atom>1) { \
for (unsigned int s=t_per_atom/2; s>0; s>>=1) { \
f.x += shfl_xor(f.x, s, t_per_atom); \
f.y += shfl_xor(f.y, s, t_per_atom); \
f.z += shfl_xor(f.z, s, t_per_atom); \
tor.x += shfl_xor(tor.x, s, t_per_atom); \
tor.y += shfl_xor(tor.y, s, t_per_atom); \
tor.z += shfl_xor(tor.z, s, t_per_atom); \
energy += shfl_xor(energy, s, t_per_atom); \
} \
if (vflag>0) { \
for (unsigned int s=t_per_atom/2; s>0; s>>=1) { \
for (int r=0; r<6; r++) \
virial[r] += shfl_xor(virial[r], s, t_per_atom); \
} \
} \
} \
if (offset==0) { \
__global acctyp *ap1=engv+ii; \
if (eflag>0) { \
*ap1=energy; \
ap1+=astride; \
} \
if (vflag>0) { \
for (int i=0; i<6; i++) { \
*ap1=virial[i]; \
ap1+=astride; \
} \
} \
ans[ii]=f; \
ans[ii+astride]=tor; \
}
#define acc_answers(f, energy, virial, ii, inum, tid, t_per_atom, offset, \
eflag, vflag, ans, engv) \
if (t_per_atom>1) { \
for (unsigned int s=t_per_atom/2; s>0; s>>=1) { \
f.x += shfl_xor(f.x, s, t_per_atom); \
f.y += shfl_xor(f.y, s, t_per_atom); \
f.z += shfl_xor(f.z, s, t_per_atom); \
energy += shfl_xor(energy, s, t_per_atom); \
} \
if (vflag>0) { \
for (unsigned int s=t_per_atom/2; s>0; s>>=1) { \
for (int r=0; r<6; r++) \
virial[r] += shfl_xor(virial[r], s, t_per_atom); \
} \
} \
} \
if (offset==0) { \
engv+=ii; \
if (eflag>0) { \
*engv+=energy; \
engv+=inum; \
} \
if (vflag>0) { \
for (int i=0; i<6; i++) { \
*engv+=virial[i]; \
engv+=inum; \
} \
} \
acctyp4 old=ans[ii]; \
old.x+=f.x; \
old.y+=f.y; \
old.z+=f.z; \
ans[ii]=old; \
}
#endif
/* ----------------------------------------------------------------------
dot product of 2 vectors
------------------------------------------------------------------------- */
ucl_inline numtyp gpu_dot3(const numtyp *v1, const numtyp *v2)
{
return v1[0]*v2[0]+v1[1]*v2[1]+v1[2]*v2[2];
};
/* ----------------------------------------------------------------------
cross product of 2 vectors
------------------------------------------------------------------------- */
ucl_inline void gpu_cross3(const numtyp *v1, const numtyp *v2, numtyp *ans)
{
ans[0] = v1[1]*v2[2]-v1[2]*v2[1];
ans[1] = v1[2]*v2[0]-v1[0]*v2[2];
ans[2] = v1[0]*v2[1]-v1[1]*v2[0];
};
/* ----------------------------------------------------------------------
determinant of a matrix
------------------------------------------------------------------------- */
ucl_inline numtyp gpu_det3(const numtyp m[9])
{
numtyp ans = m[0]*m[4]*m[8] - m[0]*m[5]*m[7] -
m[3]*m[1]*m[8] + m[3]*m[2]*m[7] +
m[6]*m[1]*m[5] - m[6]*m[2]*m[4];
return ans;
};
/* ----------------------------------------------------------------------
diagonal matrix times a full matrix
------------------------------------------------------------------------- */
ucl_inline void gpu_diag_times3(const numtyp4 shape, const numtyp m[9],
numtyp ans[9])
{
ans[0] = shape.x*m[0];
ans[1] = shape.x*m[1];
ans[2] = shape.x*m[2];
ans[3] = shape.y*m[3];
ans[4] = shape.y*m[4];
ans[5] = shape.y*m[5];
ans[6] = shape.z*m[6];
ans[7] = shape.z*m[7];
ans[8] = shape.z*m[8];
};
/* ----------------------------------------------------------------------
add two matrices
------------------------------------------------------------------------- */
ucl_inline void gpu_plus3(const numtyp m[9], const numtyp m2[9], numtyp ans[9])
{
ans[0] = m[0]+m2[0];
ans[1] = m[1]+m2[1];
ans[2] = m[2]+m2[2];
ans[3] = m[3]+m2[3];
ans[4] = m[4]+m2[4];
ans[5] = m[5]+m2[5];
ans[6] = m[6]+m2[6];
ans[7] = m[7]+m2[7];
ans[8] = m[8]+m2[8];
};
/* ----------------------------------------------------------------------
multiply the transpose of mat1 times mat2
------------------------------------------------------------------------- */
ucl_inline void gpu_transpose_times3(const numtyp m[9], const numtyp m2[9],
numtyp ans[9])
{
ans[0] = m[0]*m2[0]+m[3]*m2[3]+m[6]*m2[6];
ans[1] = m[0]*m2[1]+m[3]*m2[4]+m[6]*m2[7];
ans[2] = m[0]*m2[2]+m[3]*m2[5]+m[6]*m2[8];
ans[3] = m[1]*m2[0]+m[4]*m2[3]+m[7]*m2[6];
ans[4] = m[1]*m2[1]+m[4]*m2[4]+m[7]*m2[7];
ans[5] = m[1]*m2[2]+m[4]*m2[5]+m[7]*m2[8];
ans[6] = m[2]*m2[0]+m[5]*m2[3]+m[8]*m2[6];
ans[7] = m[2]*m2[1]+m[5]*m2[4]+m[8]*m2[7];
ans[8] = m[2]*m2[2]+m[5]*m2[5]+m[8]*m2[8];
};
/* ----------------------------------------------------------------------
row vector times matrix
------------------------------------------------------------------------- */
ucl_inline void gpu_row_times3(const numtyp *v, const numtyp m[9], numtyp *ans)
{
ans[0] = m[0]*v[0]+v[1]*m[3]+v[2]*m[6];
ans[1] = v[0]*m[1]+m[4]*v[1]+v[2]*m[7];
ans[2] = v[0]*m[2]+v[1]*m[5]+m[8]*v[2];
};
/* ----------------------------------------------------------------------
solve Ax = b or M ans = v
use gaussian elimination & partial pivoting on matrix
error_flag set to 2 if bad matrix inversion attempted
------------------------------------------------------------------------- */
ucl_inline void gpu_mldivide3(const numtyp m[9], const numtyp *v, numtyp *ans,
__global int *error_flag)
{
// create augmented matrix for pivoting
numtyp aug[12], t;
aug[3] = v[0];
aug[0] = m[0];
aug[1] = m[1];
aug[2] = m[2];
aug[7] = v[1];
aug[4] = m[3];
aug[5] = m[4];
aug[6] = m[5];
aug[11] = v[2];
aug[8] = m[6];
aug[9] = m[7];
aug[10] = m[8];
if (ucl_abs(aug[4]) > ucl_abs(aug[0])) {
numtyp swapt;
swapt=aug[0]; aug[0]=aug[4]; aug[4]=swapt;
swapt=aug[1]; aug[1]=aug[5]; aug[5]=swapt;
swapt=aug[2]; aug[2]=aug[6]; aug[6]=swapt;
swapt=aug[3]; aug[3]=aug[7]; aug[7]=swapt;
}
if (ucl_abs(aug[8]) > ucl_abs(aug[0])) {
numtyp swapt;
swapt=aug[0]; aug[0]=aug[8]; aug[8]=swapt;
swapt=aug[1]; aug[1]=aug[9]; aug[9]=swapt;
swapt=aug[2]; aug[2]=aug[10]; aug[10]=swapt;
swapt=aug[3]; aug[3]=aug[11]; aug[11]=swapt;
}
if (aug[0] != (numtyp)0.0) {
if (0!=0) {
numtyp swapt;
swapt=aug[0]; aug[0]=aug[0]; aug[0]=swapt;
swapt=aug[1]; aug[1]=aug[1]; aug[1]=swapt;
swapt=aug[2]; aug[2]=aug[2]; aug[2]=swapt;
swapt=aug[3]; aug[3]=aug[3]; aug[3]=swapt;
}
} else if (aug[4] != (numtyp)0.0) {
if (1!=0) {
numtyp swapt;
swapt=aug[0]; aug[0]=aug[4]; aug[4]=swapt;
swapt=aug[1]; aug[1]=aug[5]; aug[5]=swapt;
swapt=aug[2]; aug[2]=aug[6]; aug[6]=swapt;
swapt=aug[3]; aug[3]=aug[7]; aug[7]=swapt;
}
} else if (aug[8] != (numtyp)0.0) {
if (2!=0) {
numtyp swapt;
swapt=aug[0]; aug[0]=aug[8]; aug[8]=swapt;
swapt=aug[1]; aug[1]=aug[9]; aug[9]=swapt;
swapt=aug[2]; aug[2]=aug[10]; aug[10]=swapt;
swapt=aug[3]; aug[3]=aug[11]; aug[11]=swapt;
}
} else
*error_flag=2;
t = aug[4]/aug[0];
aug[5]-=t*aug[1];
aug[6]-=t*aug[2];
aug[7]-=t*aug[3];
t = aug[8]/aug[0];
aug[9]-=t*aug[1];
aug[10]-=t*aug[2];
aug[11]-=t*aug[3];
if (ucl_abs(aug[9]) > ucl_abs(aug[5])) {
numtyp swapt;
swapt=aug[4]; aug[4]=aug[8]; aug[8]=swapt;
swapt=aug[5]; aug[5]=aug[9]; aug[9]=swapt;
swapt=aug[6]; aug[6]=aug[10]; aug[10]=swapt;
swapt=aug[7]; aug[7]=aug[11]; aug[11]=swapt;
}
if (aug[5] != (numtyp)0.0) {
if (1!=1) {
numtyp swapt;
swapt=aug[4]; aug[4]=aug[4]; aug[4]=swapt;
swapt=aug[5]; aug[5]=aug[5]; aug[5]=swapt;
swapt=aug[6]; aug[6]=aug[6]; aug[6]=swapt;
swapt=aug[7]; aug[7]=aug[7]; aug[7]=swapt;
}
} else if (aug[9] != (numtyp)0.0) {
if (2!=1) {
numtyp swapt;
swapt=aug[4]; aug[4]=aug[8]; aug[8]=swapt;
swapt=aug[5]; aug[5]=aug[9]; aug[9]=swapt;
swapt=aug[6]; aug[6]=aug[10]; aug[10]=swapt;
swapt=aug[7]; aug[7]=aug[11]; aug[11]=swapt;
}
}
t = aug[9]/aug[5];
aug[10]-=t*aug[6];
aug[11]-=t*aug[7];
if (aug[10] == (numtyp)0.0)
*error_flag=2;
ans[2] = aug[11]/aug[10];
t = (numtyp)0.0;
t += aug[6]*ans[2];
ans[1] = (aug[7]-t) / aug[5];
t = (numtyp)0.0;
t += aug[1]*ans[1];
t += aug[2]*ans[2];
ans[0] = (aug[3]-t) / aug[0];
};
/* ----------------------------------------------------------------------
compute rotation matrix from quaternion conjugate
quat = [w i j k]
------------------------------------------------------------------------- */
ucl_inline void gpu_quat_to_mat_trans(__global const numtyp4 *qif, const int qi,
numtyp mat[9])
{
numtyp4 q; fetch4(q,qi,quat_tex);
numtyp w2 = q.x*q.x;
numtyp i2 = q.y*q.y;
numtyp j2 = q.z*q.z;
numtyp k2 = q.w*q.w;
numtyp twoij = (numtyp)2.0*q.y*q.z;
numtyp twoik = (numtyp)2.0*q.y*q.w;
numtyp twojk = (numtyp)2.0*q.z*q.w;
numtyp twoiw = (numtyp)2.0*q.y*q.x;
numtyp twojw = (numtyp)2.0*q.z*q.x;
numtyp twokw = (numtyp)2.0*q.w*q.x;
mat[0] = w2+i2-j2-k2;
mat[3] = twoij-twokw;
mat[6] = twojw+twoik;
mat[1] = twoij+twokw;
mat[4] = w2-i2+j2-k2;
mat[7] = twojk-twoiw;
mat[2] = twoik-twojw;
mat[5] = twojk+twoiw;
mat[8] = w2-i2-j2+k2;
};
/* ----------------------------------------------------------------------
transposed matrix times diagonal matrix
------------------------------------------------------------------------- */
ucl_inline void gpu_transpose_times_diag3(const numtyp m[9],
const numtyp4 d, numtyp ans[9])
{
ans[0] = m[0]*d.x;
ans[1] = m[3]*d.y;
ans[2] = m[6]*d.z;
ans[3] = m[1]*d.x;
ans[4] = m[4]*d.y;
ans[5] = m[7]*d.z;
ans[6] = m[2]*d.x;
ans[7] = m[5]*d.y;
ans[8] = m[8]*d.z;
};
/* ----------------------------------------------------------------------
multiply mat1 times mat2
------------------------------------------------------------------------- */
ucl_inline void gpu_times3(const numtyp m[9], const numtyp m2[9],
numtyp ans[9])
{
ans[0] = m[0]*m2[0] + m[1]*m2[3] + m[2]*m2[6];
ans[1] = m[0]*m2[1] + m[1]*m2[4] + m[2]*m2[7];
ans[2] = m[0]*m2[2] + m[1]*m2[5] + m[2]*m2[8];
ans[3] = m[3]*m2[0] + m[4]*m2[3] + m[5]*m2[6];
ans[4] = m[3]*m2[1] + m[4]*m2[4] + m[5]*m2[7];
ans[5] = m[3]*m2[2] + m[4]*m2[5] + m[5]*m2[8];
ans[6] = m[6]*m2[0] + m[7]*m2[3] + m[8]*m2[6];
ans[7] = m[6]*m2[1] + m[7]*m2[4] + m[8]*m2[7];
ans[8] = m[6]*m2[2] + m[7]*m2[5] + m[8]*m2[8];
};
/* ----------------------------------------------------------------------
Apply principal rotation generator about x to rotation matrix m
------------------------------------------------------------------------- */
ucl_inline void gpu_rotation_generator_x(const numtyp m[9], numtyp ans[9])
{
ans[0] = 0;
ans[1] = -m[2];
ans[2] = m[1];
ans[3] = 0;
ans[4] = -m[5];
ans[5] = m[4];
ans[6] = 0;
ans[7] = -m[8];
ans[8] = m[7];
};
/* ----------------------------------------------------------------------
Apply principal rotation generator about y to rotation matrix m
------------------------------------------------------------------------- */
ucl_inline void gpu_rotation_generator_y(const numtyp m[9], numtyp ans[9])
{
ans[0] = m[2];
ans[1] = 0;
ans[2] = -m[0];
ans[3] = m[5];
ans[4] = 0;
ans[5] = -m[3];
ans[6] = m[8];
ans[7] = 0;
ans[8] = -m[6];
};
/* ----------------------------------------------------------------------
Apply principal rotation generator about z to rotation matrix m
------------------------------------------------------------------------- */
ucl_inline void gpu_rotation_generator_z(const numtyp m[9], numtyp ans[9])
{
ans[0] = -m[1];
ans[1] = m[0];
ans[2] = 0;
ans[3] = -m[4];
ans[4] = m[3];
ans[5] = 0;
ans[6] = -m[7];
ans[7] = m[6];
ans[8] = 0;
};
/* ----------------------------------------------------------------------
matrix times vector
------------------------------------------------------------------------- */
ucl_inline void gpu_times_column3(const numtyp m[9], const numtyp v[3],
numtyp ans[3])
{
ans[0] = m[0]*v[0] + m[1]*v[1] + m[2]*v[2];
ans[1] = m[3]*v[0] + m[4]*v[1] + m[5]*v[2];
ans[2] = m[6]*v[0] + m[7]*v[1] + m[8]*v[2];
};
#endif