lammps/lib/gpu/lal_colloid.cu

342 lines
12 KiB
Plaintext

// **************************************************************************
// colloid.cu
// -------------------
// Trung Dac Nguyen (ORNL)
//
// Device code for acceleration of the colloid pair style
//
// __________________________________________________________________________
// This file is part of the LAMMPS Accelerator Library (LAMMPS_AL)
// __________________________________________________________________________
//
// begin :
// email : nguyentd@ornl.gov
// ***************************************************************************/
#ifdef NV_KERNEL
#include "lal_aux_fun1.h"
#ifndef _DOUBLE_DOUBLE
texture<float4> pos_tex;
#else
texture<int4,1> pos_tex;
#endif
#else
#define pos_tex x_
#endif
__kernel void k_colloid(const __global numtyp4 *restrict x_,
const __global numtyp4 *restrict lj1,
const __global numtyp4 *restrict lj3,
const int lj_types,
const __global numtyp *restrict sp_lj_in,
const __global numtyp4 *restrict colloid1,
const __global numtyp4 *restrict colloid2,
const __global int *form,
const __global int *dev_nbor,
const __global int *dev_packed,
__global acctyp4 *restrict ans,
__global acctyp *restrict engv,
const int eflag, const int vflag, const int inum,
const int nbor_pitch, const int t_per_atom) {
int tid, ii, offset;
atom_info(t_per_atom,ii,tid,offset);
__local numtyp sp_lj[4];
sp_lj[0]=sp_lj_in[0];
sp_lj[1]=sp_lj_in[1];
sp_lj[2]=sp_lj_in[2];
sp_lj[3]=sp_lj_in[3];
acctyp energy=(acctyp)0;
acctyp4 f;
f.x=(acctyp)0; f.y=(acctyp)0; f.z=(acctyp)0;
acctyp virial[6];
for (int i=0; i<6; i++)
virial[i]=(acctyp)0;
if (ii<inum) {
const __global int *nbor, *list_end;
int i, numj, n_stride;
nbor_info(dev_nbor,dev_packed,nbor_pitch,t_per_atom,ii,offset,i,numj,
n_stride,list_end,nbor);
numtyp4 ix; fetch4(ix,i,pos_tex); //x_[i];
int itype=ix.w;
numtyp factor_lj;
for ( ; nbor<list_end; nbor+=n_stride) {
int j=*nbor;
factor_lj = sp_lj[sbmask(j)];
j &= NEIGHMASK;
numtyp4 jx; fetch4(jx,j,pos_tex); //x_[j];
int jtype=jx.w;
// Compute r12
numtyp delx = ix.x-jx.x;
numtyp dely = ix.y-jx.y;
numtyp delz = ix.z-jx.z;
numtyp rsq = delx*delx+dely*dely+delz*delz;
int mtype=itype*lj_types+jtype;
if (rsq<lj1[mtype].z) {
numtyp r,r2inv,r6inv;
numtyp c1,c2,fR,evdwl;
numtyp K[9],h[4],g[4];
numtyp force = (numtyp)0;
if (form[mtype]==0) { // SMALL_SMALL
r2inv=ucl_recip(rsq);
r6inv = r2inv*r2inv*r2inv;
force = r2inv*r6inv*(lj1[mtype].x*r6inv-lj1[mtype].y);
force*=factor_lj;
} else if (form[mtype]==1) { // SMALL_LARGE
c2 = colloid1[mtype].z;
K[1] = c2*c2;
K[2] = rsq;
K[0] = K[1] - rsq;
K[4] = rsq*rsq;
K[3] = K[1] - K[2];
K[3] *= K[3]*K[3];
K[6] = K[3]*K[3];
fR = colloid2[mtype].z*colloid1[mtype].x*c2*K[1]/K[3];
force = (numtyp)4.0/(numtyp)15.0*fR *
((numtyp)2.0*(K[1]+K[2]) *
(K[1]*((numtyp)5.0*K[1]+(numtyp)22.0*K[2])+(numtyp)5.0*K[4]) *
colloid2[mtype].w/K[6]-(numtyp)5.0) / K[0];
force*=factor_lj;
} else if (form[mtype]==2) { // LARGE_LARGE
r = ucl_sqrt(rsq);
c1 = colloid1[mtype].y;
c2 = colloid1[mtype].z;
K[0] = c1*c2;
K[1] = c1+c2;
K[2] = c1-c2;
K[3] = K[1]+r;
K[4] = K[1]-r;
K[5] = K[2]+r;
K[6] = K[2]-r;
K[7] = ucl_recip(K[3]*K[4]);
K[8] = ucl_recip(K[5]*K[6]);
g[0] = ucl_powr(K[3],(numtyp)-7.0);
g[1] = -ucl_powr(-K[4],(numtyp)-7.0);
g[2] = ucl_powr(K[5],(numtyp)-7.0);
g[3] = -ucl_powr(-K[6],(numtyp)-7.0);
h[0] = ((K[3]+(numtyp)5.0*K[1])*K[3]+(numtyp)30.0*K[0])*g[0];
h[1] = ((K[4]+(numtyp)5.0*K[1])*K[4]+(numtyp)30.0*K[0])*g[1];
h[2] = ((K[5]+(numtyp)5.0*K[2])*K[5]-(numtyp)30.0*K[0])*g[2];
h[3] = ((K[6]+(numtyp)5.0*K[2])*K[6]-(numtyp)30.0*K[0])*g[3];
g[0] *= (numtyp)42.0*K[0]/K[3]+(numtyp)6.0*K[1]+K[3];
g[1] *= (numtyp)42.0*K[0]/K[4]+(numtyp)6.0*K[1]+K[4];
g[2] *= (numtyp)-42.0*K[0]/K[5]+(numtyp)6.0*K[2]+K[5];
g[3] *= (numtyp)-42.0*K[0]/K[6]+(numtyp)6.0*K[2]+K[6];
fR = colloid1[mtype].x*colloid2[mtype].w/r/(numtyp)37800.0;
evdwl = fR * (h[0]-h[1]-h[2]+h[3]);
numtyp dUR = evdwl/r + (numtyp)5.0*fR*(g[0]+g[1]-g[2]-g[3]);
numtyp dUA = -colloid1[mtype].x/(numtyp)3.0*r*
(((numtyp)2.0*K[0]*K[7]+(numtyp)1.0)*K[7] +
((numtyp)2.0*K[0]*K[8]-(numtyp)1.0)*K[8]);
force = factor_lj * (dUR+dUA)/r;
}
f.x+=delx*force;
f.y+=dely*force;
f.z+=delz*force;
if (eflag>0) {
numtyp e=(numtyp)0.0;
if (form[mtype]==0) {
e=r6inv*(lj3[mtype].x*r6inv-lj3[mtype].y);
} else if (form[mtype]==1) {
e=(numtyp)2.0/(numtyp)9.0*fR *
((numtyp)1.0-(K[1]*(K[1]*(K[1]/(numtyp)3.0+(numtyp)3.0*K[2]) +
(numtyp)4.2*K[4])+K[2]*K[4]) * colloid2[mtype].w/K[6]);
} else if (form[mtype]==2) {
e=evdwl+colloid1[mtype].x/(numtyp)6.0 *
((numtyp)2.0*K[0]*(K[7]+K[8])-log(K[8]/K[7]));
}
energy+=factor_lj*(e-lj3[mtype].z);
}
if (vflag>0) {
virial[0] += delx*delx*force;
virial[1] += dely*dely*force;
virial[2] += delz*delz*force;
virial[3] += delx*dely*force;
virial[4] += delx*delz*force;
virial[5] += dely*delz*force;
}
}
} // for nbor
store_answers(f,energy,virial,ii,inum,tid,t_per_atom,offset,eflag,vflag,
ans,engv);
} // if ii
}
__kernel void k_colloid_fast(const __global numtyp4 *restrict x_,
const __global numtyp4 *restrict lj1_in,
const __global numtyp4 *restrict lj3_in,
const __global numtyp *restrict sp_lj_in,
const __global numtyp4 *restrict colloid1_in,
const __global numtyp4 *restrict colloid2_in,
const __global int *form_in,
const __global int *dev_nbor,
const __global int *dev_packed,
__global acctyp4 *restrict ans,
__global acctyp *restrict engv,
const int eflag, const int vflag, const int inum,
const int nbor_pitch, const int t_per_atom) {
int tid, ii, offset;
atom_info(t_per_atom,ii,tid,offset);
__local numtyp4 lj1[MAX_SHARED_TYPES*MAX_SHARED_TYPES];
__local numtyp4 lj3[MAX_SHARED_TYPES*MAX_SHARED_TYPES];
__local numtyp4 colloid1[MAX_SHARED_TYPES*MAX_SHARED_TYPES];
__local numtyp4 colloid2[MAX_SHARED_TYPES*MAX_SHARED_TYPES];
__local int form[MAX_SHARED_TYPES*MAX_SHARED_TYPES];
__local numtyp sp_lj[4];
if (tid<4)
sp_lj[tid]=sp_lj_in[tid];
if (tid<MAX_SHARED_TYPES*MAX_SHARED_TYPES) {
lj1[tid]=lj1_in[tid];
colloid1[tid]=colloid1_in[tid];
colloid2[tid]=colloid2_in[tid];
form[tid]=form_in[tid];
if (eflag>0)
lj3[tid]=lj3_in[tid];
}
acctyp energy=(acctyp)0;
acctyp4 f;
f.x=(acctyp)0; f.y=(acctyp)0; f.z=(acctyp)0;
acctyp virial[6];
for (int i=0; i<6; i++)
virial[i]=(acctyp)0;
__syncthreads();
if (ii<inum) {
const __global int *nbor, *list_end;
int i, numj, n_stride;
nbor_info(dev_nbor,dev_packed,nbor_pitch,t_per_atom,ii,offset,i,numj,
n_stride,list_end,nbor);
numtyp4 ix; fetch4(ix,i,pos_tex); //x_[i];
int iw=ix.w;
int itype=fast_mul((int)MAX_SHARED_TYPES,iw);
numtyp factor_lj;
for ( ; nbor<list_end; nbor+=n_stride) {
int j=*nbor;
factor_lj = sp_lj[sbmask(j)];
j &= NEIGHMASK;
numtyp4 jx; fetch4(jx,j,pos_tex); //x_[j];
int mtype=itype+jx.w;
// Compute r12
numtyp delx = ix.x-jx.x;
numtyp dely = ix.y-jx.y;
numtyp delz = ix.z-jx.z;
numtyp rsq = delx*delx+dely*dely+delz*delz;
if (rsq<lj1[mtype].z) {
numtyp r,r2inv,r6inv;
numtyp c1,c2,fR,evdwl;
numtyp K[9],h[4],g[4];
numtyp force = (numtyp)0;
if (form[mtype]==0) { // SMALL_SMALL
r2inv=ucl_recip(rsq);
r6inv = r2inv*r2inv*r2inv;
force = r2inv*r6inv*(lj1[mtype].x*r6inv-lj1[mtype].y);
force*=factor_lj;
} else if (form[mtype]==1) { // SMALL_LARGE
c2 = colloid1[mtype].z;
K[1] = c2*c2;
K[2] = rsq;
K[0] = K[1] - rsq;
K[4] = rsq*rsq;
K[3] = K[1] - K[2];
K[3] *= K[3]*K[3];
K[6] = K[3]*K[3];
fR = colloid2[mtype].z*colloid1[mtype].x*c2*K[1]/K[3];
force = (numtyp)4.0/(numtyp)15.0*fR *
((numtyp)2.0*(K[1]+K[2]) *
(K[1]*((numtyp)5.0*K[1]+(numtyp)22.0*K[2])+(numtyp)5.0*K[4]) *
colloid2[mtype].w/K[6]-(numtyp)5.0) / K[0];
force*=factor_lj;
} else if (form[mtype]==2) { // LARGE_LARGE
r = ucl_sqrt(rsq);
c1 = colloid1[mtype].y;
c2 = colloid1[mtype].z;
K[0] = c1*c2;
K[1] = c1+c2;
K[2] = c1-c2;
K[3] = K[1]+r;
K[4] = K[1]-r;
K[5] = K[2]+r;
K[6] = K[2]-r;
K[7] = ucl_recip(K[3]*K[4]);
K[8] = ucl_recip(K[5]*K[6]);
g[0] = ucl_powr(K[3],(numtyp)-7.0);
g[1] = -ucl_powr(-K[4],(numtyp)-7.0);
g[2] = ucl_powr(K[5],(numtyp)-7.0);
g[3] = -ucl_powr(-K[6],(numtyp)-7.0);
h[0] = ((K[3]+(numtyp)5.0*K[1])*K[3]+(numtyp)30.0*K[0])*g[0];
h[1] = ((K[4]+(numtyp)5.0*K[1])*K[4]+(numtyp)30.0*K[0])*g[1];
h[2] = ((K[5]+(numtyp)5.0*K[2])*K[5]-(numtyp)30.0*K[0])*g[2];
h[3] = ((K[6]+(numtyp)5.0*K[2])*K[6]-(numtyp)30.0*K[0])*g[3];
g[0] *= (numtyp)42.0*K[0]/K[3]+(numtyp)6.0*K[1]+K[3];
g[1] *= (numtyp)42.0*K[0]/K[4]+(numtyp)6.0*K[1]+K[4];
g[2] *= (numtyp)-42.0*K[0]/K[5]+(numtyp)6.0*K[2]+K[5];
g[3] *= (numtyp)-42.0*K[0]/K[6]+(numtyp)6.0*K[2]+K[6];
fR = colloid1[mtype].x*colloid2[mtype].w/r/(numtyp)37800.0;
evdwl = fR * (h[0]-h[1]-h[2]+h[3]);
numtyp dUR = evdwl/r + (numtyp)5.0*fR*(g[0]+g[1]-g[2]-g[3]);
numtyp dUA = -colloid1[mtype].x/(numtyp)3.0*r*
(((numtyp)2.0*K[0]*K[7]+(numtyp)1.0)*K[7] +
((numtyp)2.0*K[0]*K[8]-(numtyp)1.0)*K[8]);
force = factor_lj * (dUR+dUA)/r;
} else force = (numtyp)0.0;
f.x+=delx*force;
f.y+=dely*force;
f.z+=delz*force;
if (eflag>0) {
numtyp e=(numtyp)0.0;
if (form[mtype]==0) {
e=r6inv*(lj3[mtype].x*r6inv-lj3[mtype].y);
} else if (form[mtype]==1) {
e=(numtyp)2.0/(numtyp)9.0*fR *
((numtyp)1.0-(K[1]*(K[1]*(K[1]/(numtyp)3.0+
(numtyp)3.0*K[2])+(numtyp)4.2*K[4])+K[2]*K[4])*
colloid2[mtype].w/K[6]);
} else if (form[mtype]==2) {
e=evdwl+colloid1[mtype].x/(numtyp)6.0 *
((numtyp)2.0*K[0]*(K[7]+K[8])-log(K[8]/K[7]));
}
energy+=factor_lj*(e-lj3[mtype].z);
}
if (vflag>0) {
virial[0] += delx*delx*force;
virial[1] += dely*dely*force;
virial[2] += delz*delz*force;
virial[3] += delx*dely*force;
virial[4] += delx*delz*force;
virial[5] += dely*delz*force;
}
}
} // for nbor
store_answers(f,energy,virial,ii,inum,tid,t_per_atom,offset,eflag,vflag,
ans,engv);
} // if ii
}