forked from lijiext/lammps
342 lines
9.4 KiB
C++
342 lines
9.4 KiB
C++
|
|
#include "abf_data.h"
|
|
#include <fstream>
|
|
#include <string>
|
|
#include <cstring>
|
|
#include <cstdlib>
|
|
#include <ctime>
|
|
|
|
/// Construct gradient field object from an ABF-saved file
|
|
ABFdata::ABFdata(const char *gradFileName)
|
|
{
|
|
|
|
std::ifstream gradFile;
|
|
std::ifstream countFile;
|
|
int n;
|
|
char hash;
|
|
double xi;
|
|
char *countFileName;
|
|
|
|
countFileName = new char[strlen (gradFileName) + 2];
|
|
strcpy (countFileName, gradFileName);
|
|
countFileName[strlen (gradFileName) - 4] = '\0';
|
|
strcat (countFileName, "count");
|
|
|
|
std::cout << "Opening file " << gradFileName << " for reading\n";
|
|
gradFile.open(gradFileName);
|
|
if (!gradFile.good()) {
|
|
std::cerr << "Cannot read from file " << gradFileName << ", aborting\n";
|
|
exit(1);
|
|
}
|
|
|
|
gradFile >> hash;
|
|
if (hash != '#') {
|
|
std::cerr << "Missing \'#\' sign in gradient file\n";
|
|
exit(1);
|
|
}
|
|
gradFile >> Nvars;
|
|
|
|
std::cout << "Number of variables: " << Nvars << "\n";
|
|
|
|
sizes = new int[Nvars];
|
|
blocksizes = new int[Nvars];
|
|
PBC = new int[Nvars];
|
|
widths = new double[Nvars];
|
|
mins = new double[Nvars];
|
|
|
|
scalar_dim = 1; // total is (n1 * n2 * ... * n_Nvars )
|
|
|
|
for (int i = 0; i < Nvars; i++) {
|
|
gradFile >> hash;
|
|
if (hash != '#') {
|
|
std::cerr << "Missing \'#\' sign in gradient file\n";
|
|
exit(1);
|
|
}
|
|
// format is: xiMin dxi Nbins PBCflag
|
|
gradFile >> mins[i] >> widths[i] >> sizes[i] >> PBC[i];
|
|
std::cout << "min = " << mins[i] << " width = " << widths[i]
|
|
<< " n = " << sizes[i] << " PBC: " << (PBC[i]?"yes":"no") << "\n";
|
|
|
|
if (sizes[i] == 0) {
|
|
std::cout << "ERROR: size should not be zero!\n";
|
|
exit(1);
|
|
}
|
|
scalar_dim *= sizes[i];
|
|
}
|
|
|
|
// block sizes, smallest for the last dimension
|
|
blocksizes[Nvars - 1] = 1;
|
|
for (int i = Nvars - 2; i >= 0; i--) {
|
|
blocksizes[i] = blocksizes[i + 1] * sizes[i + 1];
|
|
}
|
|
|
|
vec_dim = scalar_dim * Nvars;
|
|
//std::cout << "Gradient field has length " << vec_dim << "\n";
|
|
|
|
gradients = new double[vec_dim];
|
|
estimate = new double[vec_dim];
|
|
deviation = new double[vec_dim];
|
|
count = new unsigned int[scalar_dim];
|
|
|
|
int *pos = new int[Nvars];
|
|
for (int i = 0; i < Nvars; i++)
|
|
pos[i] = 0;
|
|
|
|
for (unsigned int i = 0; i < scalar_dim; i++) {
|
|
// Here we do the Euclidian division iteratively
|
|
for (int k = Nvars - 1; k > 0; k--) {
|
|
if (pos[k] == sizes[k]) {
|
|
pos[k] = 0;
|
|
pos[k - 1]++;
|
|
}
|
|
}
|
|
for (unsigned int j = 0; j < Nvars; j++) {
|
|
// Read values of the collective variables only to check for consistency with grid
|
|
gradFile >> xi;
|
|
|
|
double rel_diff = (mins[j] + widths[j] * (pos[j] + 0.5) - xi) / widths[j];
|
|
if ( rel_diff * rel_diff > 1e-12 ) {
|
|
std::cout << "\nERROR: wrong coordinates in gradient file\n";
|
|
std::cout << "Expected " << mins[j] + widths[j] * (pos[j] + 0.5) << ", got " << xi << std::endl;
|
|
exit(1);
|
|
}
|
|
}
|
|
for (unsigned int j = 0; j < Nvars; j++) {
|
|
// Read and store gradients
|
|
if ( ! (gradFile >> gradients[i * Nvars + j]) ) {
|
|
std::cout << "\nERROR: could not read gradient data\n";
|
|
exit(1);
|
|
}
|
|
}
|
|
pos[Nvars - 1]++; // move on to next position
|
|
}
|
|
// check for end of file
|
|
if ( gradFile >> xi ) {
|
|
std::cout << "\nERROR: extraneous data at end of gradient file\n";
|
|
exit(1);
|
|
}
|
|
gradFile.close();
|
|
|
|
|
|
std::cout << "Opening file " << countFileName << " for reading\n";
|
|
countFile.open(countFileName);
|
|
|
|
if (!countFile.good()) {
|
|
std::cerr << "Cannot read from file " << countFileName << ", aborting\n";
|
|
exit(1);
|
|
}
|
|
|
|
countFile >> hash;
|
|
if (hash != '#') {
|
|
std::cerr << "Missing \'#\' sign in count file\n";
|
|
exit(1);
|
|
}
|
|
countFile >> Nvars;
|
|
|
|
for (int i = 0; i < Nvars; i++) {
|
|
countFile >> hash;
|
|
if (hash != '#') {
|
|
std::cerr << "Missing \'#\' sign in gradient file\n";
|
|
exit(1);
|
|
}
|
|
countFile >> mins[i] >> widths[i] >> sizes[i] >> PBC[i];
|
|
}
|
|
|
|
for (unsigned int i = 0; i < scalar_dim; i++) {
|
|
for (unsigned int j = 0; j < Nvars; j++) {
|
|
// Read and ignore values of the collective variables
|
|
countFile >> xi;
|
|
}
|
|
// Read and store counts
|
|
countFile >> count[i];
|
|
}
|
|
// Could check for end-of-file string here
|
|
countFile.close();
|
|
delete [] countFileName;
|
|
|
|
// for metadynamics
|
|
bias = new double[scalar_dim];
|
|
histogram = new unsigned int[scalar_dim];
|
|
for (unsigned int i = 0; i < scalar_dim; i++) {
|
|
histogram[i] = 0;
|
|
bias[i] = 0.0;
|
|
}
|
|
}
|
|
|
|
ABFdata::~ABFdata()
|
|
{
|
|
delete[] sizes;
|
|
delete[] blocksizes;
|
|
delete[] PBC;
|
|
delete[] widths;
|
|
delete[] mins;
|
|
delete[] gradients;
|
|
delete[] estimate;
|
|
delete[] deviation;
|
|
delete[] count;
|
|
delete[] bias;
|
|
delete[] histogram;
|
|
}
|
|
|
|
unsigned int ABFdata::offset(const int *pos)
|
|
{
|
|
unsigned int index = 0;
|
|
|
|
for (int i = 0; i < Nvars; i++) {
|
|
// Check for out-of bounds indices here
|
|
if (pos[i] < 0 || pos[i] >= sizes[i]) {
|
|
std::cerr << "Out-of-range index: " << pos[i] << " for rank " << i << "\n";
|
|
exit(1);
|
|
}
|
|
index += blocksizes[i] * pos[i];
|
|
}
|
|
// we leave the multiplication below for the caller to do
|
|
// we just give the offset for scalar fields
|
|
// index *= Nvars; // Nb of gradient vectors -> nb of array elts
|
|
return index;
|
|
}
|
|
|
|
void ABFdata::write_histogram(const char *fileName)
|
|
{
|
|
|
|
std::ofstream os;
|
|
unsigned int index;
|
|
int *pos, i;
|
|
|
|
os.open(fileName);
|
|
if (!os.good()) {
|
|
std::cerr << "Cannot write to file " << fileName << ", aborting\n";
|
|
exit(1);
|
|
}
|
|
pos = new int[Nvars];
|
|
for (i = 0; i < Nvars; i++)
|
|
pos[i] = 0;
|
|
|
|
for (index = 0; index < scalar_dim; index++) {
|
|
// Here we do the Euclidian division iteratively
|
|
for (i = Nvars - 1; i > 0; i--) {
|
|
if (pos[i] == sizes[i]) {
|
|
pos[i] = 0;
|
|
pos[i - 1]++;
|
|
os << "\n";
|
|
}
|
|
}
|
|
// Now a stupid check:
|
|
if (index != offset(pos)) {
|
|
std::cerr << "Wrong position vector at index " << index << "\n";
|
|
exit(1);
|
|
}
|
|
|
|
for (i = 0; i < Nvars; i++) {
|
|
os << mins[i] + widths[i] * (pos[i] + 0.5) << " ";
|
|
}
|
|
os << histogram[index] << "\n";
|
|
pos[Nvars - 1]++; // move on to next position
|
|
}
|
|
os.close();
|
|
delete[]pos;
|
|
}
|
|
|
|
|
|
void ABFdata::write_bias(const char *fileName)
|
|
{
|
|
// write the opposite of the bias, with global minimum set to 0
|
|
|
|
std::ofstream os;
|
|
unsigned int index;
|
|
int *pos, i;
|
|
double minbias, maxbias;
|
|
|
|
os.open(fileName);
|
|
if (!os.good()) {
|
|
std::cerr << "Cannot write to file " << fileName << ", aborting\n";
|
|
exit(1);
|
|
}
|
|
pos = new int[Nvars];
|
|
for (i = 0; i < Nvars; i++)
|
|
pos[i] = 0;
|
|
|
|
// Set the minimum value to 0 by subtracting each value from the max
|
|
maxbias = bias[0];
|
|
for (index = 0; index < scalar_dim; index++) {
|
|
if (bias[index] > maxbias)
|
|
maxbias = bias[index];
|
|
}
|
|
|
|
// Set the maximum value to that of the lowest nonzero bias
|
|
minbias = bias[0];
|
|
for (index = 0; index < scalar_dim; index++) {
|
|
if (minbias == 0.0 || (bias[index] > 0.0 && bias[index] < minbias))
|
|
minbias = bias[index];
|
|
}
|
|
|
|
for (index = 0; index < scalar_dim; index++) {
|
|
// Here we do the Euclidian division iteratively
|
|
for (i = Nvars - 1; i > 0; i--) {
|
|
if (pos[i] == sizes[i]) {
|
|
pos[i] = 0;
|
|
pos[i - 1]++;
|
|
os << "\n";
|
|
}
|
|
}
|
|
// Now a stupid check:
|
|
if (index != offset(pos)) {
|
|
std::cerr << "Wrong position vector at index " << index << "\n";
|
|
exit(1);
|
|
}
|
|
|
|
for (i = 0; i < Nvars; i++) {
|
|
os << mins[i] + widths[i] * (pos[i] + 0.5) << " ";
|
|
}
|
|
os << maxbias - (bias[index] > 0.0 ? bias[index] : minbias) << "\n";
|
|
pos[Nvars - 1]++; // move on to next position
|
|
}
|
|
os.close();
|
|
delete[]pos;
|
|
}
|
|
|
|
|
|
void ABFdata::write_field(double *field, const char *fileName)
|
|
{
|
|
std::ofstream os;
|
|
unsigned int index;
|
|
int *pos, i;
|
|
double *f;
|
|
|
|
os.open(fileName);
|
|
if (!os.good()) {
|
|
std::cerr << "Cannot write to file " << fileName << ", aborting\n";
|
|
exit(1);
|
|
}
|
|
pos = new int[Nvars];
|
|
for (i = 0; i < Nvars; i++)
|
|
pos[i] = 0;
|
|
|
|
// start at beginning of array
|
|
f = field;
|
|
|
|
for (index = 0; index < scalar_dim; index++) {
|
|
// Here we do the Euclidian division iteratively
|
|
for (i = Nvars - 1; i > 0; i--) {
|
|
if (pos[i] == sizes[i]) {
|
|
pos[i] = 0;
|
|
pos[i - 1]++;
|
|
os << "\n";
|
|
}
|
|
}
|
|
|
|
for (i = 0; i < Nvars; i++) {
|
|
os << mins[i] + widths[i] * (pos[i] + 0.5) << " ";
|
|
}
|
|
for (i = 0; i < Nvars; i++) {
|
|
os << f[i] << " ";;
|
|
}
|
|
os << "\n";
|
|
|
|
pos[Nvars - 1]++; // move on to next position...
|
|
f += Nvars; // ...also in the array
|
|
}
|
|
os.close();
|
|
delete[]pos;
|
|
}
|