lammps/examples/snap/compute_snap_dgrad.py

174 lines
4.4 KiB
Python

"""
compute_snap_dgrad.py
Purpose: Demonstrate extraction of descriptor gradient (dB/dR) array from compute snap.
Show that dBi/dRj components summed over neighbors i yields same output as regular compute snap with dgradflag = 0.
This shows that the dBi/dRj components extracted with dgradflag = 1 are correct.
Serial syntax:
python compute_snap_dgrad.py
Parallel syntax:
mpirun -np 4 python compute_snap_dgrad.py
"""
from __future__ import print_function
import sys
import ctypes
import numpy as np
from lammps import lammps, LMP_TYPE_ARRAY, LMP_STYLE_GLOBAL
# get MPI settings from LAMMPS
lmp = lammps()
me = lmp.extract_setting("world_rank")
nprocs = lmp.extract_setting("world_size")
cmds = ["-screen", "none", "-log", "none"]
lmp = lammps(cmdargs = cmds)
def run_lammps(dgradflag):
# simulation settings
lmp.command("clear")
lmp.command("units metal")
lmp.command("boundary p p p")
lmp.command("atom_modify map hash")
lmp.command(f"lattice bcc {latparam}")
lmp.command(f"region box block 0 {nx} 0 {ny} 0 {nz}")
lmp.command(f"create_box {ntypes} box")
lmp.command(f"create_atoms {ntypes} box")
lmp.command("mass * 180.88")
lmp.command("displace_atoms all random 0.01 0.01 0.01 123456")
# potential settings
snap_options = f'{rcutfac} {rfac0} {twojmax} {radelem1} {radelem2} {wj1} {wj2} rmin0 {rmin0} quadraticflag {quadratic} bzeroflag {bzero} switchflag {switch} bikflag {bikflag} dgradflag {dgradflag}'
lmp.command(f"pair_style zero {rcutfac}")
lmp.command(f"pair_coeff * *")
lmp.command(f"pair_style zbl {zblcutinner} {zblcutouter}")
lmp.command(f"pair_coeff * * {zblz} {zblz}")
# define compute snap
lmp.command(f"compute snap all snap {snap_options}")
# run
lmp.command(f"thermo 100")
lmp.command(f"run {nsteps}")
# declare simulation/structure variables
nsteps = 0
nrep = 2
latparam = 2.0
ntypes = 2
nx = nrep
ny = nrep
nz = nrep
# declare compute snap variables
twojmax = 8
rcutfac = 1.0
rfac0 = 0.99363
rmin0 = 0
radelem1 = 2.3
radelem2 = 2.0
wj1 = 1.0
wj2 = 0.96
quadratic = 0
bzero = 0
switch = 0
bikflag = 1
# define reference potential
zblcutinner = 4.0
zblcutouter = 4.8
zblz = 73
# number of descriptors
if (twojmax % 2 == 0):
m = twojmax / 2 + 1
nd = int(m*(m+1)*(2*m+1)/6)
else:
m = (twojmax + 1) / 2
nd = int(m*(m+1)*(m+2)/3)
if me == 0:
print(f"Number of descriptors based on twojmax : {nd}")
# run lammps with dgradflag on
if me == 0:
print("Running with dgradflag on")
dgradflag = 1
run_lammps(dgradflag)
# get global snap array
lmp_snap = lmp.numpy.extract_compute("snap", LMP_STYLE_GLOBAL, LMP_TYPE_ARRAY)
# print snap array to observe
#if (me==0):
# np.savetxt("test_snap.dat", lmp_snap, fmt="%d %d %d %f %f %f %f %f")
# take out rows with zero column
# extract dBj/dRi (includes dBi/dRi)
natoms = lmp.get_natoms()
fref1 = lmp_snap[0:natoms,0:3].flatten()
eref1 = lmp_snap[-1,0]
dbdr_length = np.shape(lmp_snap)[0]-(natoms) - 1
dBdR = lmp_snap[natoms:(natoms+dbdr_length),3:(nd+3)]
force_indices = lmp_snap[natoms:(natoms+dbdr_length),0:3].astype(np.int32)
# strip rows with all zero descriptor gradients to demonstrate how to save memory
nonzero_rows = lmp_snap[natoms:(natoms+dbdr_length),3:(nd+3)] != 0.0
nonzero_rows = np.any(nonzero_rows, axis=1)
dBdR = dBdR[nonzero_rows, :]
force_indices = force_indices[nonzero_rows,:]
dbdr_length = np.shape(dBdR)[0]
# sum over atoms i that j is a neighbor of, like dgradflag = 0 does.
array1 = np.zeros((3*natoms,nd))
for k in range(0,nd):
for l in range(0,dbdr_length):
i = force_indices[l,0]
j = force_indices[l,1]
a = force_indices[l,2]
#print(f"{i} {j} {a}")
array1[3 * j + a, k] += dBdR[l,k]
# run lammps with dgradflag off
if me == 0:
print("Running with dgradflag off")
dgradflag = 0
run_lammps(dgradflag)
# get global snap array
lmp_snap = lmp.numpy.extract_compute("snap", LMP_STYLE_GLOBAL, LMP_TYPE_ARRAY)
natoms = lmp.get_natoms()
fref2 = lmp_snap[natoms:(natoms+3*natoms),-1]
eref2 = lmp_snap[0,-1]
array2 = lmp_snap[natoms:natoms+(3*natoms), nd:-1]
# take difference of arrays obtained from dgradflag on and off.
diffm = array1 - array2
difff = fref1 - fref2
diffe = eref1 - eref2
if me == 0:
print(f"Max/min difference in dSum(Bi)/dRj: {np.max(diffm)} {np.min(diffm)}")
print(f"Max/min difference in reference forces: {np.max(difff)} {np.min(difff)}")
print(f"Difference in reference energy: {diffe}")