Merge pull request #1869 from akohlmey/doc-continued-refactoring
More documentation refactoring for embedding math expressions
|
@ -75,8 +75,11 @@ html: $(ANCHORCHECK)
|
|||
@rm -rf html/_sources
|
||||
@rm -rf html/PDF
|
||||
@rm -rf html/USER
|
||||
@rm -rf html/JPG
|
||||
@cp -r src/PDF html/PDF
|
||||
@cp -r src/USER html/USER
|
||||
@mkdir -p html/JPG
|
||||
@cp `grep -A2 '\.\. image::' src/*.rst | grep ':target:' | sed -e 's,.*:target: JPG/,src/JPG/,' | sort | uniq` html/JPG/
|
||||
@rm -rf html/PDF/.[sg]*
|
||||
@rm -rf html/USER/.[sg]*
|
||||
@rm -rf html/USER/*/.[sg]*
|
||||
|
|
|
@ -17,9 +17,9 @@ General remarks
|
|||
|
||||
LAMMPS is developed and tested primarily on Linux machines. The vast
|
||||
majority of HPC clusters and supercomputers today runs on Linux as well.
|
||||
Thus portability to other platforms is desired, but not always achieved.
|
||||
While portability to other platforms is desired, it is not always achieved.
|
||||
The LAMMPS developers strongly rely on LAMMPS users giving feedback and
|
||||
providing assistance in resolving portability issues. This particularly
|
||||
providing assistance in resolving portability issues. This is particularly
|
||||
true for compiling LAMMPS on Windows, since this platform has significant
|
||||
differences with some low-level functionality.
|
||||
|
||||
|
@ -31,18 +31,20 @@ Running Linux on Windows
|
|||
So before trying to build LAMMPS on Windows, please consider if using
|
||||
the pre-compiled Windows binary packages are sufficient for your needs
|
||||
(as an aside, those packages themselves are build on a Linux machine
|
||||
using cross-compilers). If it is necessary for your to compile LAMMPS
|
||||
using cross-compilers). If it is necessary for you to compile LAMMPS
|
||||
on a Windows machine (e.g. because it is your main desktop), please also
|
||||
consider using a virtual machine software and run a Linux virtual machine,
|
||||
or - if have a recently updated Windows 10 installation - consider using
|
||||
the Windows subsystem for Linux, which allows to run a bash shell from
|
||||
Ubuntu and from there on, you can pretty much use that shell like you
|
||||
are running on an Ubuntu Linux machine (e.g. installing software via
|
||||
apt-get). For more details on that, please see :doc:`this tutorial <Howto_bash>`
|
||||
consider using a virtual machine software and compile and run LAMMPS in
|
||||
a Linux virtual machine, or - if you have a recently updated Windows 10
|
||||
installation - consider using the Windows subsystem for Linux. This
|
||||
optional Windows feature allows you to run the bash shell from Ubuntu
|
||||
from within Windows and from there on, you can pretty much use that
|
||||
shell like you are running on an Ubuntu Linux machine (e.g. installing
|
||||
software via apt-get and more). For more details on that, please
|
||||
see :doc:`this tutorial <Howto_bash>`
|
||||
|
||||
.. _gnu:
|
||||
|
||||
Using GNU GCC ported to Windows
|
||||
Using a GNU GCC ported to Windows
|
||||
-----------------------------------------
|
||||
|
||||
One option for compiling LAMMPS on Windows natively, that has been known
|
||||
|
@ -83,13 +85,13 @@ traditional build system, but CMake has also been successfully tested
|
|||
using the mingw32-cmake and mingw64-cmake wrappers that are bundled
|
||||
with the cross-compiler environment on Fedora machines. A CMake preset
|
||||
selecting all packages compatible with this cross-compilation build
|
||||
is provided. You likely need to disable the GPU package unless you
|
||||
is provided. You will likely need to disable the GPU package unless you
|
||||
download and install the contents of the pre-compiled `OpenCL ICD loader library <https://download.lammps.org/thirdparty/opencl-win-devel.tar.gz>`_
|
||||
into your MinGW64 cross-compiler environment. The cross-compilation
|
||||
currently will only produce non-MPI serial binaries.
|
||||
|
||||
Please keep in mind, though, that this only applies to compiling LAMMPS.
|
||||
Whether the resulting binaries do work correctly is no tested by the
|
||||
Please keep in mind, though, that this only applies to **compiling** LAMMPS.
|
||||
Whether the resulting binaries do work correctly is not tested by the
|
||||
LAMMPS developers. We instead rely on the feedback of the users
|
||||
of these pre-compiled LAMMPS packages for Windows. We will try to resolve
|
||||
issues to the best of our abilities if we become aware of them. However
|
||||
|
|
Before Width: | Height: | Size: 4.0 KiB |
|
@ -1,9 +0,0 @@
|
|||
\documentclass[12pt]{article}
|
||||
|
||||
\begin{document}
|
||||
|
||||
$$
|
||||
CS = \sum_{i = 1}^{N/2} | \vec{R}_i + \vec{R}_{i+N/2} |^2
|
||||
$$
|
||||
|
||||
\end{document}
|
Before Width: | Height: | Size: 13 KiB |
|
@ -1,14 +0,0 @@
|
|||
\documentclass[12pt,article]{article}
|
||||
|
||||
\usepackage{indentfirst}
|
||||
\usepackage{amsmath}
|
||||
|
||||
\begin{document}
|
||||
|
||||
\begin{eqnarray*}
|
||||
r_{c}^{fcc} & = & \frac{1}{2} \left(\frac{\sqrt{2}}{2} + 1\right) \mathrm{a} \simeq 0.8536 \:\mathrm{a} \\
|
||||
r_{c}^{bcc} & = & \frac{1}{2}(\sqrt{2} + 1) \mathrm{a} \simeq 1.207 \:\mathrm{a} \\
|
||||
r_{c}^{hcp} & = & \frac{1}{2}\left(1+\sqrt{\frac{4+2x^{2}}{3}}\right) \mathrm{a}
|
||||
\end{eqnarray*}
|
||||
|
||||
\end{document}
|
Before Width: | Height: | Size: 2.5 KiB |
|
@ -1,12 +0,0 @@
|
|||
\documentclass[12pt,article]{article}
|
||||
|
||||
\usepackage{indentfirst}
|
||||
\usepackage{amsmath}
|
||||
|
||||
\begin{document}
|
||||
|
||||
$$
|
||||
Rc + Rs > 2*{\rm cutoff}
|
||||
$$
|
||||
|
||||
\end{document}
|
Before Width: | Height: | Size: 13 KiB |
|
@ -1,14 +0,0 @@
|
|||
\documentclass[12pt,article]{article}
|
||||
|
||||
\usepackage{indentfirst}
|
||||
\usepackage{amsmath}
|
||||
|
||||
\begin{document}
|
||||
|
||||
\begin{eqnarray*}
|
||||
r_{c}^{fcc} & = & \frac{1}{2} \left(\frac{\sqrt{2}}{2} + 1\right) \mathrm{a} \simeq 0.8536 \:\mathrm{a} \\
|
||||
r_{c}^{bcc} & = & \frac{1}{2}(\sqrt{2} + 1) \mathrm{a} \simeq 1.207 \:\mathrm{a} \\
|
||||
r_{c}^{hcp} & = & \frac{1}{2}\left(1+\sqrt{\frac{4+2x^{2}}{3}}\right) \mathrm{a}
|
||||
\end{eqnarray*}
|
||||
|
||||
\end{document}
|
Before Width: | Height: | Size: 2.5 KiB |
|
@ -1,12 +0,0 @@
|
|||
\documentclass[12pt,article]{article}
|
||||
|
||||
\usepackage{indentfirst}
|
||||
\usepackage{amsmath}
|
||||
|
||||
\begin{document}
|
||||
|
||||
$$
|
||||
Rc + Rs > 2*{\rm cutoff}
|
||||
$$
|
||||
|
||||
\end{document}
|
Before Width: | Height: | Size: 23 KiB |
|
@ -1,9 +0,0 @@
|
|||
\documentclass[12pt]{article}
|
||||
|
||||
\begin{document}
|
||||
|
||||
$$
|
||||
Q_{i} = \frac{1}{n_i}\sum_{j = 1}^{n_i} | \sum_{k = 1}^{n_{ij}} \vec{R}_{ik} + \vec{R}_{jk} |^2
|
||||
$$
|
||||
|
||||
\end{document}
|
Before Width: | Height: | Size: 21 KiB |
|
@ -1,13 +0,0 @@
|
|||
\documentstyle[12pt]{article}
|
||||
\pagestyle{empty}
|
||||
\begin{document}
|
||||
|
||||
\begin{eqnarray*}
|
||||
U^{cond} = \displaystyle\sum_{i=1}^{N} u_{i}^{cond} \\
|
||||
U^{mech} = \displaystyle\sum_{i=1}^{N} u_{i}^{mech} \\
|
||||
U^{chem} = \displaystyle\sum_{i=1}^{N} u_{i}^{chem} \\
|
||||
U = \displaystyle\sum_{i=1}^{N} (u_{i}^{cond} + u_{i}^{mech} + u_{i}^{chem}) \\
|
||||
\theta_{avg} = (\frac{1}{N}\displaystyle\sum_{i=1}^{N} \frac{1}{\theta_{i}})^{-1} \\
|
||||
\end{eqnarray*}
|
||||
|
||||
\end{document}
|
Before Width: | Height: | Size: 3.6 KiB |
|
@ -1,9 +0,0 @@
|
|||
\documentstyle[12pt]{article}
|
||||
|
||||
\begin{document}
|
||||
|
||||
$$
|
||||
{R_g}^2 = \frac{1}{M} \sum_i m_i (r_i - r_{cm})^2
|
||||
$$
|
||||
|
||||
\end{document}
|
Before Width: | Height: | Size: 7.1 KiB |
|
@ -1,9 +0,0 @@
|
|||
\documentstyle[12pt]{article}
|
||||
|
||||
\begin{document}
|
||||
|
||||
$$
|
||||
NGP(t) = 3<(r(t)-r(0))^4>/(5<(r(t)-r(0))^2>^2) - 1
|
||||
$$
|
||||
|
||||
\end{document}
|
Before Width: | Height: | Size: 1.4 KiB |
|
@ -1,10 +0,0 @@
|
|||
\documentstyle[12pt]{article}
|
||||
|
||||
\begin{document}
|
||||
|
||||
$$
|
||||
I=\frac{F^{*}F}{N}
|
||||
$$
|
||||
|
||||
\end{document}
|
||||
|
Before Width: | Height: | Size: 4.8 KiB |
|
@ -1,9 +0,0 @@
|
|||
\documentstyle[12pt]{article}
|
||||
|
||||
\begin{document}
|
||||
|
||||
$$
|
||||
F(\mathbf{k})=\sum_{j=1}^{N}f_j(\theta)exp(2\pi i \mathbf{k}\cdot \mathbf{r}_j)
|
||||
$$
|
||||
\end{document}
|
||||
|
Before Width: | Height: | Size: 6.9 KiB |
|
@ -1,10 +0,0 @@
|
|||
\documentstyle[12pt]{article}
|
||||
|
||||
\begin{document}
|
||||
|
||||
$$
|
||||
f_j\left ( \frac{sin(\theta)}{\lambda} \right )=\sum_{i}^{5}
|
||||
a_i exp\left ( -b_i \frac{sin^{2}(\theta)}{\lambda^{2}} \right )
|
||||
$$
|
||||
\end{document}
|
||||
|
Before Width: | Height: | Size: 6.8 KiB |
|
@ -1,13 +0,0 @@
|
|||
\documentclass[12pt]{article}
|
||||
|
||||
\pagestyle{empty}
|
||||
\begin{document}
|
||||
|
||||
\begin{eqnarray*}
|
||||
c = l_z - 0.5(l_y+l_x) \\
|
||||
b = l_y - l_x \\
|
||||
k = \frac{3}{2} \frac{l_x^2+l_y^2+l_z^2}{(l_x+l_y+l_z)^2} - \frac{1}{2}
|
||||
\end{eqnarray*}
|
||||
|
||||
\end{document}
|
||||
|
Before Width: | Height: | Size: 19 KiB |
|
@ -1,11 +0,0 @@
|
|||
\documentclass[24pt]{article}
|
||||
|
||||
\pagestyle{empty}
|
||||
|
||||
\begin{document}
|
||||
|
||||
\begin{eqnarray*}
|
||||
\theta_0 = {\tt rfac0} \frac{r-r_{min0}}{R_{ii'}-r_{min0}} \pi
|
||||
\end{eqnarray*}
|
||||
|
||||
\end{document}
|
Before Width: | Height: | Size: 17 KiB |
|
@ -1,11 +0,0 @@
|
|||
\documentclass[24pt]{article}
|
||||
|
||||
\pagestyle{empty}
|
||||
|
||||
\begin{document}
|
||||
|
||||
\begin{eqnarray*}
|
||||
u^j_{m,m'} = U^j_{m,m'}(0,0,0) + \sum_{r_{ii'} < R_{ii'}}{f_c(r_{ii'}) w_{i'} U^j_{m,m'}(\theta_0,\theta,\phi)}
|
||||
\end{eqnarray*}
|
||||
|
||||
\end{document}
|
Before Width: | Height: | Size: 19 KiB |
|
@ -1,16 +0,0 @@
|
|||
\documentclass[24pt]{article}
|
||||
|
||||
\pagestyle{empty}
|
||||
|
||||
\begin{document}
|
||||
|
||||
\newcommand{\hcoeff}[9]{H\!\!{\tiny\begin{array}{l}#1 #2 #3 \\ #4 #5 #6 \\ #7 #8 #9 \end{array}}}
|
||||
|
||||
\begin{equation}
|
||||
B_{j_1,j_2,j} = \\
|
||||
\sum_{m_1,m'_1=-j_1}^{j_1}\sum_{m_2,m'_2=-j_2}^{j_2}\sum_{m,m'=-j}^{j} (u^j_{m,m'})^*
|
||||
\hcoeff{j}{m}{m'}{j_1}{\!m_1}{\!m'_1}{j_2}{m_2}{m'_2}
|
||||
u^{j_1}_{m_1,m'_1} u^{j_2}_{m_2,m'_2}
|
||||
\end{equation}
|
||||
|
||||
\end{document}
|
Before Width: | Height: | Size: 35 KiB |
|
@ -1,14 +0,0 @@
|
|||
\documentclass[24pt]{article}
|
||||
|
||||
\pagestyle{empty}
|
||||
|
||||
\begin{document}
|
||||
|
||||
\begin{eqnarray*}
|
||||
\label{eqn:f_c}
|
||||
f_c(r) & = & \frac{1}{2}(\cos(\pi \frac{r-r_{min0}}{R_{ii'}-r_{min0}}) + 1), r \leq R_{ii'} \\
|
||||
& = & 0, r > R_{ii'}
|
||||
\end{eqnarray*}
|
||||
|
||||
|
||||
\end{document}
|
Before Width: | Height: | Size: 14 KiB |
|
@ -1,12 +0,0 @@
|
|||
\documentclass[24pt]{article}
|
||||
|
||||
\pagestyle{empty}
|
||||
|
||||
\begin{document}
|
||||
|
||||
|
||||
\begin{equation}
|
||||
- \sum_{i' \in I} \frac{\partial {B^{i'}_{j_1,j_2,j} }}{\partial {\bf r}_i}
|
||||
\end{equation}
|
||||
|
||||
\end{document}
|
Before Width: | Height: | Size: 17 KiB |
|
@ -1,12 +0,0 @@
|
|||
\documentclass[24pt]{article}
|
||||
|
||||
\pagestyle{empty}
|
||||
|
||||
\begin{document}
|
||||
|
||||
|
||||
\begin{eqnarray*}
|
||||
- {\bf r}_i \otimes \sum_{i' \in I} \frac{\partial {B^{i'}_{j_1,j_2,j}}}{\partial {\bf r}_i}
|
||||
\end{eqnarray*}
|
||||
|
||||
\end{document}
|
Before Width: | Height: | Size: 2.3 KiB |
|
@ -1,10 +0,0 @@
|
|||
\documentstyle[12pt]{article}
|
||||
|
||||
\begin{document}
|
||||
|
||||
$$
|
||||
I=Lp(\theta)\frac{F^{*}F}{N}
|
||||
$$
|
||||
|
||||
\end{document}
|
||||
|
Before Width: | Height: | Size: 4.7 KiB |
|
@ -1,9 +0,0 @@
|
|||
\documentstyle[12pt]{article}
|
||||
|
||||
\begin{document}
|
||||
|
||||
$$
|
||||
F(\mathbf{k})=\sum_{j=1}^{N}f_j(\theta)exp(2\pi i \mathbf{k}\cdot \mathbf{r}_j)
|
||||
$$
|
||||
\end{document}
|
||||
|
Before Width: | Height: | Size: 4.6 KiB |
|
@ -1,9 +0,0 @@
|
|||
\documentstyle[12pt]{article}
|
||||
|
||||
\begin{document}
|
||||
|
||||
$$
|
||||
Lp(\theta)=\frac{1+cos^{2}(2\theta)}{cos(\theta)sin^{2}(\theta)}
|
||||
$$
|
||||
\end{document}
|
||||
|
Before Width: | Height: | Size: 2.2 KiB |
|
@ -1,9 +0,0 @@
|
|||
\documentstyle[12pt]{article}
|
||||
|
||||
\begin{document}
|
||||
|
||||
$$
|
||||
\frac{sin(\theta)}{\lambda}=\frac{\left | \mathbf{k} \right |}{2}
|
||||
$$
|
||||
\end{document}
|
||||
|
Before Width: | Height: | Size: 7.4 KiB |
|
@ -1,10 +0,0 @@
|
|||
\documentstyle[12pt]{article}
|
||||
|
||||
\begin{document}
|
||||
|
||||
$$
|
||||
f_j\left ( \frac{sin(\theta)}{\lambda} \right )=\sum_{i}^{4}
|
||||
a_i exp\left ( -b_i \frac{sin^{2}(\theta)}{\lambda^{2}} \right )+c
|
||||
$$
|
||||
\end{document}
|
||||
|
Before Width: | Height: | Size: 2.4 KiB |
|
@ -1,9 +0,0 @@
|
|||
\documentstyle[12pt]{article}
|
||||
\pagestyle{empty}
|
||||
\begin{document}
|
||||
|
||||
\begin{eqnarray*}
|
||||
k = AT^{n}e^{\frac{-E_{a}}{k_{B}T}}
|
||||
\end{eqnarray*}
|
||||
|
||||
\end{document}
|
Before Width: | Height: | Size: 3.3 KiB |
|
@ -1,9 +0,0 @@
|
|||
\documentclass[12pt]{article}
|
||||
|
||||
\begin{document}
|
||||
|
||||
$$
|
||||
E = U + P_t \left(V-V_0 \right) + E_{strain}
|
||||
$$
|
||||
|
||||
\end{document}
|
Before Width: | Height: | Size: 3.0 KiB |
|
@ -1,9 +0,0 @@
|
|||
\documentclass[12pt]{article}
|
||||
|
||||
\begin{document}
|
||||
|
||||
$$
|
||||
\mathbf P = P_t \mathbf I + {\mathbf S_t} \left( \mathbf h_0^{-1} \right)^t \mathbf h_{0d}
|
||||
$$
|
||||
|
||||
\end{document}
|
Before Width: | Height: | Size: 4.7 KiB |
|
@ -1,12 +0,0 @@
|
|||
\documentclass[24pt]{article}
|
||||
|
||||
\pagestyle{empty}
|
||||
\Huge
|
||||
|
||||
\begin{document}
|
||||
|
||||
\begin{eqnarray*}
|
||||
\frac{dc}{dt} &=&Ê -\alpha (K_p e + K_i \int_0^t e \, dt + K_d \frac{de}{dt} ) \\
|
||||
\end{eqnarray*}
|
||||
|
||||
\end{document}
|
Before Width: | Height: | Size: 5.4 KiB |
|
@ -1,12 +0,0 @@
|
|||
\documentclass[24pt]{article}
|
||||
|
||||
\pagestyle{empty}
|
||||
\Huge
|
||||
|
||||
\begin{document}
|
||||
|
||||
\begin{eqnarray*}
|
||||
c_n &=&Ê c_{n-1} -\alpha (K_p \tau e_n + K_i \tau^2 \sum_{i=1}^n e_i + K_d (e_n - e_{n-1}) )
|
||||
\end{eqnarray*}
|
||||
|
||||
\end{document}
|
Before Width: | Height: | Size: 3.2 KiB |
|
@ -1,8 +0,0 @@
|
|||
\documentclass[12pt]{article}
|
||||
\usepackage{amsmath}
|
||||
\begin{document}
|
||||
\begin{align*}
|
||||
\dot{\mathbf r}_i &= \mathbf v_i, \\
|
||||
\dot{\mathbf v}_i &= \frac{\mathbf f_i}{m_i} + \frac{\mathbf g_i}{m_i}.
|
||||
\end{align*}
|
||||
\end{document}
|
Before Width: | Height: | Size: 10 KiB |
|
@ -1,12 +0,0 @@
|
|||
\documentclass[12pt]{article}
|
||||
\usepackage{amsmath}
|
||||
\begin{document}
|
||||
\begin{equation*}
|
||||
\mathbf g_i =
|
||||
\begin{cases} \frac{m_i}{2} \frac{ F_{\Gamma_{k(\mathbf r_i)}}}{ K_{\Gamma_{k(\mathbf r_i)}}}
|
||||
\left(\mathbf v_i - \mathbf v_{\Gamma_{k(\mathbf r_i)}} \right) & \mbox{$k(\mathbf r_i)> 0$ (inside a reservoir),} \\
|
||||
0 & \mbox{otherwise, }
|
||||
\end{cases}
|
||||
\end{equation*}
|
||||
\end{document}
|
||||
|
Before Width: | Height: | Size: 2.9 KiB |
|
@ -1,9 +0,0 @@
|
|||
\documentstyle[12pt]{article}
|
||||
\pagestyle{empty}
|
||||
\begin{document}
|
||||
|
||||
$$
|
||||
u_{i} = u^{mech}_{i} + u^{cond}_{i} = C_{V} \theta_{i}
|
||||
$$
|
||||
|
||||
\end{document}
|
Before Width: | Height: | Size: 17 KiB |
|
@ -1,9 +0,0 @@
|
|||
\documentstyle[12pt]{article}
|
||||
\pagestyle{empty}
|
||||
\begin{document}
|
||||
|
||||
\begin{eqnarray*}
|
||||
U_{i} = \displaystyle\sum_{j=1}^{m} c_{i,j}(u_{j} + \Delta H_{f,j}) + \frac{3k_{b}T}{2} + Nk_{b}T \\
|
||||
\end{eqnarray*}
|
||||
|
||||
\end{document}
|
Before Width: | Height: | Size: 5.5 KiB |
|
@ -1,9 +0,0 @@
|
|||
\documentclass[12pt]{article}
|
||||
|
||||
\begin{document}
|
||||
|
||||
\begin{eqnarray*}
|
||||
\mu &=&\mu^{id} + \mu^{ex}
|
||||
\end{eqnarray*}
|
||||
|
||||
\end{document}
|
Before Width: | Height: | Size: 10 KiB |
|
@ -1,10 +0,0 @@
|
|||
\documentclass[12pt]{article}
|
||||
|
||||
\begin{document}
|
||||
|
||||
\begin{eqnarray*}
|
||||
\mu^{id} &=& k T \ln{\rho \Lambda^3} \\
|
||||
&=& k T \ln{\frac{\phi P \Lambda^3}{k T}}
|
||||
\end{eqnarray*}
|
||||
|
||||
\end{document}
|
Before Width: | Height: | Size: 7.3 KiB |
|
@ -1,9 +0,0 @@
|
|||
\documentclass[12pt]{article}
|
||||
|
||||
\begin{document}
|
||||
|
||||
\begin{eqnarray*}
|
||||
\Lambda &=& \sqrt{ \frac{h^2}{2 \pi m k T}}
|
||||
\end{eqnarray*}
|
||||
|
||||
\end{document}
|
Before Width: | Height: | Size: 14 KiB |
|
@ -1,13 +0,0 @@
|
|||
\documentclass[12pt]{article}
|
||||
|
||||
\usepackage{amsmath}
|
||||
|
||||
\begin{document}
|
||||
|
||||
\begin{align*}
|
||||
&{\bf F}_{j}(t) = {\bf F}^C_j(t)-\int \limits_{0}^{t} \Gamma_j(t-s) {\bf v}_j(s)~\text{d}s + {\bf F}^R_j(t) \\
|
||||
&\Gamma_j(t-s) = \sum \limits_{k=1}^{N_k} \frac{c_k}{\tau_k} e^{-(t-s)/\tau_k} \\
|
||||
&\langle{\bf F}^R_j(t),{\bf F}^R_j(s)\rangle = \text{k$_\text{B}$T} ~\Gamma_j(t-s)
|
||||
\end{align*}
|
||||
|
||||
\end{document}
|
Before Width: | Height: | Size: 6.1 KiB |
|
@ -1,9 +0,0 @@
|
|||
\documentclass[12pt]{article}
|
||||
|
||||
\begin{document}
|
||||
|
||||
$$
|
||||
T_{eff} = \lambda + \eta (H - H_0)
|
||||
$$
|
||||
|
||||
\end{document}
|
|
@ -1,40 +0,0 @@
|
|||
\documentclass[preview]{standalone}
|
||||
\usepackage{varwidth}
|
||||
\usepackage[utf8x]{inputenc}
|
||||
\usepackage{amsmath,amssymb,amsthm,bm,tikz}
|
||||
\usetikzlibrary{automata,arrows,shapes,snakes}
|
||||
\begin{document}
|
||||
\begin{varwidth}{50in}
|
||||
\begin{tikzpicture}
|
||||
|
||||
%Global
|
||||
\node (v1) at (0,6.0) [draw,thick,minimum width=0.2cm,minimum height=0.2cm] { $\bm{v} \leftarrow \bm{v}+L_v.\Delta t/2$ };
|
||||
\node (s1) at (0,4.5) [draw,thick,minimum width=0.2cm,minimum height=0.2cm] { $\bm{s} \leftarrow \bm{s}+L_s.\Delta t/2$ };
|
||||
\node (r) at (0,3.0) [draw,thick,minimum width=0.2cm,minimum height=0.2cm] { $\bm{r} \leftarrow \bm{r}+L_r.\Delta t$ };
|
||||
\node (s2) at (0,1.5) [draw,thick,minimum width=0.2cm,minimum height=0.2cm] { $\bm{s} \leftarrow \bm{s}+L_s.\Delta t/2$ };
|
||||
\node (v2) at (0,0.0) [draw,thick,minimum width=0.2cm,minimum height=0.2cm] { $\bm{v} \leftarrow \bm{v}+L_v.\Delta t/2$ };
|
||||
|
||||
\draw[line width=2pt, ->] (v1) -- (s1);
|
||||
\draw[line width=2pt, ->] (s1) -- (r);
|
||||
\draw[line width=2pt, ->] (r) -- (s2);
|
||||
\draw[line width=2pt, ->] (s2) -- (v2);
|
||||
|
||||
%Spin
|
||||
\node (s01) at (6,6.0) [draw,thick,minimum width=0.2cm,minimum height=0.2cm] {$\bm{s}_0 \leftarrow \bm{s}_0+L_{s_0}.\Delta t/4$ };
|
||||
\node (sN1) at (6,4.5) [draw,thick,minimum width=0.2cm,minimum height=0.2cm] {$\bm{s}_{\rm N-1}\leftarrow\bm{s}_{\rm N-1}+L_{s_{\rm N-1}}.\Delta t/4$};
|
||||
\node (sN) at (6,3.0) [draw,thick,minimum width=0.2cm,minimum height=0.2cm] {$\bm{s}_{\rm N} \leftarrow \bm{s}_{\rm N}+L_{s_{\rm N}}.\Delta t/2$ };
|
||||
\node (sN2) at (6,1.5) [draw,thick,minimum width=0.2cm,minimum height=0.2cm] {$\bm{s}_{\rm N-1}\leftarrow\bm{s}_{\rm N-1}+L_{s_{\rm N-1}}.\Delta t/4$};
|
||||
\node (s02) at (6,0.0) [draw,thick,minimum width=0.2cm,minimum height=0.2cm] {$\bm{s}_0 \leftarrow \bm{s}_0+L_{s_0}.\Delta t/4$ };
|
||||
|
||||
\draw[line width=2pt,dashed, ->] (s01) -- (sN1);
|
||||
\draw[line width=2pt, ->] (sN1) -- (sN);
|
||||
\draw[line width=2pt, ->] (sN) -- (sN2);
|
||||
\draw[line width=2pt,dashed, ->] (sN2) -- (s02);
|
||||
|
||||
%from Global to Spin
|
||||
\draw[line width=2pt, dashed, ->] (s1) -- (s01.west);
|
||||
\draw[line width=2pt, dashed, ->] (s1) -- (s02.west);
|
||||
|
||||
\end{tikzpicture}
|
||||
\end{varwidth}
|
||||
\end{document}
|
Before Width: | Height: | Size: 4.5 KiB |
|
@ -1,14 +0,0 @@
|
|||
\documentclass[12pt]{article}
|
||||
|
||||
\begin{document}
|
||||
|
||||
$$
|
||||
\left(\partial_t + e_{i\alpha}\partial_{\alpha}\right)f_i = -\frac{1}{\tau}\left(f_i - f_i^{eq}\right) + W_i
|
||||
$$
|
||||
|
||||
|
||||
\end{document}
|
||||
|
||||
|
||||
|
||||
|
Before Width: | Height: | Size: 2.3 KiB |
|
@ -1,14 +0,0 @@
|
|||
\documentclass[12pt]{article}
|
||||
|
||||
\begin{document}
|
||||
|
||||
$$
|
||||
{\bf F}_{j \alpha} = \gamma \left({\bf v}_n - {\bf u}_f \right) \zeta_{j\alpha}
|
||||
$$
|
||||
|
||||
|
||||
\end{document}
|
||||
|
||||
|
||||
|
||||
|
Before Width: | Height: | Size: 4.7 KiB |
|
@ -1,14 +0,0 @@
|
|||
\documentclass[12pt]{article}
|
||||
|
||||
\begin{document}
|
||||
|
||||
$$
|
||||
\gamma = \frac{2m_um_v}{m_u+m_v}\left(\frac{1}{\Delta t_{collision}}\right)
|
||||
$$
|
||||
|
||||
|
||||
\end{document}
|
||||
|
||||
|
||||
|
||||
|
Before Width: | Height: | Size: 9.1 KiB |
|
@ -1,16 +0,0 @@
|
|||
\documentclass[12pt]{article}
|
||||
|
||||
\begin{document}
|
||||
|
||||
$$
|
||||
\partial_t \rho + \partial_{\beta}\left(\rho u_{\beta}\right)= 0
|
||||
$$
|
||||
$$
|
||||
\partial_t\left(\rho u_{\alpha}\right) + \partial_{\beta}\left(\rho u_{\alpha} u_{\beta}\right) = \partial_{\beta}\sigma_{\alpha \beta} + F_{\alpha} + \partial_{\beta}\left(\eta_{\alpha \beta \gamma \nu}\partial_{\gamma} u_{\nu}\right)
|
||||
$$
|
||||
|
||||
\end{document}
|
||||
|
||||
|
||||
|
||||
|
Before Width: | Height: | Size: 3.4 KiB |
|
@ -1,17 +0,0 @@
|
|||
\documentclass[12pt]{article}
|
||||
|
||||
\begin{document}
|
||||
|
||||
$$
|
||||
\rho = \displaystyle\sum\limits_{i} f_i
|
||||
$$
|
||||
$$
|
||||
\rho u_{\alpha} = \displaystyle\sum\limits_{i} f_i e_{i\alpha}
|
||||
$$
|
||||
|
||||
|
||||
\end{document}
|
||||
|
||||
|
||||
|
||||
|
Before Width: | Height: | Size: 2.5 KiB |
|
@ -1,14 +0,0 @@
|
|||
\documentclass[12pt]{article}
|
||||
|
||||
\begin{document}
|
||||
|
||||
$$
|
||||
\sigma_{\alpha \beta} = -P_{\alpha \beta} = -\rho a_0 \delta_{\alpha \beta}
|
||||
$$
|
||||
|
||||
|
||||
\end{document}
|
||||
|
||||
|
||||
|
||||
|
Before Width: | Height: | Size: 6.4 KiB |
|
@ -1,14 +0,0 @@
|
|||
\documentclass[12pt]{article}
|
||||
|
||||
\begin{document}
|
||||
|
||||
$$
|
||||
\eta_{\alpha \beta \gamma \nu} = \eta\left[\delta_{\alpha \gamma}\delta_{\beta \nu} + \delta_{\alpha \nu}\delta_{\beta \gamma} - \frac{2}{3}\delta_{\alpha \beta}\delta_{\gamma \nu}\right] + \Lambda \delta_{\alpha \beta}\delta_{\gamma \nu}
|
||||
$$
|
||||
|
||||
|
||||
\end{document}
|
||||
|
||||
|
||||
|
||||
|
Before Width: | Height: | Size: 26 KiB |
|
@ -1,21 +0,0 @@
|
|||
\documentclass[12pt]{article}
|
||||
|
||||
\begin{document}
|
||||
|
||||
$$
|
||||
v(t+\frac{\Delta t}{2}) = v(t) + \frac{\Delta t}{2}\cdot a(t),
|
||||
$$
|
||||
|
||||
$$
|
||||
r(t+\Delta t) = r(t) + \Delta t\cdot v(t+\frac{\Delta t}{2}),
|
||||
$$
|
||||
|
||||
$$
|
||||
a(t+\Delta t) = \frac{1}{m}\cdot F\left[ r(t+\Delta t), v(t) +\lambda \cdot \Delta t\cdot a(t)\right],
|
||||
$$
|
||||
|
||||
$$
|
||||
v(t+\Delta t) = v(t+\frac{\Delta t}{2}) + \frac{\Delta t}{2}\cdot a(t+\Delta t)
|
||||
$$
|
||||
|
||||
\end{document}
|
Before Width: | Height: | Size: 67 KiB |
|
@ -1,36 +0,0 @@
|
|||
\documentclass[24pt]{article}
|
||||
|
||||
\pagestyle{empty}
|
||||
\Huge
|
||||
|
||||
\begin{document}
|
||||
|
||||
\mathchardef\mhyphen="2D
|
||||
|
||||
% The imaginary unit
|
||||
\providecommand*{\iu}%
|
||||
{\ensuremath{{\rm i}}}
|
||||
|
||||
|
||||
\begin{eqnarray*}
|
||||
\exp \left(\iu{} L \Delta t \right) &=&Ê
|
||||
\exp \left(\iu{} L_{\rm T\mhyphen baro} \frac{\Delta t}{2} \right)
|
||||
\exp \left(\iu{} L_{\rm T\mhyphen part} \frac{\Delta t}{2} \right)
|
||||
\exp \left(\iu{} L_{\epsilon , 2} \frac{\Delta t}{2} \right)
|
||||
\exp \left(\iu{} L_{2}^{(2)} \frac{\Delta t}{2} \right) \\
|
||||
&&\times \left[
|
||||
\exp \left(\iu{} L_{2}^{(1)} \frac{\Delta t}{2n} \right)
|
||||
\exp \left(\iu{} L_{\epsilon , 1} \frac{\Delta t}{2n} \right)
|
||||
\exp \left(\iu{} L_1 \frac{\Delta t}{n} \right)
|
||||
\exp \left(\iu{} L_{\epsilon , 1} \frac{\Delta t}{2n} \right)
|
||||
\exp \left(\iu{} L_{2}^{(1)} \frac{\Delta t}{2n} \right)
|
||||
\right]^n \\
|
||||
&&\times
|
||||
\exp \left(\iu{} L_{2}^{(2)} \frac{\Delta t}{2} \right)
|
||||
\exp \left(\iu{} L_{\epsilon , 2} \frac{\Delta t}{2} \right)
|
||||
\exp \left(\iu{} L_{\rm T\mhyphen part} \frac{\Delta t}{2} \right)
|
||||
\exp \left(\iu{} L_{\rm T\mhyphen baro} \frac{\Delta t}{2} \right) \\
|
||||
&&+ \mathcal{O} \left(\Delta t^3 \right)
|
||||
\end{eqnarray*}
|
||||
|
||||
\end{document}
|
Before Width: | Height: | Size: 7.3 KiB |
|
@ -1,9 +0,0 @@
|
|||
\documentstyle[12pt]{article}
|
||||
|
||||
\begin{document}
|
||||
|
||||
$$
|
||||
T_t - T = \frac{\left(\frac{1}{2}\left(P + P_0\right)\left(V_0 - V\right) + E_0 - E\right)}{N_{dof} k_B } = Delta
|
||||
$$
|
||||
|
||||
\end{document}
|
Before Width: | Height: | Size: 25 KiB |