git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@643 f3b2605a-c512-4ea7-a41b-209d697bcdaa

This commit is contained in:
sjplimp 2007-06-22 17:00:20 +00:00
parent cea0208207
commit f93cd8f7ad
5 changed files with 53 additions and 32 deletions

View File

@ -1,7 +1,7 @@
.if !'\*(.T'ps' .if !'\*(.T'html' .tm warning: eqn should have been given a `-T\*(.T' option
.if '\*(.T'html' .if !'ps'ps' .tm warning: eqn should have been given a `-Tps' option
.if '\*(.T'html' .if !'ps'ps' .tm warning: (it is advisable to invoke groff via: groff -Thtml -e)
.lf 1 /usr/share/groff/1.18.1.1/tmac/eqnrc
.lf 1 /usr/share/groff/1.18.1/tmac/eqnrc
.\" Startup file for eqn.
.EQ
.nr 0C \n(.C
@ -11,9 +11,9 @@
.lf 63
.EN
.lf 1 asphere_vis.manpage
.TH asphere_vis 1 "June 11, 2007" "asphere_vis (Graphics Utilities) 0.1" "Graphics Utilities"
.TH asphere_vis 1 "June 22, 2007" "asphere_vis (Graphics Utilities) 0.1" "Graphics Utilities"
.SH NAME
\fBasphere_vis\fR - Tools for LAMMPS ellipsoid trajectory visualization in PyMol.
\fBasphere_vis\fR - Tools for ellipsoid visualization in PyMol of a LAMMPS trajectory.
.PD 2
.SH VERSION
.PD 1
@ -22,12 +22,12 @@ Version 0.1
.SH SYNOPSIS
.PD 1
.TP
\fBasphere_vis\fR input_data_file input_dump_file output_py_file [\fB-b\fR] [\fB-c\fR \fIcolor_file\fR] [\fB-d\fR] [\fB-f\fR \fImax_frame\fR] [\fB-h\fR] [\fB-i\fR \fIstart_frame\fR \fIskip\fR \fIend_frame\fR] [\fB-n\fR \fInotice_level\fR] [\fB-r\fR \fIellip_res\fR] [\fB-s\fR]
\fBasphere_vis\fR input_file dump_file output_py_file [\fB-b\fR] [\fB-c\fR \fIcolor_file\fR] [\fB-d\fR] [\fB-f\fR \fImax_frame\fR] [\fB-h\fR] [\fB-i\fR \fIstart_frame\fR \fIskip\fR \fIend_frame\fR] [\fB-n\fR \fInotice_level\fR] [\fB-r\fR \fIellip_res\fR] [\fB-s\fR]
.br
.PD 2
.SH DESCRIPTION
.PD 1
Tool for LAMMPS trajectory visualization in PyMol. The input is a LAMMPS 'data' file or a 'in' file with ellipsoid semi-axes specified using the ellipsoid command. The trajectory is input from a 'dump' file that must be generated using a custom style with the following arguments in order:
Tool for ellipsoid visualization in PyMol of a LAMMPS trajectory. The \fIinput_file\fR is a LAMMPS data file with a 'Shapes' section or a LAMMPS input script file with ellipsoid diameters specified using the 'shape' command. The trajectory is input from \fIdump_file\fR that must be generated using a LAMMPS dump_style custom command with the following arguments in order:
.PD 0
.PP
.PD 1
@ -53,10 +53,10 @@ When used with \fB-s\fR, the option will number the filenames based on the frame
.TP
.PP
.PD 1
Color the atom_types and set transparency based on the input file. The input file contains a space delimited set sequence of the color for an atom followed by the alpha. The color should be the string name and the alpha should be between 0 and 1.
Color the atom_types and set transparency based on the color file. The color file contains a space delimited set sequence of the color for an atom followed by the alpha. The color should be the string name and the alpha should be between 0 and 1.
.TP
\fB-d\fR
Use a LAMMPS input file rather than a data file for extracting atom type information. The input filename is specified as \fIinput_data_file\fR.
Use a LAMMPS input script rather than a data file for extracting atom shape information. The input script is specified as \fIinput_file\fR.
.TP
\fB-f\fR \fImax_frame\fR
.PD 0
@ -107,7 +107,7 @@ Set the degree of program output. Use:
.TP
.PP
.PD 1
Resolution of ellipsoids in trajectory. The number of triangles per ellipsoid is equal to 2*(\fIellip_res\fR^2). Default is 10.
Resolution of ellipsoids in PyMol. The number of triangles per ellipsoid is equal to 2*(\fIellip_res\fR^2). Default is 10.
.TP
\fB-s\fR
Output the results into separate .py files. The filename and extension for the output files is taken from \fIoutput_py_file\fR.

View File

@ -1,6 +1,6 @@
.TH asphere_vis 1 "June 11, 2007" "asphere_vis (Graphics Utilities) 0.1" "Graphics Utilities"
.TH asphere_vis 1 "June 22, 2007" "asphere_vis (Graphics Utilities) 0.1" "Graphics Utilities"
.SH NAME
\fBasphere_vis\fR - Tools for LAMMPS ellipsoid trajectory visualization in PyMol.
\fBasphere_vis\fR - Tools for ellipsoid visualization in PyMol of a LAMMPS trajectory.
.PD 2
.SH VERSION
.PD 1
@ -9,12 +9,12 @@ Version 0.1
.SH SYNOPSIS
.PD 1
.TP
\fBasphere_vis\fR input_data_file input_dump_file output_py_file [\fB-b\fR] [\fB-c\fR \fIcolor_file\fR] [\fB-d\fR] [\fB-f\fR \fImax_frame\fR] [\fB-h\fR] [\fB-i\fR \fIstart_frame\fR \fIskip\fR \fIend_frame\fR] [\fB-n\fR \fInotice_level\fR] [\fB-r\fR \fIellip_res\fR] [\fB-s\fR]
\fBasphere_vis\fR input_file dump_file output_py_file [\fB-b\fR] [\fB-c\fR \fIcolor_file\fR] [\fB-d\fR] [\fB-f\fR \fImax_frame\fR] [\fB-h\fR] [\fB-i\fR \fIstart_frame\fR \fIskip\fR \fIend_frame\fR] [\fB-n\fR \fInotice_level\fR] [\fB-r\fR \fIellip_res\fR] [\fB-s\fR]
.br
.PD 2
.SH DESCRIPTION
.PD 1
Tool for LAMMPS trajectory visualization in PyMol. The input is a LAMMPS 'data' file or a 'in' file with ellipsoid semi-axes specified using the ellipsoid command. The trajectory is input from a 'dump' file that must be generated using a custom style with the following arguments in order:
Tool for ellipsoid visualization in PyMol of a LAMMPS trajectory. The \fIinput_file\fR is a LAMMPS data file with a 'Shapes' section or a LAMMPS input script file with ellipsoid diameters specified using the 'shape' command. The trajectory is input from \fIdump_file\fR that must be generated using a LAMMPS dump_style custom command with the following arguments in order:
.PD 0
.PP
.PD 1
@ -40,10 +40,10 @@ When used with \fB-s\fR, the option will number the filenames based on the frame
.TP
.PP
.PD 1
Color the atom_types and set transparency based on the input file. The input file contains a space delimited set sequence of the color for an atom followed by the alpha. The color should be the string name and the alpha should be between 0 and 1.
Color the atom_types and set transparency based on the color file. The color file contains a space delimited set sequence of the color for an atom followed by the alpha. The color should be the string name and the alpha should be between 0 and 1.
.TP
\fB-d\fR
Use a LAMMPS input file rather than a data file for extracting atom type information. The input filename is specified as \fIinput_data_file\fR.
Use a LAMMPS input script rather than a data file for extracting atom shape information. The input script is specified as \fIinput_file\fR.
.TP
\fB-f\fR \fImax_frame\fR
.PD 0
@ -94,7 +94,7 @@ Set the degree of program output. Use:
.TP
.PP
.PD 1
Resolution of ellipsoids in trajectory. The number of triangles per ellipsoid is equal to 2*(\fIellip_res\fR^2). Default is 10.
Resolution of ellipsoids in PyMol. The number of triangles per ellipsoid is equal to 2*(\fIellip_res\fR^2). Default is 10.
.TP
\fB-s\fR
Output the results into separate .py files. The filename and extension for the output files is taken from \fIoutput_py_file\fR.

View File

@ -339,20 +339,20 @@ void Describe(CommandLine &cl,ostream &out) {
void HandleArgs(CommandLine &cl, int argc, char *argv[], Error *error) {
// Arguments
cl.addmanditory(' ',3);
cl.addargname(' ',"input_data_file");
cl.addargname(' ',"input_dump_file");
cl.addargname(' ',"input_file");
cl.addargname(' ',"dump_file");
cl.addargname(' ',"output_py_file");
cl.add('d',0);
cl.adddescription('d',"Use a LAMMPS input file rather than a data file for extracting atom type information. The input filename is specified as input_data_file.");
cl.adddescription('d',"Use a LAMMPS input script rather than a data file for extracting atom shape information. The input script is specified as input_file.");
cl.add('f',1);
cl.addargname('f',"max_frame");
cl.adddescription('f',"Do not write more than max_frame frames to the output file.");
cl.add('r',1);
cl.addargname('r',"ellip_res");
cl.adddescription('r',"Resolution of ellipsoids in trajectory. The number of triangles per ellipsoid is equal to 2*(ellip_res^2). Default is 10.");
cl.adddescription('r',"Resolution of ellipsoids in PyMol. The number of triangles per ellipsoid is equal to 2*(ellip_res^2). Default is 10.");
cl.add('c',1);
cl.addargname('c',"color_file");
cl.adddescription('c',"Color the atom_types and set transparency based on the input file. The input file contains a space delimited set sequence of the color for an atom followed by the alpha. The color should be the string name and the alpha should be between 0 and 1.");
cl.adddescription('c',"Color the atom_types and set transparency based on the color file. The color file contains a space delimited set sequence of the color for an atom followed by the alpha. The color should be the string name and the alpha should be between 0 and 1.");
cl.add('s',0);
cl.adddescription('s',"Output the results into separate .py files. The filename and extension for the output files is taken from output_py_file.");
cl.add('i',3);
@ -371,17 +371,17 @@ void HandleArgs(CommandLine &cl, int argc, char *argv[], Error *error) {
cl.adddescription('n',"Set the degree of program output. Use: \n\n\t-n 0\tNo output\n\t-n 10\tNormal program output\n\t-n 20\tParameters useful for reproducing the results\n\t-n 30\tAll output");
// Short Description
cl.addtoman_chapter("NAME","Tools for LAMMPS ellipsoid trajectory visualization in PyMol.");
cl.addtoman_chapter("NAME","Tools for ellipsoid visualization in PyMol of a LAMMPS trajectory.");
// Version
cl.addtoman_chapter("VERSION","Version 0.1");
// Full Description
const string desc[5]={
"Tool for LAMMPS trajectory visualization in PyMol. The input is a LAMMPS ",
"'data' file or a 'in' file with ellipsoid semi-axes specified using the ",
"ellipsoid command. The trajectory is input from a 'dump' file that must ",
"be generated using a custom style with the following arguments in order:\n",
"Tool for ellipsoid visualization in PyMol of a LAMMPS trajectory. The input_file is a LAMMPS ",
"data file with a 'Shapes' section or a LAMMPS input script file with ellipsoid diameters specified using the ",
"'shape' command. The trajectory is input from dump_file that must ",
"be generated using a LAMMPS dump_style custom command with the following arguments in order:\n",
".TP\\fItag type x y z quatw quati quatj quatk\\fR\n"
};
cl.addtoman_chapter("DESCRIPTION",5,desc);

View File

@ -1886,6 +1886,12 @@ void angle(FILE *fp, Data &data)
fread(&data.angle_harmonic_k[1],sizeof(double),data.nangletypes,fp);
fread(&data.angle_harmonic_theta0[1],sizeof(double),data.nangletypes,fp);
} else if (strcmp(data.angle_style,"hybrid") == 0) {
int nstyles = read_int(fp);
for (int i = 0; i < nstyles; i++)
char *substyle = read_char(fp);
} else {
printf("ERROR: Unknown angle style %s\n",data.angle_style);
exit(1);
@ -2065,6 +2071,12 @@ void dihedral(FILE *fp, Data &data)
fread(&data.dihedral_opls_k3[1],sizeof(double),data.ndihedraltypes,fp);
fread(&data.dihedral_opls_k4[1],sizeof(double),data.ndihedraltypes,fp);
} else if (strcmp(data.dihedral_style,"hybrid") == 0) {
int nstyles = read_int(fp);
for (int i = 0; i < nstyles; i++)
char *substyle = read_char(fp);
} else {
printf("ERROR: Unknown dihedral style %s\n",data.dihedral_style);
exit(1);
@ -2128,6 +2140,12 @@ void improper(FILE *fp, Data &data)
fread(&data.improper_harmonic_chi[1],sizeof(double),
data.nimpropertypes,fp);
} else if (strcmp(data.improper_style,"hybrid") == 0) {
int nstyles = read_int(fp);
for (int i = 0; i < nstyles; i++)
char *substyle = read_char(fp);
} else {
printf("ERROR: Unknown improper style %s\n",data.improper_style);
exit(1);
@ -2361,10 +2379,11 @@ void Data::write(FILE *fp)
if (angle_style) {
double PI = 3.1415926; // convert back to degrees
if (strcmp(angle_style,"none") != 0)
if ((strcmp(angle_style,"none") != 0) &&
(strcmp(angle_style,"hybrid") != 0))
fprintf(fp,"\nAngle Coeffs\n\n");
if (strcmp(angle_style,"charmm") == 0) {
else if (strcmp(angle_style,"charmm") == 0) {
for (int i = 1; i <= nangletypes; i++)
fprintf(fp,"%d %g %g %g %g\n",i,
angle_charmm_k[i],angle_charmm_theta0[i]/PI*180.0,
@ -2403,10 +2422,11 @@ void Data::write(FILE *fp)
if (dihedral_style) {
double PI = 3.1415926; // convert back to degrees
if (strcmp(dihedral_style,"none") != 0)
if ((strcmp(dihedral_style,"none") != 0) &&
(strcmp(dihedral_style,"hybrid") != 0))
fprintf(fp,"\nDihedral Coeffs\n\n");
if (strcmp(dihedral_style,"charmm") == 0) {
else if (strcmp(dihedral_style,"charmm") == 0) {
for (int i = 1; i <= ndihedraltypes; i++)
fprintf(fp,"%d %g %d %d %g\n",i,
dihedral_charmm_k[i],dihedral_charmm_multiplicity[i],
@ -2485,10 +2505,11 @@ void Data::write(FILE *fp)
if (improper_style) {
double PI = 3.1415926; // convert back to degrees
if (strcmp(improper_style,"none") != 0)
if ((strcmp(improper_style,"none") != 0) &&
(strcmp(improper_style,"hybrid") != 0))
fprintf(fp,"\nImproper Coeffs\n\n");
if (strcmp(improper_style,"class2") == 0) {
else if (strcmp(improper_style,"class2") == 0) {
for (int i = 1; i <= nimpropertypes; i++)
fprintf(fp,"%d %g %g\n",i,
improper_class2_k0[i],improper_class2_chi0[i]/PI*180.0);