remove meam and reax from documentation

This commit is contained in:
Axel Kohlmeyer 2018-12-10 14:38:25 -05:00
parent dedc6cf20c
commit e86b933862
22 changed files with 41 additions and 366 deletions

View File

@ -36,7 +36,6 @@ This is the list of packages that may require additional steps.
"OPT"_#opt,
"POEMS"_#poems,
"PYTHON"_#python,
"REAX"_#reax,
"VORONOI"_#voronoi,
"USER-ATC"_#user-atc,
"USER-AWPMD"_#user-awpmd,
@ -536,45 +535,6 @@ build fails.
:line
REAX package :h4,link(reax)
NOTE: the use of the REAX package and its "pair_style
reax"_pair_reax.html command is discouraged, as it is no longer
maintained. Please use the USER-REAXC package and its "pair_style
reax/c"_pair_reaxc.html command instead, and possibly its KOKKOS
enabled variant (pair_style reax/c/kk), which has a more robust memory
management. See the "pair_style reax/c"_pair_reaxc.html doc page for
details.
[CMake build]:
No additional settings are needed besides "-D PKG_REAX=yes".
[Traditional make]:
Before building LAMMPS, you must build the REAX library in lib/reax.
You can do this manually if you prefer; follow the instructions in
lib/reax/README. You can also do it in one step from the lammps/src
dir, using a command like these, which simply invoke the
lib/reax/Install.py script with the specified args:
make lib-reax # print help message
make lib-reax args="-m serial" # build with GNU Fortran compiler (settings as with "make serial")
make lib-reax args="-m mpi" # build with default MPI Fortran compiler (settings as with "make mpi")
make lib-reax args="-m ifort" # build with Intel ifort compiler :pre
The build should produce two files: lib/reax/libreax.a and
lib/reax/Makefile.lammps. The latter is copied from an existing
Makefile.lammps.* and has settings needed to link C++ (LAMMPS) with
Fortran (REAX library). Typically the two compilers used for LAMMPS
and the REAX library need to be consistent (e.g. both Intel or both
GNU compilers). If necessary, you can edit/create a new
lib/reax/Makefile.machine file for your system, which should define an
EXTRAMAKE variable to specify a corresponding Makefile.lammps.machine
file.
:line
VORONOI package :h4,link(voronoi)
To build with this package, you must download and build the "Voro++
@ -621,8 +581,8 @@ The USER-ATC package requires the MANYBODY package also be installed.
[CMake build]:
No additional settings are needed besides "-D PKG_REAX=yes" and "-D
PKG_MANYBODY=yes".
No additional settings are needed besides "-D PKG_USER-ATC=yes"
and "-D PKG_MANYBODY=yes".
[Traditional make]:

View File

@ -47,7 +47,6 @@ packages:
"OPT"_Build_extras.html#opt,
"POEMS"_Build_extras.html#poems,
"PYTHON"_Build_extras.html#python,
"REAX"_Build_extras.html#reax,
"VORONOI"_Build_extras.html#voronoi,
"USER-ATC"_Build_extras.html#user-atc,
"USER-AWPMD"_Build_extras.html#user-awpmd,

View File

@ -169,8 +169,7 @@ OPT.
"qmmm"_fix_qmmm.html,
"qtb"_fix_qtb.html,
"rattle"_fix_shake.html,
"reax/bonds"_fix_reax_bonds.html,
"reax/c/bonds (k)"_fix_reax_bonds.html,
"reax/c/bonds (k)"_fix_reaxc_bonds.html,
"reax/c/species (k)"_fix_reaxc_species.html,
"recenter"_fix_recenter.html,
"restrain"_fix_restrain.html,

View File

@ -160,8 +160,7 @@ OPT.
"lubricateU/poly"_pair_lubricateU.html,
"mdpd"_pair_meso.html,
"mdpd/rhosum"_pair_meso.html,
"meam"_pair_meam.html,
"meam/c"_pair_meam.html,
"meam/c"_pair_meamc.html,
"meam/spline (o)"_pair_meam_spline.html,
"meam/sw/spline"_pair_meam_sw_spline.html,
"mgpt"_pair_mgpt.html,

View File

@ -23,8 +23,8 @@ install the Windows MPI package (MPICH2 from Argonne National Labs),
needed to run in parallel.
The LAMMPS binaries contain all optional packages included in the
source distribution except: KIM, REAX, KOKKOS, USER-INTEL,
and USER-QMMM. The serial version also does not include the MPIIO and
source distribution except: KIM, KOKKOS, USER-INTEL, and USER-QMMM.
The serial version also does not include the MPIIO and
USER-LB packages. GPU support is provided for OpenCL.
The installer site also has instructions on how to run LAMMPS under

View File

@ -45,7 +45,6 @@ as contained in the file name.
"LATTE"_#PKG-LATTE,
"MANYBODY"_#PKG-MANYBODY,
"MC"_#PKG-MC,
"MEAM"_#PKG-MEAM,
"MESSAGE"_#PKG-MESSAGE,
"MISC"_#PKG-MISC,
"MOLECULE"_#PKG-MOLECULE,
@ -533,37 +532,6 @@ http://lammps.sandia.gov/movies.html#gcmc :ul
:line
MEAM package :link(PKG-MEAM),h4
[Contents:]
A pair style for the modified embedded atom (MEAM) potential.
Please note that the use of the MEAM package is discouraged as
it has been superseded by the "USER-MEAMC"_#PKG-USER-MEAMC package,
which is a direct translation of the MEAM package to C++.
USER-MEAMC contains additional optimizations making it run faster
than MEAM on most machines, while providing the identical features
and user interface.
[Author:] Greg Wagner (Northwestern U) while at Sandia.
[Install:]
This package has "specific installation
instructions"_Build_extras.html#gpu on the "Build
extras"_Build_extras.html doc page.
[Supporting info:]
src/MEAM: filenames -> commands
src/meam/README
lib/meam/README
"pair_style meam"_pair_meam.html
examples/meam :ul
:line
MESSAGE package :link(PKG-MESSAGE),h4
[Contents:]
@ -1552,10 +1520,9 @@ USER-MEAMC package :link(PKG-USER-MEAMC),h4
[Contents:]
A pair style for the modified embedded atom (MEAM) potential
translated from the Fortran version in the "MEAM"_#PKG-MEAM package
to plain C++. In contrast to the MEAM package, no library
needs to be compiled and the pair style can be instantiated
multiple times.
translated from the Fortran version in the (obsolete) "MEAM" package
to plain C++. The USER-MEAMC fully replaces the MEAM package, which
has been removed from LAMMPS after the 12 December 2018 version.
[Author:] Sebastian Huetter, (Otto-von-Guericke University Magdeburg)
based on the Fortran version of Greg Wagner (Northwestern U) while at
@ -1565,8 +1532,8 @@ Sandia.
src/USER-MEAMC: filenames -> commands
src/USER-MEAMC/README
"pair_style meam/c"_pair_meam.html
examples/meam :ul
"pair_style meam/c"_pair_meamc.html
examples/meamc :ul
:line

View File

@ -46,7 +46,6 @@ Package, Description, Doc page, Example, Library
"LATTE"_Packages_details.html#PKG-LATTE, quantum DFTB forces via LATTE, "fix latte"_fix_latte.html, latte, ext
"MANYBODY"_Packages_details.html#PKG-MANYBODY, many-body potentials, "pair_style tersoff"_pair_tersoff.html, shear, no
"MC"_Packages_details.html#PKG-MC, Monte Carlo options, "fix gcmc"_fix_gcmc.html, n/a, no
"MEAM"_Packages_details.html#PKG-MEAM, modified EAM potential, "pair_style meam"_pair_meam.html, meam, int
"MESSAGE"_Packages_details.html#PKG-MESSAGE, client/server messaging, "message"_message.html, message, int
"MISC"_Packages_details.html#PKG-MISC, miscellaneous single-file commands, n/a, no, no
"MOLECULE"_Packages_details.html#PKG-MOLECULE, molecular system force fields, "Howto bioFF"_Howto_bioFF.html, peptide, no

View File

@ -53,7 +53,7 @@ Package, Description, Doc page, Example, Library
"USER-INTEL"_Packages_details.html#PKG-USER-INTEL, optimized Intel CPU and KNL styles,"Speed intel"_Speed_intel.html, "Benchmarks"_http://lammps.sandia.gov/bench.html, no
"USER-LB"_Packages_details.html#PKG-USER-LB, Lattice Boltzmann fluid,"fix lb/fluid"_fix_lb_fluid.html, USER/lb, no
"USER-MANIFOLD"_Packages_details.html#PKG-USER-MANIFOLD, motion on 2d surfaces,"fix manifoldforce"_fix_manifoldforce.html, USER/manifold, no
"USER-MEAMC"_Packages_details.html#PKG-USER-MEAMC, modified EAM potential (C++), "pair_style meam/c"_pair_meam.html, meam, no
"USER-MEAMC"_Packages_details.html#PKG-USER-MEAMC, modified EAM potential (C++), "pair_style meam/c"_pair_meamc.html, meamc, no
"USER-MESO"_Packages_details.html#PKG-USER-MESO, mesoscale DPD models, "pair_style edpd"_pair_meso.html, USER/meso, no
"USER-MGPT"_Packages_details.html#PKG-USER-MGPT, fast MGPT multi-ion potentials, "pair_style mgpt"_pair_mgpt.html, USER/mgpt, no
"USER-MISC"_Packages_details.html#PKG-USER-MISC, single-file contributions, USER-MISC/README, USER/misc, no

View File

@ -486,7 +486,7 @@ README for more info on Pizza.py and how to use these scripts.
reax tool :h4,link(reax_tool)
The reax sub-directory contains stand-alond codes that can
post-process the output of the "fix reax/bonds"_fix_reax_bonds.html
post-process the output of the "fix reax/c/bonds"_fix_reaxc_bonds.html
command from a LAMMPS simulation using "ReaxFF"_pair_reax.html. See
the README.txt file for more info.

View File

@ -312,9 +312,8 @@ accelerated styles exist.
"qmmm"_fix_qmmm.html -
"qtb"_fix_qtb.html -
"rattle"_fix_shake.html - RATTLE constraints on bonds and/or angles
"reax/bonds"_fix_reax_bonds.html - write out ReaxFF bond information
"reax/c/bonds"_fix_reax_bonds.html -
"reax/c/species"_fix_reaxc_species.html -
"reax/c/bonds"_fix_reaxc_bonds.html - write out ReaxFF bond information
"reax/c/species"_fix_reaxc_species.html - write out ReaxFF molecule information
"recenter"_fix_recenter.html - constrain the center-of-mass position of a group of atoms
"restrain"_fix_restrain.html - constrain a bond, angle, dihedral
"rhok"_fix_rhok.html -

View File

@ -6,13 +6,12 @@
:line
fix reax/bonds command :h3
fix reax/c/bonds command :h3
fix reax/c/bonds/kk command :h3
[Syntax:]
fix ID group-ID reax/bonds Nevery filename :pre
fix ID group-ID reaxc/bonds Nevery filename :pre
ID, group-ID are documented in "fix"_fix.html command
reax/bonds = style name of this fix command
@ -21,16 +20,14 @@ filename = name of output file :ul
[Examples:]
fix 1 all reax/bonds 100 bonds.tatb
fix 1 all reax/c/bonds 100 bonds.reaxc :pre
[Description:]
Write out the bond information computed by the ReaxFF potential
specified by "pair_style reax"_pair_reax.html or "pair_style
reax/c"_pair_reaxc.html in the exact same format as the original
stand-alone ReaxFF code of Adri van Duin. The bond information is
written to {filename} on timesteps that are multiples of {Nevery},
Write out the bond information computed by the ReaxFF potential specified
by "pair_style reax/c"_pair_reaxc.html in the exact same format as the
original stand-alone ReaxFF code of Adri van Duin. The bond information
is written to {filename} on timesteps that are multiples of {Nevery},
including timestep 0. For time-averaged chemical species analysis,
please see the "fix reaxc/c/species"_fix_reaxc_species.html command.
@ -94,12 +91,8 @@ more instructions on how to use the accelerated styles effectively.
[Restrictions:]
The fix reax/bonds command requires that the "pair_style
reax"_pair_reax.html be invoked. This fix is part of the REAX
package. It is only enabled if LAMMPS was built with that package,
which also requires the REAX library be built and linked with LAMMPS.
The fix reax/c/bonds command requires that the "pair_style
reax/c"_pair_reaxc.html be invoked. This fix is part of the
reax/c"_pair_reaxc.html is invoked. This fix is part of the
USER-REAXC package. It is only enabled if LAMMPS was built with that
package. See the "Build package"_Build_package.html doc page for more
info.
@ -109,7 +102,6 @@ To write gzipped bond files, you must compile LAMMPS with the
[Related commands:]
"pair_style reax"_pair_reax.html, "pair_style
reax/c"_pair_reaxc.html, "fix reax/c/species"_fix_reaxc_species.html
"pair_style reax/c"_pair_reaxc.html, "fix reax/c/species"_fix_reaxc_species.html
[Default:] none

View File

@ -161,7 +161,7 @@ more instructions on how to use the accelerated styles effectively.
[Restrictions:]
The fix species currently only works with "pair_style
The "fix reax/c/species" currently only works with "pair_style
reax/c"_pair_reaxc.html and it requires that the "pair_style
reax/c"_pair_reaxc.html be invoked. This fix is part of the
USER-REAXC package. It is only enabled if LAMMPS was built with that
@ -177,8 +177,7 @@ It should be possible to extend it to other reactive pair_styles (such as
[Related commands:]
"pair_style reax/c"_pair_reaxc.html, "fix
reax/bonds"_fix_reax_bonds.html
"pair_style reax/c"_pair_reaxc.html, "fix reax/c/bonds"_fix_reaxc_bonds.html
[Default:]

View File

@ -135,7 +135,7 @@ Fixes :h1
fix_qeq_reax
fix_qmmm
fix_qtb
fix_reax_bonds
fix_reaxc_bonds
fix_reaxc_species
fix_recenter
fix_restrain

View File

@ -598,7 +598,7 @@ pair_lj_soft.html
pair_lubricate.html
pair_lubricateU.html
pair_mdf.html
pair_meam.html
pair_meamc.html
pair_meam_spline.html
pair_meam_sw_spline.html
pair_meso.html

View File

@ -70,15 +70,10 @@ other pairwise potential for several different atom type pairs in your
model, then you should just list the sub-style once and use the
pair_coeff command to assign parameters for the different type pairs.
NOTE: There are two exceptions to this option to list an individual
pair style multiple times. The first is for pair styles implemented
as Fortran libraries: "pair_style meam"_pair_meam.html and "pair_style
reax"_pair_reax.html ("pair_style reax/c"_pair_reaxc.html is OK).
This is because unlike a C++ class, they can not be instantiated
multiple times, due to the manner in which they were coded in Fortran.
The second is for GPU-enabled pair styles in the GPU package. This is
b/c the GPU package also currently assumes that only one instance of a
pair style is being used.
NOTE: There is one exception to this option to list an individual
pair style multiple times: GPU-enabled pair styles in the GPU package.
This is because the GPU package currently assumes that only one
instance of a pair style is being used.
In the pair_coeff commands, the name of a pair style must be added
after the I,J type specification, with the remaining coefficients

View File

@ -152,7 +152,7 @@ info.
[Related commands:]
"pair_coeff"_pair_coeff.html, "pair_style meam"_pair_meam.html
"pair_coeff"_pair_coeff.html, "pair_style meam/c"_pair_meamc.html
[Default:] none

View File

@ -116,7 +116,7 @@ info.
[Related commands:]
"pair_coeff"_pair_coeff.html, "pair_style meam"_pair_meam.html,
"pair_coeff"_pair_coeff.html, "pair_style meam/c"_pair_meamc.html,
"pair_style meam/spline"_pair_meam_spline.html
[Default:] none

View File

@ -1,216 +0,0 @@
"LAMMPS WWW Site"_lws - "LAMMPS Documentation"_ld - "LAMMPS Commands"_lc :c
:link(lws,http://lammps.sandia.gov)
:link(ld,Manual.html)
:link(lc,Commands_all.html)
:line
pair_style reax command :h3
[Syntax:]
pair_style reax hbcut hbnewflag tripflag precision :pre
hbcut = hydrogen-bond cutoff (optional) (distance units)
hbnewflag = use old or new hbond function style (0 or 1) (optional)
tripflag = apply stabilization to all triple bonds (0 or 1) (optional)
precision = precision for charge equilibration (optional) :ul
[Examples:]
pair_style reax
pair_style reax 10.0 0 1 1.0e-5
pair_coeff * * ffield.reax 3 1 2 2
pair_coeff * * ffield.reax 3 NULL NULL 3 :pre
[Description:]
Style {reax} computes the ReaxFF potential of van Duin, Goddard and
co-workers. ReaxFF uses distance-dependent bond-order functions to
represent the contributions of chemical bonding to the potential
energy. There is more than one version of ReaxFF. The version
implemented in LAMMPS uses the functional forms documented in the
supplemental information of the following paper:
"(Chenoweth)"_#Chenoweth_20081. The version integrated into LAMMPS matches
the most up-to-date version of ReaxFF as of summer 2010.
WARNING: pair style reax is now deprecated and will soon be retired. Users
should switch to "pair_style reax/c"_pair_reaxc.html. The {reax} style
differs from the {reax/c} style in the lo-level implementation details.
The {reax} style is a
Fortran library, linked to LAMMPS. The {reax/c} style was initially
implemented as stand-alone C code and is now integrated into LAMMPS as
a package.
LAMMPS requires that a file called ffield.reax be provided, containing
the ReaxFF parameters for each atom type, bond type, etc. The format
is identical to the ffield file used by van Duin and co-workers. The
filename is required as an argument in the pair_coeff command. Any
value other than "ffield.reax" will be rejected (see below).
LAMMPS provides several different versions of ffield.reax in its
potentials dir, each called potentials/ffield.reax.label. These are
documented in potentials/README.reax. The default ffield.reax
contains parameterizations for the following elements: C, H, O, N.
NOTE: We do not distribute a wide variety of ReaxFF force field files
with LAMMPS. Adri van Duin's group at PSU is the central repository
for this kind of data as they are continuously deriving and updating
parameterizations for different classes of materials. You can submit
a contact request at the Materials Computation Center (MCC) website
"https://www.mri.psu.edu/materials-computation-center/connect-mcc"_https://www.mri.psu.edu/materials-computation-center/connect-mcc,
describing the material(s) you are interested in modeling with ReaxFF.
They can tell
you what is currently available or what it would take to create a
suitable ReaxFF parameterization.
The format of these files is identical to that used originally by van
Duin. We have tested the accuracy of {pair_style reax} potential
against the original ReaxFF code for the systems mentioned above. You
can use other ffield files for specific chemical systems that may be
available elsewhere (but note that their accuracy may not have been
tested).
The {hbcut}, {hbnewflag}, {tripflag}, and {precision} settings are
optional arguments. If none are provided, default settings are used:
{hbcut} = 6 (which is Angstroms in real units), {hbnewflag} = 1 (use
new hbond function style), {tripflag} = 1 (apply stabilization to all
triple bonds), and {precision} = 1.0e-6 (one part in 10^6). If you
wish to override any of these defaults, then all of the settings must
be specified.
Two examples using {pair_style reax} are provided in the examples/reax
sub-directory, along with corresponding examples for
"pair_style reax/c"_pair_reaxc.html. Note that while the energy and force
calculated by both of these pair styles match very closely, the
contributions due to the valence angles differ slightly due to
the fact that with {pair_style reax/c} the default value of {thb_cutoff_sq}
is 0.00001, while for {pair_style reax} it is hard-coded to be 0.001.
Use of this pair style requires that a charge be defined for every
atom since the {reax} pair style performs a charge equilibration (QEq)
calculation. See the "atom_style"_atom_style.html and
"read_data"_read_data.html commands for details on how to specify
charges.
The thermo variable {evdwl} stores the sum of all the ReaxFF potential
energy contributions, with the exception of the Coulombic and charge
equilibration contributions which are stored in the thermo variable
{ecoul}. The output of these quantities is controlled by the
"thermo"_thermo.html command.
This pair style tallies a breakdown of the total ReaxFF potential
energy into sub-categories, which can be accessed via the "compute
pair"_compute_pair.html command as a vector of values of length 14.
The 14 values correspond to the following sub-categories (the variable
names in italics match those used in the ReaxFF FORTRAN library):
{eb} = bond energy
{ea} = atom energy
{elp} = lone-pair energy
{emol} = molecule energy (always 0.0)
{ev} = valence angle energy
{epen} = double-bond valence angle penalty
{ecoa} = valence angle conjugation energy
{ehb} = hydrogen bond energy
{et} = torsion energy
{eco} = conjugation energy
{ew} = van der Waals energy
{ep} = Coulomb energy
{efi} = electric field energy (always 0.0)
{eqeq} = charge equilibration energy :ol
To print these quantities to the log file (with descriptive column
headings) the following commands could be included in an input script:
compute reax all pair reax
variable eb equal c_reax\[1\]
variable ea equal c_reax\[2\]
...
variable eqeq equal c_reax\[14\]
thermo_style custom step temp epair v_eb v_ea ... v_eqeq :pre
Only a single pair_coeff command is used with the {reax} style which
specifies a ReaxFF potential file with parameters for all needed
elements. These are mapped to LAMMPS atom types by specifying N
additional arguments after the filename in the pair_coeff command,
where N is the number of LAMMPS atom types:
filename
N indices = mapping of ReaxFF elements to atom types :ul
The specification of the filename and the mapping of LAMMPS atom types
recognized by the ReaxFF is done differently than for other LAMMPS
potentials, due to the non-portable difficulty of passing character
strings (e.g. filename, element names) between C++ and Fortran.
The filename has to be "ffield.reax" and it has to exist in the
directory you are running LAMMPS in. This means you cannot prepend a
path to the file in the potentials dir. Rather, you should copy that
file into the directory you are running from. If you wish to use
another ReaxFF potential file, then name it "ffield.reax" and put it
in the directory you run from.
In the ReaxFF potential file, near the top, after the general
parameters, is the atomic parameters section that contains element
names, each with a couple dozen numeric parameters. If there are M
elements specified in the {ffield} file, think of these as numbered 1
to M. Each of the N indices you specify for the N atom types of LAMMPS
atoms must be an integer from 1 to M. Atoms with LAMMPS type 1 will
be mapped to whatever element you specify as the first index value,
etc. If a mapping value is specified as NULL, the mapping is not
performed. This can be used when a ReaxFF potential is used as part
of the {hybrid} pair style. The NULL values are placeholders for atom
types that will be used with other potentials.
NOTE: Currently the reax pair style cannot be used as part of the
{hybrid} pair style. Some additional changes still need to be made to
enable this.
As an example, say your LAMMPS simulation has 4 atom types and the
elements are ordered as C, H, O, N in the {ffield} file. If you want
the LAMMPS atom type 1 and 2 to be C, type 3 to be N, and type 4 to be
H, you would use the following pair_coeff command:
pair_coeff * * ffield.reax 1 1 4 2 :pre
:line
[Mixing, shift, table, tail correction, restart, rRESPA info]:
This pair style does not support the "pair_modify"_pair_modify.html
mix, shift, table, and tail options.
This pair style does not write its information to "binary restart
files"_restart.html, since it is stored in potential files. Thus, you
need to re-specify the pair_style and pair_coeff commands in an input
script that reads a restart file.
This pair style can only be used via the {pair} keyword of the
"run_style respa"_run_style.html command. It does not support the
{inner}, {middle}, {outer} keywords.
[Restrictions:]
The ReaxFF potential files provided with LAMMPS in the potentials
directory are parameterized for real "units"_units.html. You can use
the ReaxFF potential with any LAMMPS units, but you would need to
create your own potential file with coefficients listed in the
appropriate units if your simulation doesn't use "real" units.
[Related commands:]
"pair_coeff"_pair_coeff.html, "pair_style reax/c"_pair_reaxc.html,
"fix_reax_bonds"_fix_reax_bonds.html
[Default:]
The keyword defaults are {hbcut} = 6, {hbnewflag} = 1, {tripflag} = 1,
{precision} = 1.0e-6.
:line
:link(Chenoweth_20081)
[(Chenoweth_2008)] Chenoweth, van Duin and Goddard,
Journal of Physical Chemistry A, 112, 1040-1053 (2008).

View File

@ -37,7 +37,7 @@ pair_coeff * * ffield.reax C H O N :pre
Style {reax/c} computes the ReaxFF potential of van Duin, Goddard and
co-workers. ReaxFF uses distance-dependent bond-order functions to
represent the contributions of chemical bonding to the potential
energy. There is more than one version of ReaxFF. The version
energy. There is more than one version of ReaxFF. The version
implemented in LAMMPS uses the functional forms documented in the
supplemental information of the following paper: "(Chenoweth et al.,
2008)"_#Chenoweth_20082. The version integrated into LAMMPS matches
@ -56,11 +56,10 @@ consideration when using the {reax/c/kk} style is the choice of either
half or full neighbor lists. This setting can be changed using the
Kokkos "package"_package.html command.
The {reax/c} style differs from the "pair_style reax"_pair_reax.html
command in the lo-level implementation details. The {reax} style is a
Fortran library, linked to LAMMPS. The {reax/c} style was initially
implemented as stand-alone C code and is now integrated into LAMMPS as
a package.
The {reax/c} style differs from the (obsolete) "pair_style reax"
command in the implementation details. The {reax} style was a
Fortran library, linked to LAMMPS. The {reax} style has been removed
from LAMMPS after the 12 December 2018 version.
LAMMPS provides several different versions of ffield.reax in its
potentials dir, each called potentials/ffield.reax.label. These are
@ -338,8 +337,7 @@ appropriate units if your simulation doesn't use "real" units.
"pair_coeff"_pair_coeff.html, "fix qeq/reax"_fix_qeq_reax.html, "fix
reax/c/bonds"_fix_reax_bonds.html, "fix
reax/c/species"_fix_reaxc_species.html, "pair_style
reax"_pair_reax.html
reax/c/species"_fix_reaxc_species.html
[Default:]

View File

@ -226,8 +226,7 @@ accelerated styles exist.
"lubricateU/poly"_pair_lubricateU.html - hydrodynamic lubrication forces for Fast Lubrication with polydispersity
"mdpd"_pair_meso.html - mDPD particle interactions
"mdpd/rhosum"_pair_meso.html - mDPD particle interactions for mass density
"meam"_pair_meam.html - modified embedded atom method (MEAM) in Fortran
"meam/c"_pair_meam.html - modified embedded atom method (MEAM) in C
"meam/c"_pair_meamc.html - modified embedded atom method (MEAM) in C
"meam/spline"_pair_meam_spline.html - splined version of MEAM
"meam/sw/spline"_pair_meam_sw_spline.html - splined version of MEAM with a Stillinger-Weber term
"mgpt"_pair_mgpt.html - simplified model generalized pseudopotential theory (MGPT) potential
@ -260,7 +259,6 @@ accelerated styles exist.
"polymorphic"_pair_polymorphic.html - polymorphic 3-body potential
"python"_pair_python.html -
"quip"_pair_quip.html -
"reax"_pair_reax.html - ReaxFF potential in Fortran
"reax/c"_pair_reaxc.html - ReaxFF potential in C
"rebo"_pair_airebo.html - 2nd generation REBO potential of Brenner
"resquared"_pair_resquared.html - Everaers RE-Squared ellipsoidal potential

View File

@ -63,7 +63,7 @@ Pair Styles :h1
pair_lubricate
pair_lubricateU
pair_mdf
pair_meam
pair_meamc
pair_meam_spline
pair_meam_sw_spline
pair_meso
@ -82,7 +82,6 @@ Pair Styles :h1
pair_polymorphic
pair_python
pair_quip
pair_reax
pair_reaxc
pair_resquared
pair_sdk

View File

@ -4,19 +4,7 @@
The programs in this folder can be used to analyze the
output of simulations using the ReaxFF potentials;
mol_fra.c: reads the output of fix reax/bonds
and identifies fragments
Compile it using a C compiler
To test, run it with Cutoff.dic and bonds.reax
Contact: Aidan Thompson
bondConnectCheck.f90: reads the output of fix reax/bonds.
Does not do fragment analysis.
Compile it using FORTRAN compiler
To test, run it with bonds.reax
Contact: Paul Liangliang Huang <lhuang4@ncsu.edu>
reaxc_bond.pl: reads the bonding information in the
.trj file produced by pair_style reax/c and
outputs molecule counts for each frame.
outputs molecule counts for each frame.