Merge branch 'user-manifold-doc-fix' of https://github.com/Pakketeretet2/lammps into doc-fixes

This commit is contained in:
Axel Kohlmeyer 2017-05-26 18:44:29 -04:00
commit de446ace2f
1 changed files with 2 additions and 2 deletions

View File

@ -30,8 +30,8 @@ plane @ a b c x0 y0 z0 @ a*(x-x0) + b*(y-y0) + c*(z-z0) = 0 @ A plane with norma
plane_wiggle @ a w @ z - a*sin(w*x) = 0 @ A plane with a sinusoidal modulation on z along x. plane_wiggle @ a w @ z - a*sin(w*x) = 0 @ A plane with a sinusoidal modulation on z along x.
sphere @ R @ x^2 + y^2 + z^2 - R^2 = 0 @ A sphere of radius R sphere @ R @ x^2 + y^2 + z^2 - R^2 = 0 @ A sphere of radius R
supersphere @ R q @ | x |^q + | y |^q + | z |^q - R^q = 0 @ A supersphere of hyperradius R supersphere @ R q @ | x |^q + | y |^q + | z |^q - R^q = 0 @ A supersphere of hyperradius R
spine @ a, A, B, B2, c @ -(x^2 + y^2)*(a^2 - z^2/f(z)^2)*(1 + (A*sin(g(z)*z^2))^4), f(z) = c if z > 0, 1 otherwise; g(z) = B if z > 0, B2 otherwise @ An approximation to a dendtritic spine spine @ a, A, B, B2, c @ -(x^2 + y^2) + (a^2 - z^2/f(z)^2)*(1 + (A*sin(g(z)*z^2))^4), f(z) = c if z > 0, 1 otherwise; g(z) = B if z > 0, B2 otherwise @ An approximation to a dendtritic spine
spine_two @ a, A, B, B2, c @ -(x^2 + y^2)*(a^2 - z^2/f(z)^2)*(1 + (A*sin(g(z)*z^2))^2), f(z) = c if z > 0, 1 otherwise; g(z) = B if z > 0, B2 otherwise @ Another approximation to a dendtritic spine spine_two @ a, A, B, B2, c @ -(x^2 + y^2) + (a^2 - z^2/f(z)^2)*(1 + (A*sin(g(z)*z^2))^2), f(z) = c if z > 0, 1 otherwise; g(z) = B if z > 0, B2 otherwise @ Another approximation to a dendtritic spine
thylakoid @ wB LB lB @ Various, see "(Paquay)"_#Paquay1 @ A model grana thylakoid consisting of two block-like compartments connected by a bridge of width wB, length LB and taper length lB thylakoid @ wB LB lB @ Various, see "(Paquay)"_#Paquay1 @ A model grana thylakoid consisting of two block-like compartments connected by a bridge of width wB, length LB and taper length lB
torus @ R r @ (R - sqrt( x^2 + y^2 ) )^2 + z^2 - r^2 @ A torus with large radius R and small radius r, centered on (0,0,0) :tb(s=@) torus @ R r @ (R - sqrt( x^2 + y^2 ) )^2 + z^2 - r^2 @ A torus with large radius R and small radius r, centered on (0,0,0) :tb(s=@)