Switched the sign of spherical harmonics for m odd

This commit is contained in:
Aidan Thompson 2020-06-19 12:18:11 -06:00
parent fa6922a182
commit c7874fca86
2 changed files with 33 additions and 34 deletions

View File

@ -48,14 +48,17 @@ For each atom, :math:`Q_l` is a real number defined as follows:
\bar{Y}_{lm} = & \frac{1}{nnn}\sum_{j = 1}^{nnn} Y_{lm}( \theta( {\bf r}_{ij} ), \phi( {\bf r}_{ij} ) ) \\
Q_l = & \sqrt{\frac{4 \pi}{2 l + 1} \sum_{m = -l}^{m = l} \bar{Y}_{lm} \bar{Y}^*_{lm}}
The first equation defines the spherical harmonic order parameters.
The first equation defines the local order parameters as averages
of the spherical harmonics :math:`Y_{lm}` for each neighbor.
These are complex number components of the 3D analog of the 2D order
parameter :math:`q_n`, which is implemented as LAMMPS compute
:doc:`hexorder/atom <compute_hexorder_atom>`.
The summation is over the *nnn* nearest
neighbors of the central atom.
The angles theta and phi are the standard spherical polar angles
The angles :math:`theta` and :math:`phi` are the standard spherical polar angles
defining the direction of the bond vector :math:`r_{ij}`.
The phase and sign of :math:`Y_{lm}` follow the standard conventions,
so that :math:`{\rm sign}(Y_{ll}(0,0)) = (-1)^l`.
The second equation defines :math:`Q_l`, which is a
rotationally invariant non-negative amplitude obtained by summing
over all the components of degree *l*\ .
@ -98,8 +101,8 @@ structures are given in Table I of :ref:`Steinhardt <Steinhardt>`, and these
can be reproduced with this keyword.
The optional keyword *components* will output the components of the
normalized complex vector :math:`\bar{Y}_{lm}` of degree *ldegree*\ , which must be
explicitly included in the keyword *degrees*\ . This option can be used
*normalized* complex vector :math:`\hat{Y}_{lm} = \bar{Y}_{lm}/|\bar{Y}_{lm}|` of degree *ldegree*\,
which must be included in the list of order parameters to be computed. This option can be used
in conjunction with :doc:`compute coord_atom <compute_coord_atom>` to
calculate the ten Wolde's criterion to identify crystal-like
particles, as discussed in :ref:`ten Wolde <tenWolde2>`.
@ -141,11 +144,15 @@ If the keyword *wl/hat* is set to yes, then the :math:`\hat{W}_l`
values for each atom will be added to the output array, which are real numbers.
If the keyword *components* is set, then the real and imaginary parts
of each component of (normalized) :math:`\bar{Y}_{lm}` will be added to the
output array in the following order: :math:`Re(\bar{Y}_{-m}) Im(\bar{Y}_{-m})
Re(\bar{Y}_{-m+1}) Im(\bar{Y}_{-m+1}) ... Re(\bar{Y}_m) Im(\bar{Y}_m)`. This
way, the per-atom array will have a total of *nlvalues*\ +2\*(2\ *l*\ +1)
columns.
of each component of *normalized* :math:`\hat{Y}_{lm}` will be added to the
output array in the following order: :math:`{\rm Re}(\hat{Y}_{-m}), {\rm Im}(\hat{Y}_{-m}),
{\rm Re}(\hat{Y}_{-m+1}), {\rm Im}(\hat{Y}_{-m+1}), \dots , {\rm Re}(\hat{Y}_m), {\rm Im}(\hat{Y}_m)`.
In summary, the per-atom array will contain *nlvalues* columns, followed by
an additional *nlvalues* columns if *wl* is set to yes, followed by
an additional *nlvalues* columns if *wl/hat* is set to yes, followed
by an additional 2\*(2\* *ldegree*\ +1) columns if the *components*
keyword is set.
These values can be accessed by any command that uses per-atom values
from a compute as input. See the :doc:`Howto output <Howto_output>` doc

View File

@ -456,21 +456,26 @@ void ComputeOrientOrderAtom::calc_boop(double **rlist,
for (int il = 0; il < nqlist; il++) {
int l = qlist[il];
// calculate spherical harmonics
// Ylm, -l <= m <= l
// sign convention: sign(Yll(0,0)) = (-1)^l
qnm_r[il][l] += polar_prefactor(l, 0, costheta);
double expphim_r = expphi_r;
double expphim_i = expphi_i;
for(int m = 1; m <= +l; m++) {
double prefactor = polar_prefactor(l, m, costheta);
double c_r = prefactor * expphim_r;
double c_i = prefactor * expphim_i;
qnm_r[il][m+l] += c_r;
qnm_i[il][m+l] += c_i;
double ylm_r = prefactor * expphim_r;
double ylm_i = prefactor * expphim_i;
qnm_r[il][m+l] += ylm_r;
qnm_i[il][m+l] += ylm_i;
if(m & 1) {
qnm_r[il][-m+l] -= c_r;
qnm_i[il][-m+l] += c_i;
qnm_r[il][-m+l] -= ylm_r;
qnm_i[il][-m+l] += ylm_i;
} else {
qnm_r[il][-m+l] += c_r;
qnm_i[il][-m+l] -= c_i;
qnm_r[il][-m+l] += ylm_r;
qnm_i[il][-m+l] -= ylm_i;
}
double tmp_r = expphim_r*expphi_r - expphim_i*expphi_i;
double tmp_i = expphim_r*expphi_i + expphim_i*expphi_r;
@ -505,19 +510,6 @@ void ComputeOrientOrderAtom::calc_boop(double **rlist,
qn[jj++] = qnormfac * sqrt(qm_sum);
}
// TODO:
// 1. [done]Need to allocate extra memory in qnarray[] for this option
// 2. [done]Need to add keyword option
// 3. [done]Need to calculate Clebsch-Gordan/Wigner 3j coefficients
// (Can try getting them from boop.py first)
// 5. [done]Compare to bcc values in /Users/athomps/netapp/codes/MatMiner/matminer/matminer/featurizers/boop.py
// 6. [done]I get the right answer for W_l, but need to make sure that factor of 1/sqrt(l+1) is right for cglist
// 7. Add documentation
// 8. [done] run valgrind
// 9. [done] Add Wlhat
// 10. Update memory_usage()
// 11. Add exact FCC values for W_4, W_4_hat
// calculate W_l
if (wlflag) {
@ -554,7 +546,6 @@ void ComputeOrientOrderAtom::calc_boop(double **rlist,
idxcg_count++;
}
}
// Whats = [w/(q/np.sqrt(np.pi * 4 / (2 * l + 1)))**3 if abs(q) > 1.0e-6 else 0.0 for l,q,w in zip(range(1,max_l+1),Qs,Ws)]
if (qn[il] < QEPSILON)
qn[jj++] = 0.0;
else {
@ -565,7 +556,7 @@ void ComputeOrientOrderAtom::calc_boop(double **rlist,
}
}
// Calculate components of Q_l, for l=qlcomp
// Calculate components of Q_l/|Q_l|, for l=qlcomp
if (qlcompflag) {
int il = iqlcomp;
@ -619,6 +610,7 @@ double ComputeOrientOrderAtom::polar_prefactor(int l, int m, double costheta)
/* ----------------------------------------------------------------------
associated legendre polynomial
sign convention: P(l,l) = (2l-1)!!(-sqrt(1-x^2))^l
------------------------------------------------------------------------- */
double ComputeOrientOrderAtom::associated_legendre(int l, int m, double x)
@ -628,9 +620,9 @@ double ComputeOrientOrderAtom::associated_legendre(int l, int m, double x)
double p(1.0), pm1(0.0), pm2(0.0);
if (m != 0) {
const double sqx = sqrt(1.0-x*x);
const double msqx = -sqrt(1.0-x*x);
for (int i=1; i < m+1; ++i)
p *= static_cast<double>(2*i-1) * sqx;
p *= static_cast<double>(2*i-1) * msqx;
}
for (int i=m+1; i < l+1; ++i) {