git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@13285 f3b2605a-c512-4ea7-a41b-209d697bcdaa

This commit is contained in:
sjplimp 2015-03-25 15:49:45 +00:00
parent 1d7421d412
commit c3b10e024b
8 changed files with 385 additions and 18 deletions

View File

@ -453,17 +453,17 @@ letters in parenthesis: c = USER-CUDA, g = GPU, i = USER-INTEL, k =
KOKKOS, o = USER-OMP, t = OPT.
</P>
<DIV ALIGN=center><TABLE BORDER=1 >
<TR ALIGN="center"><TD ><A HREF = "compute_angle_local.html">angle/local</A></TD><TD ><A HREF = "compute_body_local.html">body/local</A></TD><TD ><A HREF = "compute_bond_local.html">bond/local</A></TD><TD ><A HREF = "compute_centro_atom.html">centro/atom</A></TD><TD ><A HREF = "compute_chunk_atom.html">chunk/atom</A></TD><TD ><A HREF = "compute_cluster_atom.html">cluster/atom</A></TD></TR>
<TR ALIGN="center"><TD ><A HREF = "compute_cna_atom.html">cna/atom</A></TD><TD ><A HREF = "compute_com.html">com</A></TD><TD ><A HREF = "compute_com_chunk.html">com/chunk</A></TD><TD ><A HREF = "compute_contact_atom.html">contact/atom</A></TD><TD ><A HREF = "compute_coord_atom.html">coord/atom</A></TD><TD ><A HREF = "compute_damage_atom.html">damage/atom</A></TD></TR>
<TR ALIGN="center"><TD ><A HREF = "compute_dihedral_local.html">dihedral/local</A></TD><TD ><A HREF = "compute_dilatation_atom.html">dilatation/atom</A></TD><TD ><A HREF = "compute_displace_atom.html">displace/atom</A></TD><TD ><A HREF = "compute_erotate_asphere.html">erotate/asphere</A></TD><TD ><A HREF = "compute_erotate_rigid.html">erotate/rigid</A></TD><TD ><A HREF = "compute_erotate_sphere.html">erotate/sphere</A></TD></TR>
<TR ALIGN="center"><TD ><A HREF = "compute_erotate_sphere_atom.html">erotate/sphere/atom</A></TD><TD ><A HREF = "compute_event_displace.html">event/displace</A></TD><TD ><A HREF = "compute_group_group.html">group/group</A></TD><TD ><A HREF = "compute_gyration.html">gyration</A></TD><TD ><A HREF = "compute_gyration_chunk.html">gyration/chunk</A></TD><TD ><A HREF = "compute_heat_flux.html">heat/flux</A></TD></TR>
<TR ALIGN="center"><TD ><A HREF = "compute_improper_local.html">improper/local</A></TD><TD ><A HREF = "compute_inertia_chunk.html">inertia/chunk</A></TD><TD ><A HREF = "compute_ke.html">ke</A></TD><TD ><A HREF = "compute_ke_atom.html">ke/atom</A></TD><TD ><A HREF = "compute_ke_rigid.html">ke/rigid</A></TD><TD ><A HREF = "compute_msd.html">msd</A></TD></TR>
<TR ALIGN="center"><TD ><A HREF = "compute_msd_chunk.html">msd/chunk</A></TD><TD ><A HREF = "compute_msd_nongauss.html">msd/nongauss</A></TD><TD ><A HREF = "compute_pair.html">pair</A></TD><TD ><A HREF = "compute_pair_local.html">pair/local</A></TD><TD ><A HREF = "compute_pe.html">pe (c)</A></TD><TD ><A HREF = "compute_pe_atom.html">pe/atom</A></TD></TR>
<TR ALIGN="center"><TD ><A HREF = "compute_plasticity_atom.html">plasticity/atom</A></TD><TD ><A HREF = "compute_pressure.html">pressure (c)</A></TD><TD ><A HREF = "compute_property_atom.html">property/atom</A></TD><TD ><A HREF = "compute_property_local.html">property/local</A></TD><TD ><A HREF = "compute_property_chunk.html">property/chunk</A></TD><TD ><A HREF = "compute_rdf.html">rdf</A></TD></TR>
<TR ALIGN="center"><TD ><A HREF = "compute_reduce.html">reduce</A></TD><TD ><A HREF = "compute_reduce.html">reduce/region</A></TD><TD ><A HREF = "compute_slice.html">slice</A></TD><TD ><A HREF = "compute_sna.html">sna/atom</A></TD><TD ><A HREF = "compute_sna.html">snad/atom</A></TD><TD ><A HREF = "compute_sna.html">snav/atom</A></TD></TR>
<TR ALIGN="center"><TD ><A HREF = "compute_stress_atom.html">stress/atom</A></TD><TD ><A HREF = "compute_temp.html">temp (c)</A></TD><TD ><A HREF = "compute_temp_asphere.html">temp/asphere</A></TD><TD ><A HREF = "compute_temp_com.html">temp/com</A></TD><TD ><A HREF = "compute_temp_chunk.html">temp/chunk</A></TD><TD ><A HREF = "compute_temp_deform.html">temp/deform</A></TD></TR>
<TR ALIGN="center"><TD ><A HREF = "compute_temp_partial.html">temp/partial (c)</A></TD><TD ><A HREF = "compute_temp_profile.html">temp/profile</A></TD><TD ><A HREF = "compute_temp_ramp.html">temp/ramp</A></TD><TD ><A HREF = "compute_temp_region.html">temp/region</A></TD><TD ><A HREF = "compute_temp_sphere.html">temp/sphere</A></TD><TD ><A HREF = "compute_ti.html">ti</A></TD></TR>
<TR ALIGN="center"><TD ><A HREF = "compute_torque_chunk.html">torque/chunk</A></TD><TD ><A HREF = "compute_vacf.html">vacf</A></TD><TD ><A HREF = "compute_vcm_chunk.html">vcm/chunk</A></TD><TD ><A HREF = "compute_voronoi_atom.html">voronoi/atom</A>
<TR ALIGN="center"><TD ><A HREF = "compute_angle_local.html">angle/local</A></TD><TD ><A HREF = "compute_angmom_chunk.html">angmom/chunk</A></TD><TD ><A HREF = "compute_body_local.html">body/local</A></TD><TD ><A HREF = "compute_bond_local.html">bond/local</A></TD><TD ><A HREF = "compute_centro_atom.html">centro/atom</A></TD><TD ><A HREF = "compute_chunk_atom.html">chunk/atom</A></TD></TR>
<TR ALIGN="center"><TD ><A HREF = "compute_cluster_atom.html">cluster/atom</A></TD><TD ><A HREF = "compute_cna_atom.html">cna/atom</A></TD><TD ><A HREF = "compute_com.html">com</A></TD><TD ><A HREF = "compute_com_chunk.html">com/chunk</A></TD><TD ><A HREF = "compute_contact_atom.html">contact/atom</A></TD><TD ><A HREF = "compute_coord_atom.html">coord/atom</A></TD></TR>
<TR ALIGN="center"><TD ><A HREF = "compute_damage_atom.html">damage/atom</A></TD><TD ><A HREF = "compute_dihedral_local.html">dihedral/local</A></TD><TD ><A HREF = "compute_dilatation_atom.html">dilatation/atom</A></TD><TD ><A HREF = "compute_displace_atom.html">displace/atom</A></TD><TD ><A HREF = "compute_erotate_asphere.html">erotate/asphere</A></TD><TD ><A HREF = "compute_erotate_rigid.html">erotate/rigid</A></TD></TR>
<TR ALIGN="center"><TD ><A HREF = "compute_erotate_sphere.html">erotate/sphere</A></TD><TD ><A HREF = "compute_erotate_sphere_atom.html">erotate/sphere/atom</A></TD><TD ><A HREF = "compute_event_displace.html">event/displace</A></TD><TD ><A HREF = "compute_group_group.html">group/group</A></TD><TD ><A HREF = "compute_gyration.html">gyration</A></TD><TD ><A HREF = "compute_gyration_chunk.html">gyration/chunk</A></TD></TR>
<TR ALIGN="center"><TD ><A HREF = "compute_heat_flux.html">heat/flux</A></TD><TD ><A HREF = "compute_improper_local.html">improper/local</A></TD><TD ><A HREF = "compute_inertia_chunk.html">inertia/chunk</A></TD><TD ><A HREF = "compute_ke.html">ke</A></TD><TD ><A HREF = "compute_ke_atom.html">ke/atom</A></TD><TD ><A HREF = "compute_ke_rigid.html">ke/rigid</A></TD></TR>
<TR ALIGN="center"><TD ><A HREF = "compute_msd.html">msd</A></TD><TD ><A HREF = "compute_msd_chunk.html">msd/chunk</A></TD><TD ><A HREF = "compute_msd_nongauss.html">msd/nongauss</A></TD><TD ><A HREF = "compute_omega_chunk.html">omega/chunk</A></TD><TD ><A HREF = "compute_pair.html">pair</A></TD><TD ><A HREF = "compute_pair_local.html">pair/local</A></TD></TR>
<TR ALIGN="center"><TD ><A HREF = "compute_pe.html">pe (c)</A></TD><TD ><A HREF = "compute_pe_atom.html">pe/atom</A></TD><TD ><A HREF = "compute_plasticity_atom.html">plasticity/atom</A></TD><TD ><A HREF = "compute_pressure.html">pressure (c)</A></TD><TD ><A HREF = "compute_property_atom.html">property/atom</A></TD><TD ><A HREF = "compute_property_local.html">property/local</A></TD></TR>
<TR ALIGN="center"><TD ><A HREF = "compute_property_chunk.html">property/chunk</A></TD><TD ><A HREF = "compute_rdf.html">rdf</A></TD><TD ><A HREF = "compute_reduce.html">reduce</A></TD><TD ><A HREF = "compute_reduce.html">reduce/region</A></TD><TD ><A HREF = "compute_slice.html">slice</A></TD><TD ><A HREF = "compute_sna.html">sna/atom</A></TD></TR>
<TR ALIGN="center"><TD ><A HREF = "compute_sna.html">snad/atom</A></TD><TD ><A HREF = "compute_sna.html">snav/atom</A></TD><TD ><A HREF = "compute_stress_atom.html">stress/atom</A></TD><TD ><A HREF = "compute_temp.html">temp (c)</A></TD><TD ><A HREF = "compute_temp_asphere.html">temp/asphere</A></TD><TD ><A HREF = "compute_temp_com.html">temp/com</A></TD></TR>
<TR ALIGN="center"><TD ><A HREF = "compute_temp_chunk.html">temp/chunk</A></TD><TD ><A HREF = "compute_temp_deform.html">temp/deform</A></TD><TD ><A HREF = "compute_temp_partial.html">temp/partial (c)</A></TD><TD ><A HREF = "compute_temp_profile.html">temp/profile</A></TD><TD ><A HREF = "compute_temp_ramp.html">temp/ramp</A></TD><TD ><A HREF = "compute_temp_region.html">temp/region</A></TD></TR>
<TR ALIGN="center"><TD ><A HREF = "compute_temp_sphere.html">temp/sphere</A></TD><TD ><A HREF = "compute_ti.html">ti</A></TD><TD ><A HREF = "compute_torque_chunk.html">torque/chunk</A></TD><TD ><A HREF = "compute_vacf.html">vacf</A></TD><TD ><A HREF = "compute_vcm_chunk.html">vcm/chunk</A></TD><TD ><A HREF = "compute_voronoi_atom.html">voronoi/atom</A>
</TD></TR></TABLE></DIV>
<P>These are additional compute styles in USER packages, which can be

View File

@ -641,6 +641,7 @@ letters in parenthesis: c = USER-CUDA, g = GPU, i = USER-INTEL, k =
KOKKOS, o = USER-OMP, t = OPT.
"angle/local"_compute_angle_local.html,
"angmom/chunk"_compute_angmom_chunk.html,
"body/local"_compute_body_local.html,
"bond/local"_compute_bond_local.html,
"centro/atom"_compute_centro_atom.html,
@ -672,6 +673,7 @@ KOKKOS, o = USER-OMP, t = OPT.
"msd"_compute_msd.html,
"msd/chunk"_compute_msd_chunk.html,
"msd/nongauss"_compute_msd_nongauss.html,
"omega/chunk"_compute_omega_chunk.html,
"pair"_compute_pair.html,
"pair/local"_compute_pair_local.html,
"pe (c)"_compute_pe.html,

View File

@ -0,0 +1,94 @@
<HTML>
<CENTER><A HREF = "http://lammps.sandia.gov">LAMMPS WWW Site</A> - <A HREF = "Manual.html">LAMMPS Documentation</A> - <A HREF = "Section_commands.html#comm">LAMMPS Commands</A>
</CENTER>
<HR>
<H3>compute angmom/chunk command
</H3>
<P><B>Syntax:</B>
</P>
<PRE>compute ID group-ID angmom/chunk chunkID
</PRE>
<UL><LI>ID, group-ID are documented in <A HREF = "compute.html">compute</A> command
<LI>angmom/molecule = style name of this compute command
<LI>chunkID = ID of <A HREF = "compute_chunk_atom.html">compute chunk/atom</A> command
</UL>
<P><B>Examples:</B>
</P>
<PRE>compute 1 fluid angmom/chunk molchunk
</PRE>
<P><B>Description:</B>
</P>
<P>Define a computation that calculates the angular momemtum of multiple
chunks of atoms.
</P>
<P>In LAMMPS, chunks are collections of atoms defined by a <A HREF = "compute_chunk_atom.html">compute
chunk/atom</A> command, which assigns each atom
to a single chunk (or no chunk). The ID for this command is specified
as chunkID. For example, a single chunk could be the atoms in a
molecule or atoms in a spatial bin. See the <A HREF = "compute_chunk_atom.html">compute
chunk/atom</A> doc page and "<A HREF = "Section_howto.html#howto_23">Section_howto
23</A> for details of how chunks can be
defined and examples of how they can be used to measure properties of
a system.
</P>
<P>This compute calculates the 3 components of the angular momentum
vector for each chunk, due to the velocity/momentum of the individual
atoms in the chunk around the center-of-mass of the chunk. The
calculation includes all effects due to atoms passing thru periodic
boundaries.
</P>
<P>Note that only atoms in the specified group contribute to the
calculation. The <A HREF = "compute_chunk_atom.html">compute chunk/atom</A> command
defines its own group; atoms will have a chunk ID = 0 if they are not
in that group, signifying they are not assigned to a chunk, and will
thus also not contribute to this calculation. You can specify the
"all" group for this command if you simply want to include atoms with
non-zero chunk IDs.
</P>
<P>IMPORTANT NOTE: The coordinates of an atom contribute to the chunk's
angular momentum in "unwrapped" form, by using the image flags
associated with each atom. See the <A HREF = "dump.html">dump custom</A> command
for a discussion of "unwrapped" coordinates. See the Atoms section of
the <A HREF = "read_data.html">read_data</A> command for a discussion of image flags
and how they are set for each atom. You can reset the image flags
(e.g. to 0) before invoking this compute by using the <A HREF = "set.html">set
image</A> command.
</P>
<P>The simplest way to output the results of the compute angmom/chunk
calculation to a file is to use the <A HREF = "fix_ave_time.html">fix ave/time</A>
command, for example:
</P>
<PRE>compute cc1 all chunk/atom molecule
compute myChunk all angmom/chunk cc1
fix 1 all ave/time 100 1 100 c_myChunk file tmp.out mode vector
</PRE>
<P><B>Output info:</B>
</P>
<P>This compute calculates a global array where the number of rows = the
number of chunks <I>Nchunk</I> as calculated by the specified <A HREF = "compute_chunk_atom.html">compute
chunk/atom</A> command. The number of columns =
3 for the 3 xyz components of the angular momentum for each chunk.
These values can be accessed by any command that uses global array
values from a compute as input. See <A HREF = "Section_howto.html#howto_15">Section_howto
15</A> for an overview of LAMMPS output
options.
</P>
<P>The array values are "intensive". The array values will be in
mass-velocity-distance <A HREF = "units.html">units</A>.
</P>
<P><B>Restrictions:</B> none
</P>
<P><B>Related commands:</B>
</P>
<P><A HREF = "variable.html">variable angmom() function</A>
</P>
<P><B>Default:</B> none
</P>
</HTML>

View File

@ -0,0 +1,89 @@
"LAMMPS WWW Site"_lws - "LAMMPS Documentation"_ld - "LAMMPS Commands"_lc :c
:link(lws,http://lammps.sandia.gov)
:link(ld,Manual.html)
:link(lc,Section_commands.html#comm)
:line
compute angmom/chunk command :h3
[Syntax:]
compute ID group-ID angmom/chunk chunkID :pre
ID, group-ID are documented in "compute"_compute.html command
angmom/molecule = style name of this compute command
chunkID = ID of "compute chunk/atom"_compute_chunk_atom.html command :ul
[Examples:]
compute 1 fluid angmom/chunk molchunk :pre
[Description:]
Define a computation that calculates the angular momemtum of multiple
chunks of atoms.
In LAMMPS, chunks are collections of atoms defined by a "compute
chunk/atom"_compute_chunk_atom.html command, which assigns each atom
to a single chunk (or no chunk). The ID for this command is specified
as chunkID. For example, a single chunk could be the atoms in a
molecule or atoms in a spatial bin. See the "compute
chunk/atom"_compute_chunk_atom.html doc page and ""Section_howto
23"_Section_howto.html#howto_23 for details of how chunks can be
defined and examples of how they can be used to measure properties of
a system.
This compute calculates the 3 components of the angular momentum
vector for each chunk, due to the velocity/momentum of the individual
atoms in the chunk around the center-of-mass of the chunk. The
calculation includes all effects due to atoms passing thru periodic
boundaries.
Note that only atoms in the specified group contribute to the
calculation. The "compute chunk/atom"_compute_chunk_atom.html command
defines its own group; atoms will have a chunk ID = 0 if they are not
in that group, signifying they are not assigned to a chunk, and will
thus also not contribute to this calculation. You can specify the
"all" group for this command if you simply want to include atoms with
non-zero chunk IDs.
IMPORTANT NOTE: The coordinates of an atom contribute to the chunk's
angular momentum in "unwrapped" form, by using the image flags
associated with each atom. See the "dump custom"_dump.html command
for a discussion of "unwrapped" coordinates. See the Atoms section of
the "read_data"_read_data.html command for a discussion of image flags
and how they are set for each atom. You can reset the image flags
(e.g. to 0) before invoking this compute by using the "set
image"_set.html command.
The simplest way to output the results of the compute angmom/chunk
calculation to a file is to use the "fix ave/time"_fix_ave_time.html
command, for example:
compute cc1 all chunk/atom molecule
compute myChunk all angmom/chunk cc1
fix 1 all ave/time 100 1 100 c_myChunk file tmp.out mode vector :pre
[Output info:]
This compute calculates a global array where the number of rows = the
number of chunks {Nchunk} as calculated by the specified "compute
chunk/atom"_compute_chunk_atom.html command. The number of columns =
3 for the 3 xyz components of the angular momentum for each chunk.
These values can be accessed by any command that uses global array
values from a compute as input. See "Section_howto
15"_Section_howto.html#howto_15 for an overview of LAMMPS output
options.
The array values are "intensive". The array values will be in
mass-velocity-distance "units"_units.html.
[Restrictions:] none
[Related commands:]
"variable angmom() function"_variable.html
[Default:] none

View File

@ -0,0 +1,94 @@
<HTML>
<CENTER><A HREF = "http://lammps.sandia.gov">LAMMPS WWW Site</A> - <A HREF = "Manual.html">LAMMPS Documentation</A> - <A HREF = "Section_commands.html#comm">LAMMPS Commands</A>
</CENTER>
<HR>
<H3>compute omega/chunk command
</H3>
<P><B>Syntax:</B>
</P>
<PRE>compute ID group-ID omega/chunk chunkID
</PRE>
<UL><LI>ID, group-ID are documented in <A HREF = "compute.html">compute</A> command
<LI>omega/molecule = style name of this compute command
<LI>chunkID = ID of <A HREF = "compute_chunk_atom.html">compute chunk/atom</A> command
</UL>
<P><B>Examples:</B>
</P>
<PRE>compute 1 fluid omega/chunk molchunk
</PRE>
<P><B>Description:</B>
</P>
<P>Define a computation that calculates the angular velocity (omega) of
multiple chunks of atoms.
</P>
<P>In LAMMPS, chunks are collections of atoms defined by a <A HREF = "compute_chunk_atom.html">compute
chunk/atom</A> command, which assigns each atom
to a single chunk (or no chunk). The ID for this command is specified
as chunkID. For example, a single chunk could be the atoms in a
molecule or atoms in a spatial bin. See the <A HREF = "compute_chunk_atom.html">compute
chunk/atom</A> doc page and "<A HREF = "Section_howto.html#howto_23">Section_howto
23</A> for details of how chunks can be
defined and examples of how they can be used to measure properties of
a system.
</P>
<P>This compute calculates the 3 components of the angular velocity
vector for each chunk, via the formula L = Iw where L is the angular
momentum vector of the chunk, I is its moment of inertia tensor, and w
is omega = angular velocity of the chunk. The calculation includes
all effects due to atoms passing thru periodic boundaries.
</P>
<P>Note that only atoms in the specified group contribute to the
calculation. The <A HREF = "compute_chunk_atom.html">compute chunk/atom</A> command
defines its own group; atoms will have a chunk ID = 0 if they are not
in that group, signifying they are not assigned to a chunk, and will
thus also not contribute to this calculation. You can specify the
"all" group for this command if you simply want to include atoms with
non-zero chunk IDs.
</P>
<P>IMPORTANT NOTE: The coordinates of an atom contribute to the chunk's
angular velocity in "unwrapped" form, by using the image flags
associated with each atom. See the <A HREF = "dump.html">dump custom</A> command
for a discussion of "unwrapped" coordinates. See the Atoms section of
the <A HREF = "read_data.html">read_data</A> command for a discussion of image flags
and how they are set for each atom. You can reset the image flags
(e.g. to 0) before invoking this compute by using the <A HREF = "set.html">set
image</A> command.
</P>
<P>The simplest way to output the results of the compute omega/chunk
calculation to a file is to use the <A HREF = "fix_ave_time.html">fix ave/time</A>
command, for example:
</P>
<PRE>compute cc1 all chunk/atom molecule
compute myChunk all omega/chunk cc1
fix 1 all ave/time 100 1 100 c_myChunk file tmp.out mode vector
</PRE>
<P><B>Output info:</B>
</P>
<P>This compute calculates a global array where the number of rows = the
number of chunks <I>Nchunk</I> as calculated by the specified <A HREF = "compute_chunk_atom.html">compute
chunk/atom</A> command. The number of columns =
3 for the 3 xyz components of the angular velocity for each chunk.
These values can be accessed by any command that uses global array
values from a compute as input. See <A HREF = "Section_howto.html#howto_15">Section_howto
15</A> for an overview of LAMMPS output
options.
</P>
<P>The array values are "intensive". The array values will be in
velocity/distance <A HREF = "units.html">units</A>.
</P>
<P><B>Restrictions:</B> none
</P>
<P><B>Related commands:</B>
</P>
<P><A HREF = "variable.html">variable omega() function</A>
</P>
<P><B>Default:</B> none
</P>
</HTML>

View File

@ -0,0 +1,89 @@
"LAMMPS WWW Site"_lws - "LAMMPS Documentation"_ld - "LAMMPS Commands"_lc :c
:link(lws,http://lammps.sandia.gov)
:link(ld,Manual.html)
:link(lc,Section_commands.html#comm)
:line
compute omega/chunk command :h3
[Syntax:]
compute ID group-ID omega/chunk chunkID :pre
ID, group-ID are documented in "compute"_compute.html command
omega/molecule = style name of this compute command
chunkID = ID of "compute chunk/atom"_compute_chunk_atom.html command :ul
[Examples:]
compute 1 fluid omega/chunk molchunk :pre
[Description:]
Define a computation that calculates the angular velocity (omega) of
multiple chunks of atoms.
In LAMMPS, chunks are collections of atoms defined by a "compute
chunk/atom"_compute_chunk_atom.html command, which assigns each atom
to a single chunk (or no chunk). The ID for this command is specified
as chunkID. For example, a single chunk could be the atoms in a
molecule or atoms in a spatial bin. See the "compute
chunk/atom"_compute_chunk_atom.html doc page and ""Section_howto
23"_Section_howto.html#howto_23 for details of how chunks can be
defined and examples of how they can be used to measure properties of
a system.
This compute calculates the 3 components of the angular velocity
vector for each chunk, via the formula L = Iw where L is the angular
momentum vector of the chunk, I is its moment of inertia tensor, and w
is omega = angular velocity of the chunk. The calculation includes
all effects due to atoms passing thru periodic boundaries.
Note that only atoms in the specified group contribute to the
calculation. The "compute chunk/atom"_compute_chunk_atom.html command
defines its own group; atoms will have a chunk ID = 0 if they are not
in that group, signifying they are not assigned to a chunk, and will
thus also not contribute to this calculation. You can specify the
"all" group for this command if you simply want to include atoms with
non-zero chunk IDs.
IMPORTANT NOTE: The coordinates of an atom contribute to the chunk's
angular velocity in "unwrapped" form, by using the image flags
associated with each atom. See the "dump custom"_dump.html command
for a discussion of "unwrapped" coordinates. See the Atoms section of
the "read_data"_read_data.html command for a discussion of image flags
and how they are set for each atom. You can reset the image flags
(e.g. to 0) before invoking this compute by using the "set
image"_set.html command.
The simplest way to output the results of the compute omega/chunk
calculation to a file is to use the "fix ave/time"_fix_ave_time.html
command, for example:
compute cc1 all chunk/atom molecule
compute myChunk all omega/chunk cc1
fix 1 all ave/time 100 1 100 c_myChunk file tmp.out mode vector :pre
[Output info:]
This compute calculates a global array where the number of rows = the
number of chunks {Nchunk} as calculated by the specified "compute
chunk/atom"_compute_chunk_atom.html command. The number of columns =
3 for the 3 xyz components of the angular velocity for each chunk.
These values can be accessed by any command that uses global array
values from a compute as input. See "Section_howto
15"_Section_howto.html#howto_15 for an overview of LAMMPS output
options.
The array values are "intensive". The array values will be in
velocity/distance "units"_units.html.
[Restrictions:] none
[Related commands:]
"variable omega() function"_variable.html
[Default:] none

View File

@ -15,10 +15,9 @@
</P>
<PRE>read_restart file flag
</PRE>
<UL><LI>file = name of binary restart file to read in
<UL><LI>file = name of binary restart file to read in
<LI>flag = remap (optional)
</UL>
<P>flag = remap (optional)
</P>
<P><B>Examples:</B>
</P>
<PRE>read_restart save.10000
@ -51,7 +50,7 @@ that atoms were "lost" when the file is read. This error should be
reported to the LAMMPS developers so the invalid writing of the
restart file can be fixed. If you still wish to use the restart file,
the optional <I>remap</I> flag can be appended to the read_restart command.
This will avoid the error, by explicitly remapping each atom back into
This should avoid the error, by explicitly remapping each atom back into
the simulation box, updating image flags for the atom appropriately.
</P>
<P>Restart files are saved in binary format to enable exact restarts,

View File

@ -12,8 +12,8 @@ read_restart command :h3
read_restart file flag :pre
file = name of binary restart file to read in :ul
flag = remap (optional)
file = name of binary restart file to read in
flag = remap (optional) :ul
[Examples:]
@ -47,7 +47,7 @@ that atoms were "lost" when the file is read. This error should be
reported to the LAMMPS developers so the invalid writing of the
restart file can be fixed. If you still wish to use the restart file,
the optional {remap} flag can be appended to the read_restart command.
This will avoid the error, by explicitly remapping each atom back into
This should avoid the error, by explicitly remapping each atom back into
the simulation box, updating image flags for the atom appropriately.
Restart files are saved in binary format to enable exact restarts,