remove unused equation file
Before Width: | Height: | Size: 8.9 KiB |
|
@ -1,14 +0,0 @@
|
|||
\documentclass[preview]{standalone}
|
||||
\usepackage{varwidth}
|
||||
\usepackage[utf8x]{inputenc}
|
||||
\usepackage{amsmath, amssymb, graphics, setspace}
|
||||
|
||||
\begin{document}
|
||||
\begin{varwidth}{50in}
|
||||
\begin{equation}
|
||||
\frac{d \vec{s}_{i}}{dt} = \frac{1}{\left(1+\lambda^2 \right)} \left( \left(
|
||||
\vec{\omega}_{i} +\vec{\eta} \right) \times \vec{s}_{i} + \lambda\, \vec{s}_{i}
|
||||
\times\left( \vec{\omega}_{i} \times\vec{s}_{i} \right) \right), \nonumber
|
||||
\end{equation}
|
||||
\end{varwidth}
|
||||
\end{document}
|
Before Width: | Height: | Size: 2.6 KiB |
|
@ -1,11 +0,0 @@
|
|||
\documentclass[12pt]{article}
|
||||
|
||||
\usepackage{amsmath}
|
||||
|
||||
\begin{document}
|
||||
|
||||
$$
|
||||
F = \left( 1-\lambda \right) F_{\text{solid}} + \lambda F_{\text{harm}}
|
||||
$$
|
||||
|
||||
\end{document}
|
Before Width: | Height: | Size: 1.1 KiB |
|
@ -1,9 +0,0 @@
|
|||
\documentclass[12pt]{article}
|
||||
|
||||
\begin{document}
|
||||
|
||||
$$
|
||||
\lambda(\tau) = \tau
|
||||
$$
|
||||
|
||||
\end{document}
|
Before Width: | Height: | Size: 5.5 KiB |
|
@ -1,9 +0,0 @@
|
|||
\documentclass[12pt]{article}
|
||||
|
||||
\begin{document}
|
||||
|
||||
$$
|
||||
\lambda(\tau) = \tau^5 \left( 70 \tau^4 - 315 \tau^3 + 540 \tau^2 - 420 \tau + 126 \right)
|
||||
$$
|
||||
|
||||
\end{document}
|
Before Width: | Height: | Size: 15 KiB |
|
@ -1,11 +0,0 @@
|
|||
\documentclass[12pt]{article}
|
||||
|
||||
\begin{document}
|
||||
|
||||
\begin{eqnarray*}
|
||||
\mathbf{J} & = & \frac{1}{V} \left[ \sum_i e_i \mathbf{v}_i - \sum_{i} \mathbf{S}_{i} \mathbf{v}_i \right] \\
|
||||
& = & \frac{1}{V} \left[ \sum_i e_i \mathbf{v}_i + \sum_{i<j} \left( \mathbf{f}_{ij} \cdot \mathbf{v}_j \right) \mathbf{x}_{ij} \right] \\
|
||||
& = & \frac{1}{V} \left[ \sum_i e_i \mathbf{v}_i + \frac{1}{2} \sum_{i<j} \left( \mathbf{f}_{ij} \cdot \left(\mathbf{v}_i + \mathbf{v}_j \right) \right) \mathbf{x}_{ij} \right]
|
||||
\end{eqnarray*}
|
||||
|
||||
\end{document}
|
Before Width: | Height: | Size: 8.6 KiB |
|
@ -1,11 +0,0 @@
|
|||
\documentclass[12pt]{article}
|
||||
|
||||
\begin{document}
|
||||
|
||||
$$
|
||||
\kappa = \frac{V}{k_B T^2} \int_0^\infty \langle J_x(0) J_x(t) \rangle \, dt
|
||||
= \frac{V}{3 k_B T^2} \int_0^\infty \langle \mathbf{J}(0) \cdot \mathbf{J}(t) \rangle \, dt
|
||||
$$
|
||||
|
||||
\end{document}
|
||||
|
Before Width: | Height: | Size: 18 KiB |
|
@ -1,7 +0,0 @@
|
|||
\documentclass[12pt]{article}
|
||||
\begin{document} \large
|
||||
\begin{eqnarray*}
|
||||
E_T & = & \sum_i [ E_i^{self} (q_i) + \sum_{j>i} [E_{ij}^{short} (r_{ij}, q_i, q_j) + E_{ij}^{Coul} (r_{ij}, q_i, q_j)] + \\
|
||||
&& E^{polar} (q_i, r_{ij}) + E^{vdW} (r_{ij}) + E^{barr} (q_i) + E^{corr} (r_{ij}, \theta_{jik})] \\
|
||||
\end{eqnarray*}
|
||||
\end{document}
|
Before Width: | Height: | Size: 39 KiB |
|
@ -1,23 +0,0 @@
|
|||
\documentclass[10pt]{article}
|
||||
|
||||
\begin{document}
|
||||
|
||||
\begin{table}[h]
|
||||
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
|
||||
\hline
|
||||
& $O$ & $Cu$ & $N$ & $C$ & $H$ & $Ti$ & $Zn$ & $Zr$ \\ \hline
|
||||
$O$ & F & F & F & F & F & F & F & F\\ \hline
|
||||
$Cu$ & F & F & P & F & F & P & F & P \\ \hline
|
||||
$N$ & F & P & F & M & F & P & P & P \\ \hline
|
||||
$C$ & F & F & M & F & F & M & M & M \\ \hline
|
||||
$H$ & F & F & F & F & F & M & M & F \\ \hline
|
||||
$Ti$ & F & P & P & M & M & F & P & P \\ \hline
|
||||
$Zn$ & F & F & P & M & M & P & F & P \\ \hline
|
||||
$Zr$ & F & P & P & M & F & P & P & F \\ \hline
|
||||
\multicolumn{9}{l}{F: Fully optimized} \\
|
||||
\multicolumn{9}{l}{M: Only optimized for dimer molecule} \\
|
||||
\multicolumn{9}{l}{P: in Progress but have it from mixing rule} \\
|
||||
\end{tabular}
|
||||
\end{table}
|
||||
|
||||
\end{document}
|
Before Width: | Height: | Size: 7.1 KiB |
|
@ -1,15 +0,0 @@
|
|||
\documentclass[12pt]{article}
|
||||
|
||||
\pagestyle{empty}
|
||||
\begin{document}
|
||||
|
||||
$$
|
||||
E = \frac{C_{q_i q_j}}{\epsilon r_{ij}}\,\, \textrm{erf}\left(\alpha_{ij} r_{ij}\right)\quad\quad\quad r < r_c
|
||||
$$
|
||||
|
||||
\end{document}
|
||||
|
||||
%%% Local Variables:
|
||||
%%% mode: latex
|
||||
%%% TeX-master: t
|
||||
%%% End:
|
Before Width: | Height: | Size: 186 KiB |
|
@ -1,33 +0,0 @@
|
|||
\documentclass[aps,pr,onecolumn,superscriptaddress,noshowpacs,a4paper,15pt]{revtex4}
|
||||
\pdfoutput=1
|
||||
\bibliographystyle{apsrev4}
|
||||
\usepackage{color}
|
||||
\usepackage{dcolumn} %Align table columns on decimal point
|
||||
\usepackage{amssymb}
|
||||
\usepackage{amsmath}
|
||||
\usepackage{amsthm}
|
||||
\usepackage{graphicx}
|
||||
\usepackage[pdftex]{hyperref}
|
||||
\hypersetup{colorlinks=true,citecolor=blue,linkcolor=red,urlcolor=blue}
|
||||
\usepackage[all]{hypcap}
|
||||
\newcommand{\red}{\color{red}}
|
||||
\newcommand{\blue}{\color{blue}}
|
||||
\definecolor{green}{rgb}{0,0.5,0}
|
||||
\newcommand{\green}{\color{green}}
|
||||
\newcommand{\white}{\color{white}}
|
||||
%\newcommand{\cite}[1]{\hspace{-1 ex} % \nocite{#1}\citenum{#1}}
|
||||
\thickmuskip=0.5\thickmuskip %shorter spaces in math
|
||||
|
||||
\begin{document}
|
||||
\begingroup
|
||||
\Large
|
||||
\begin{eqnarray*}
|
||||
E & = & \frac{1}{2} \sum_i \sum_{j \neq i} V_{ij} \\[15pt]
|
||||
V_{ij} & = & {\rm Tap}(r_{ij})\frac{\kappa q_i q_j}{\sqrt[3]{r_{ij}^3+(1/\lambda_{ij})^3}}\\[15pt]
|
||||
{\rm Tap}(r_{ij}) & = & 20\left ( \frac{r_{ij}}{R_{cut}} \right )^7 -
|
||||
70\left ( \frac{r_{ij}}{R_{cut}} \right )^6 +
|
||||
84\left ( \frac{r_{ij}}{R_{cut}} \right )^5 -
|
||||
35\left ( \frac{r_{ij}}{R_{cut}} \right )^4 + 1
|
||||
\end{eqnarray*}
|
||||
\endgroup
|
||||
\end{document}
|
Before Width: | Height: | Size: 4.5 KiB |
|
@ -1,9 +0,0 @@
|
|||
\documentclass[12pt]{article}
|
||||
|
||||
\begin{document}
|
||||
\thispagestyle{empty}
|
||||
\begin{eqnarray*}
|
||||
E &=& \frac{q_i q_j \mathrm{erf}\left( r/\sqrt{\gamma_1^2+\gamma_2^2} \right) }{\epsilon r_{ij}}
|
||||
\end{eqnarray*}
|
||||
|
||||
\end{document}
|
Before Width: | Height: | Size: 46 KiB |
|
@ -1,38 +0,0 @@
|
|||
\documentclass[12pt]{article}
|
||||
|
||||
\begin{document}
|
||||
|
||||
\begin{eqnarray*}
|
||||
E_{LJ} & = & 4 \epsilon \left[ \left(\frac{\sigma}{r}\right)^{12} -
|
||||
\left(\frac{\sigma}{r}\right)^6 \right] \\
|
||||
E_{qq} & = & \frac{q_i q_j}{r} \\
|
||||
E_{qp} & = & \frac{q}{r^3} (p \bullet \vec{r}) \\
|
||||
E_{pp} & = & \frac{1}{r^3} (\vec{p_i} \bullet \vec{p_j}) -
|
||||
\frac{3}{r^5} (\vec{p_i} \bullet \vec{r}) (\vec{p_j} \bullet \vec{r})
|
||||
\end{eqnarray*}
|
||||
|
||||
\begin{eqnarray*}
|
||||
F_{qq} & = & \frac{q_i q_j}{r^3} \vec{r} \\
|
||||
F_{qp} & = & -\frac{q}{r^3} \vec{p} + \frac{3q}{r^5}
|
||||
(\vec{p} \bullet \vec{r}) \vec{r} \\
|
||||
F_{pp} & = & \frac{3}{r^5} (\vec{p_i} \bullet \vec{p_j}) \vec{r} -
|
||||
\frac{15}{r^7} (\vec{p_i} \bullet \vec{r})
|
||||
(\vec{p_j} \bullet \vec{r}) \vec{r} +
|
||||
\frac{3}{r^5} \left[ (\vec{p_j} \bullet \vec{r}) \vec{p_i} +
|
||||
(\vec{p_i} \bullet \vec{r}) \vec{p_j} \right]
|
||||
\end{eqnarray*}
|
||||
|
||||
\begin{eqnarray*}
|
||||
T_{pq} = T_{ij} & = & \frac{q_j}{r^3} (\vec{p_i} \times \vec{r}) \\
|
||||
T_{qp} = T_{ji} & = & - \frac{q_i}{r^3} (\vec{p_j} \times \vec{r}) \\
|
||||
T_{pp} = T_{ij} & = & -\frac{1}{r^3} (\vec{p_i} \times \vec{p_j}) +
|
||||
\frac{3}{r^5} (\vec{p_j} \bullet \vec{r})
|
||||
(\vec{p_i} \times \vec{r}) \\
|
||||
T_{pp} = T_{ji} & = & -\frac{1}{r^3} (\vec{p_j} \times \vec{p_i}) +
|
||||
\frac{3}{r^5} (\vec{p_i} \bullet \vec{r})
|
||||
(\vec{p_j} \times \vec{r}) \\
|
||||
\end{eqnarray*}
|
||||
|
||||
\end{document}
|
||||
|
||||
|
Before Width: | Height: | Size: 91 KiB |
|
@ -1,51 +0,0 @@
|
|||
\documentclass[12pt]{article}
|
||||
|
||||
\begin{document}
|
||||
|
||||
\begin{eqnarray*}
|
||||
E_{LJ} & = & 4\epsilon \left\{ \left[ \left( \frac{\sigma}{r} \right)^{\!12} -
|
||||
\left( \frac{\sigma}{r} \right)^{\!6} \right] +
|
||||
\left[ 6\left( \frac{\sigma}{r_c} \right)^{\!12} -
|
||||
3\left(\frac{\sigma}{r_c}\right)^{\!6}\right]\left(\frac{r}{r_c}\right)^{\!2}
|
||||
- 7\left( \frac{\sigma}{r_c} \right)^{\!12} +
|
||||
4\left( \frac{\sigma}{r_c} \right)^{\!6}\right\} \\
|
||||
E_{qq} & = & \frac{q_i q_j}{r}\left(1-\frac{r}{r_c}\right)^{\!2} \\
|
||||
E_{pq} & = & E_{ji} = -\frac{q}{r^3} \left[ 1 -
|
||||
3\left(\frac{r}{r_c}\right)^{\!2} +
|
||||
2\left(\frac{r}{r_c}\right)^{\!3}\right] (\vec{p}\bullet\vec{r}) \\
|
||||
E_{qp} & = & E_{ij} = \frac{q}{r^3} \left[ 1 -
|
||||
3\left(\frac{r}{r_c}\right)^{\!2} +
|
||||
2\left(\frac{r}{r_c}\right)^{\!3}\right] (\vec{p}\bullet\vec{r}) \\
|
||||
E_{pp} & = & \left[1-4\left(\frac{r}{r_c}\right)^{\!3} +
|
||||
3\left(\frac{r}{r_c}\right)^{\!4}\right]\left[\frac{1}{r^3}
|
||||
(\vec{p_i} \bullet \vec{p_j}) - \frac{3}{r^5}
|
||||
(\vec{p_i} \bullet \vec{r}) (\vec{p_j} \bullet \vec{r})\right] \\
|
||||
\end{eqnarray*}
|
||||
|
||||
\begin{eqnarray*}
|
||||
F_{LJ} & = & \left\{\left[48\epsilon \left(\frac{\sigma}{r}\right)^{\!12} -
|
||||
24\epsilon \left(\frac{\sigma}{r}\right)^{\!6} \right]\frac{1}{r^2} -
|
||||
\left[48\epsilon \left(\frac{\sigma}{r_c}\right)^{\!12} - 24\epsilon
|
||||
\left(\frac{\sigma}{r_c}\right)^{\!6} \right]\frac{1}{r_c^2}\right\}\vec{r}\\
|
||||
F_{qq} & = & \frac{q_i q_j}{r}\left(\frac{1}{r^2} -
|
||||
\frac{1}{r_c^2}\right)\vec{r} \\
|
||||
F_{pq} &=& F_{ij } = -\frac{3q}{r^5} \left[ 1 -
|
||||
\left(\frac{r}{r_c}\right)^{\!2}\right](\vec{p}\bullet\vec{r})\vec{r} +
|
||||
\frac{q}{r^3}\left[1-3\left(\frac{r}{r_c}\right)^{\!2} +
|
||||
2\left(\frac{r}{r_c}\right)^{\!3}\right] \vec{p} \\
|
||||
F_{qp} &=& F_{ij} = \frac{3q}{r^5} \left[ 1 -
|
||||
\left(\frac{r}{r_c}\right)^{\!2}\right] (\vec{p}\bullet\vec{r})\vec{r} -
|
||||
\frac{q}{r^3}\left[1-3\left(\frac{r}{r_c}\right)^{\!2} +
|
||||
2\left(\frac{r}{r_c}\right)^{\!3}\right] \vec{p} \\
|
||||
F_{pp} & = &\frac{3}{r^5}\Bigg\{\left[1-\left(\frac{r}{r_c}\right)^{\!4}\right]
|
||||
\left[(\vec{p_i}\bullet\vec{p_j}) - \frac{3}{r^2} (\vec{p_i}\bullet\vec{r})
|
||||
(\vec{p_j} \bullet \vec{r})\right] \vec{r} + \\
|
||||
& & \left[1 -
|
||||
4\left(\frac{r}{r_c}\right)^{\!3}+3\left(\frac{r}{r_c}\right)^{\!4}\right]
|
||||
\left[ (\vec{p_j} \bullet \vec{r}) \vec{p_i} + (\vec{p_i} \bullet \vec{r})
|
||||
\vec{p_j} -\frac{2}{r^2} (\vec{p_i} \bullet \vec{r})
|
||||
(\vec{p_j} \bullet \vec{r})\vec{r}\right] \Bigg\} \\
|
||||
\end{eqnarray*}
|
||||
|
||||
\end{document}
|
||||
|
Before Width: | Height: | Size: 40 KiB |
|
@ -1,24 +0,0 @@
|
|||
\documentclass[12pt]{article}
|
||||
|
||||
\begin{document}
|
||||
|
||||
\begin{eqnarray*}
|
||||
T_{pq} = T_{ij} & = & \frac{q_j}{r^3} \left[ 1 -
|
||||
3\left(\frac{r}{r_c}\right)^{\!2} +
|
||||
2\left(\frac{r}{r_c}\right)^{\!3}\right] (\vec{p_i}\times\vec{r}) \\
|
||||
T_{qp} = T_{ji} & = & - \frac{q_i}{r^3} \left[ 1 -
|
||||
3\left(\frac{r}{r_c}\right)^{\!2} +
|
||||
2\left(\frac{r}{r_c}\right)^{\!3} \right] (\vec{p_j}\times\vec{r}) \\
|
||||
T_{pp} = T_{ij} & = & -\frac{1}{r^3}\left[1-4\left(\frac{r}{r_c}\right)^{\!3} +
|
||||
e3\left(\frac{r}{r_c}\right)^{\!4}\right] (\vec{p_i} \times \vec{p_j}) + \\
|
||||
& & \frac{3}{r^5}\left[1-4\left(\frac{r}{r_c}\right)^{\!3} +
|
||||
3\left(\frac{r}{r_c}\right)^{\!4}\right] (\vec{p_j}\bullet\vec{r})
|
||||
(\vec{p_i} \times \vec{r}) \\
|
||||
T_{pp} = T_{ji} & = & -\frac{1}{r^3}\left[1-4\left(\frac{r}{r_c}\right)^{\!3} +
|
||||
3\left(\frac{r}{r_c}\right)^{\!4}\right](\vec{p_j} \times \vec{p_i}) + \\
|
||||
& & \frac{3}{r^5}\left[1-4\left(\frac{r}{r_c}\right)^{\!3} +
|
||||
3\left(\frac{r}{r_c}\right)^{\!4}\right] (\vec{p_i} \bullet \vec{r})
|
||||
(\vec{p_j} \times \vec{r}) \\
|
||||
\end{eqnarray*}
|
||||
|
||||
\end{document}
|
Before Width: | Height: | Size: 8.7 KiB |
|
@ -1,10 +0,0 @@
|
|||
\documentclass[12pt]{article}
|
||||
|
||||
\begin{document}
|
||||
\thispagestyle{empty}
|
||||
|
||||
$$
|
||||
s_S^i=-2\pi\rho k_B \int\limits_0^{r_m} \left [ g(r) \ln g(r) - g(r) + 1 \right ] r^2 dr ,
|
||||
$$
|
||||
|
||||
\end{document}
|
Before Width: | Height: | Size: 8.3 KiB |
|
@ -1,10 +0,0 @@
|
|||
\documentclass[12pt]{article}
|
||||
|
||||
\begin{document}
|
||||
\thispagestyle{empty}
|
||||
|
||||
$$
|
||||
g_m^i(r) = \frac{1}{4 \pi \rho r^2} \sum\limits_{j} \frac{1}{\sqrt{2 \pi \sigma^2}} e^{-(r-r_{ij})^2/(2\sigma^2)} ,
|
||||
$$
|
||||
|
||||
\end{document}
|
Before Width: | Height: | Size: 5.6 KiB |
|
@ -1,10 +0,0 @@
|
|||
\documentclass[12pt]{article}
|
||||
|
||||
\begin{document}
|
||||
\thispagestyle{empty}
|
||||
|
||||
$$
|
||||
\bar{s}_S^i = \frac{\sum_j s_S^j + s_S^i}{N + 1} ,
|
||||
$$
|
||||
|
||||
\end{document}
|
Before Width: | Height: | Size: 27 KiB |
|
@ -1,13 +0,0 @@
|
|||
\documentclass[12pt]{article}
|
||||
|
||||
\begin{document}
|
||||
|
||||
\begin{eqnarray*}
|
||||
E_{tot} & = & E_{ES} + E_{OO} + E_{MO} \\
|
||||
E_{ES} & = & \sum_i{\Big[ \chi_{i}^{0}Q_i + \frac{1}{2}J_{i}^{0}Q_{i}^{2} +
|
||||
\frac{1}{2} \sum_{j\neq i}{ J_{ij}(r_{ij})f_{cut}^{R_{coul}}(r_{ij})Q_i Q_j } \Big] } \\
|
||||
E_{OO} & = & \sum_{i,j}^{i,j = O}{\Bigg[Cexp( -\frac{r_{ij}}{\rho} ) - Df_{cut}^{r_1^{OO}r_2^{OO}}(r_{ij}) exp(Br_{ij})\Bigg]} \\
|
||||
E_{MO} & = & \sum_i{E_{cov}^{i} + \sum_{j\neq i}{ Af_{cut}^{r_{c1}r_{c2}}(r_{ij})exp\Big[-p(\frac{r_{ij}}{r_0} -1) \Big] } } \\
|
||||
\end{eqnarray*}
|
||||
|
||||
\end{document}
|
Before Width: | Height: | Size: 15 KiB |
|
@ -1,12 +0,0 @@
|
|||
\documentclass[12pt]{article}
|
||||
|
||||
\begin{document}
|
||||
|
||||
\begin{eqnarray*}
|
||||
E_{cov}^{i(i=M,O)} & = & - \Bigg\{\eta_i(\mu \xi^{0})^2 f_{cut}^{r_{c1}r_{c2}}(r_{ij})
|
||||
\Bigg( \sum_{j(j=O,M)}{ exp[ -2q(\frac{r_{ij}}{r_0} - 1)] } \Bigg)
|
||||
\delta Q_i \Big( 2\frac{n_0}{\eta_i} - \delta Q_i \Big) \Bigg\}^{1/2} \\
|
||||
\delta Q_i & = & | Q_i^{F} | - | Q_i |
|
||||
\end{eqnarray*}
|
||||
|
||||
\end{document}
|
Before Width: | Height: | Size: 6.7 KiB |
|
@ -1,10 +0,0 @@
|
|||
\documentclass[12pt]{article}
|
||||
|
||||
\begin{document}
|
||||
|
||||
\begin{eqnarray*}
|
||||
\xi^0 & = & \frac{\xi_O}{m} = \frac{\xi_C}{n} \\
|
||||
\frac{\beta_O}{\sqrt{m}} & = & \frac{\beta_C}{\sqrt{n}} = \xi^0 \frac{\sqrt{m}+\sqrt{n}}{2}\\
|
||||
\end{eqnarray*}
|
||||
|
||||
\end{document}
|
Before Width: | Height: | Size: 22 KiB |
|
@ -1,20 +0,0 @@
|
|||
\documentclass[12pt]{article}
|
||||
|
||||
\begin{document}
|
||||
|
||||
\begin{eqnarray*}
|
||||
S_{ab} & = & - \left[ m v_a v_b +
|
||||
\frac{1}{2} \sum_{n = 1}^{N_p} (r_{1_a} F_{1_b} + r_{2_a} F_{2_b}) +
|
||||
\frac{1}{2} \sum_{n = 1}^{N_b} (r_{1_a} F_{1_b} + r_{2_a} F_{2_b}) + \right. \\
|
||||
&& \left. \frac{1}{3} \sum_{n = 1}^{N_a} (r_{1_a} F_{1_b} + r_{2_a} F_{2_b} +
|
||||
r_{3_a} F_{3_b}) +
|
||||
\frac{1}{4} \sum_{n = 1}^{N_d} (r_{1_a} F_{1_b} + r_{2_a} F_{2_b} +
|
||||
r_{3_a} F_{3_b} + r_{4_a} F_{4_b}) + \right. \\
|
||||
&& \left. \frac{1}{4} \sum_{n = 1}^{N_i} (r_{1_a} F_{1_b} + r_{2_a} F_{2_b} +
|
||||
r_{3_a} F_{3_b} + r_{4_a} F_{4_b}) +
|
||||
{\rm Kspace}(r_{i_a},F_{i_b}) +
|
||||
\sum_{n = 1}^{N_f} r_{i_a} F_{i_b} \right]
|
||||
\end{eqnarray*}
|
||||
|
||||
\end{document}
|
||||
|
|
@ -71,7 +71,7 @@ The detailed formulas for this potential are given in Ward
|
|||
The repulsive energy :math:`\phi_{ij}(r_{ij})` and the bond integrals
|
||||
:math:`\beta_{\sigma,ij}(r_{ij})` and :math:`\beta_{\phi,ij}(r_{ij})` are functions of the
|
||||
interatomic distance :math:`r_{ij}` between atom *i* and *j*\ . Each of these
|
||||
potentials has a smooth cutoff at a radius of :math:`r_{cut,ij}. These
|
||||
potentials has a smooth cutoff at a radius of :math:`r_{cut,ij}`. These
|
||||
smooth cutoffs ensure stable behavior at situations with high sampling
|
||||
near the cutoff such as melts and surfaces.
|
||||
|
||||
|
|