forked from lijiext/lammps
more changes for correct and consistent spelling in the manual
This commit is contained in:
parent
809bd855b6
commit
b6f0fe4c2d
|
@ -19,7 +19,7 @@ barostat attempts to equilibrate the system to the requested T and/or
|
|||
P.
|
||||
|
||||
Barostatting in LAMMPS is performed by "fixes"_fix.html. Two
|
||||
barosttating methods are currently available: Nose-Hoover (npt and
|
||||
barostatting methods are currently available: Nose-Hoover (npt and
|
||||
nph) and Berendsen:
|
||||
|
||||
"fix npt"_fix_nh.html
|
||||
|
|
|
@ -13,7 +13,7 @@ Kokkos is a templated C++ library that provides abstractions to allow
|
|||
a single implementation of an application kernel (e.g. a pair style)
|
||||
to run efficiently on different kinds of hardware, such as GPUs, Intel
|
||||
Xeon Phis, or many-core CPUs. Kokkos maps the C++ kernel onto
|
||||
different backend languages such as CUDA, OpenMP, or Pthreads. The
|
||||
different back end languages such as CUDA, OpenMP, or Pthreads. The
|
||||
Kokkos library also provides data abstractions to adjust (at compile
|
||||
time) the memory layout of data structures like 2d and 3d arrays to
|
||||
optimize performance on different hardware. For more information on
|
||||
|
@ -106,9 +106,9 @@ modification to the input script is needed. Alternatively, one can run
|
|||
with the KOKKOS package by editing the input script as described
|
||||
below.
|
||||
|
||||
NOTE: When using a single OpenMP thread, the Kokkos Serial backend (i.e.
|
||||
NOTE: When using a single OpenMP thread, the Kokkos Serial back end (i.e.
|
||||
Makefile.kokkos_mpi_only) will give better performance than the OpenMP
|
||||
backend (i.e. Makefile.kokkos_omp) because some of the overhead to make
|
||||
back end (i.e. Makefile.kokkos_omp) because some of the overhead to make
|
||||
the code thread-safe is removed.
|
||||
|
||||
NOTE: The default for the "package kokkos"_package.html command is to
|
||||
|
@ -139,7 +139,7 @@ be enforced by compiling LAMMPS with the "-DLMP_KOKKOS_USE_ATOMICS"
|
|||
pre-processor flag. Most but not all Kokkos-enabled pair_styles support
|
||||
data duplication. Alternatively, full neighbor lists avoid the need for
|
||||
duplication or atomic operations but require more compute operations per
|
||||
atom. When using the Kokkos Serial backend or the OpenMP backend with
|
||||
atom. When using the Kokkos Serial back end or the OpenMP back end with
|
||||
a single thread, no duplication or atomic operations are used. For CUDA
|
||||
and half neighbor lists, the KOKKOS package always uses atomic operations.
|
||||
|
||||
|
|
|
@ -309,7 +309,7 @@ compute"_Commands_compute.html doc page are followed by one or more of
|
|||
"temp/uef"_compute_temp_uef.html -
|
||||
"ti"_compute_ti.html - thermodynamic integration free energy values
|
||||
"torque/chunk"_compute_torque_chunk.html - torque applied on each chunk
|
||||
"vacf"_compute_vacf.html - velocity-autocorrelation function of group of atoms
|
||||
"vacf"_compute_vacf.html - velocity auto-correlation function of group of atoms
|
||||
"vcm/chunk"_compute_vcm_chunk.html - velocity of center-of-mass for each chunk
|
||||
"voronoi/atom"_compute_voronoi_atom.html - Voronoi volume and neighbors for each atom
|
||||
"xrd"_compute_xrd.html - :ul
|
||||
|
|
|
@ -82,11 +82,11 @@ first term in the equation for J above.
|
|||
|
||||
The heat flux can be output every so many timesteps (e.g. via the
|
||||
"thermo_style custom"_thermo_style.html command). Then as a
|
||||
post-processing operation, an autocorrelation can be performed, its
|
||||
post-processing operation, an auto-correlation can be performed, its
|
||||
integral estimated, and the Green-Kubo formula above evaluated.
|
||||
|
||||
The "fix ave/correlate"_fix_ave_correlate.html command can calculate
|
||||
the autocorrelation. The trap() function in the
|
||||
the auto-correlation. The trap() function in the
|
||||
"variable"_variable.html command can calculate the integral.
|
||||
|
||||
An example LAMMPS input script for solid Ar is appended below. The
|
||||
|
|
|
@ -82,7 +82,7 @@ sense, a restarted simulation should produce the same behavior.
|
|||
Note however that you should use a different seed each time you
|
||||
restart, otherwise the same sequence of random numbers will be used
|
||||
each time, which might lead to stochastic synchronization and
|
||||
subtle artefacts in the sampling.
|
||||
subtle artifacts in the sampling.
|
||||
|
||||
This fix can ramp its target temperature over multiple runs, using the
|
||||
{start} and {stop} keywords of the "run"_run.html command. See the
|
||||
|
|
|
@ -104,7 +104,7 @@ sense, a restarted simulation should produce the same behavior.
|
|||
Note however that you should use a different seed each time you
|
||||
restart, otherwise the same sequence of random numbers will be used
|
||||
each time, which might lead to stochastic synchronization and
|
||||
subtle artefacts in the sampling.
|
||||
subtle artifacts in the sampling.
|
||||
|
||||
This fix can ramp its target temperature over multiple runs, using the
|
||||
{start} and {stop} keywords of the "run"_run.html command. See the
|
||||
|
|
|
@ -255,7 +255,7 @@ bonds, configurational properties generated with dt = 2.5 fs and tdamp
|
|||
= 100 fs are indistinguishable from dt = 0.5 fs. Because the velocity
|
||||
distribution systematically decreases with increasing timestep, the
|
||||
method should not be used to generate properties that depend on the
|
||||
velocity distribution, such as the velocity autocorrelation function
|
||||
velocity distribution, such as the velocity auto-correlation function
|
||||
(VACF). In this example, the velocity distribution at dt = 2.5fs
|
||||
generates an average temperature of 220 K, instead of 300 K.
|
||||
|
||||
|
|
|
@ -362,7 +362,7 @@ The flip operation is described in more detail in the doc page for
|
|||
"fix deform"_fix_deform.html. Both the barostat dynamics and the atom
|
||||
trajectories are unaffected by this operation. However, if a tilt
|
||||
factor is incremented by a large amount (1.5 times the box length) on
|
||||
a single timestep, LAMMPS can not accomodate this event and will
|
||||
a single timestep, LAMMPS can not accommodate this event and will
|
||||
terminate the simulation with an error. This error typically indicates
|
||||
that there is something badly wrong with how the simulation was
|
||||
constructed, such as specifying values of {Pstart} that are too far
|
||||
|
|
|
@ -127,7 +127,7 @@ which lattice point; the lattice indices start from 0. An auxiliary
|
|||
code, "latgen"_http://code.google.com/p/latgen, can be employed to
|
||||
generate the compatible map file for various crystals.
|
||||
|
||||
In case one simulates an aperiodic system, where the whole simulation
|
||||
In case one simulates a nonperiodic system, where the whole simulation
|
||||
box is treated as a unit cell, one can set {map_file} as {GAMMA}, so
|
||||
that the mapping info will be generated internally and a file is not
|
||||
needed. In this case, the dynamical matrix at only the gamma-point
|
||||
|
|
Loading…
Reference in New Issue