forked from lijiext/lammps
Added hexatic bond orientational order parameter
git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@14233 f3b2605a-c512-4ea7-a41b-209d697bcdaa
This commit is contained in:
parent
984132322e
commit
a91bbaf7f2
|
@ -15,53 +15,35 @@ compute ID group-ID hexorder/atom cutoff type1 type2 ... :pre
|
|||
ID, group-ID are documented in "compute"_compute.html command
|
||||
hexorder/atom = style name of this compute command
|
||||
cutoff = distance within which to count neighbors (distance units)
|
||||
typeN = atom type for Nth order parameter (see asterisk form below) :ul
|
||||
|
||||
[Examples:]
|
||||
|
||||
compute 1 all hexorder/atom 2.0
|
||||
compute 1 all hexorder/atom 6.0 1 2
|
||||
compute 1 all hexorder/atom 6.0 2*4 5*8 * :pre
|
||||
compute 1 all hexorder/atom 2.0 :pre
|
||||
|
||||
[Description:]
|
||||
|
||||
Define a computation that calculates one or more hexatic bond orientational
|
||||
order parameters for each atom in a group. The hexatic bond orientational order
|
||||
parameter {q}6 "(Nelson)"_#Nelson for an atom is a complex number (stored as two real numbers).
|
||||
It is defined as follows:
|
||||
Define a computation that calculates {q}6 the hexatic bond-orientational
|
||||
order parameter for each atom in a group. This order
|
||||
parameter was introduced by "Nelson and Halperin"_#Nelson as a way to detect
|
||||
hexagonal symmetry in two-dimensional systems. For a each atoms, {q}6
|
||||
is a complex number (stored as two real numbers) defined as follows:
|
||||
|
||||
:c,image(Eqs/hexorder.jpg)
|
||||
|
||||
where the sum is over atoms of the specified atom type(s) that are within
|
||||
where the sum is over all atoms that are within
|
||||
the specified cutoff distance from the central atom. The angle theta
|
||||
is formed by the bond vector rij and the {x} axis. theta is calculated
|
||||
only using the {x} and {y} components, whereas the distance from the
|
||||
central atom is calculated using all three
|
||||
{x}, {y}, and {z} components of the bond vector.
|
||||
Atoms not in the group
|
||||
Neighbor atoms not in the group
|
||||
are included in the order parameter of atoms in the group.
|
||||
|
||||
If the neighbors of the central atom lie on a hexagonal lattice,
|
||||
then |{q}6| = 1.
|
||||
The complex phase of {q}6 depends on the orientation of the
|
||||
lattice relative to the {x} axis. For a liquid in which the
|
||||
atomic neighborhood lacks orientational symmettry, |{q}6| << 1.
|
||||
|
||||
The {typeN} keywords allow you to specify which atom types contribute
|
||||
to each order parameter. One order parameter is computed for
|
||||
each of the {typeN} keywords listed. If no {typeN} keywords are
|
||||
listed, a single order parameter is calculated, which includes
|
||||
atoms of all types (same as the "*" format, see below).
|
||||
|
||||
The {typeN} keywords can be specified in one of two ways. An explicit
|
||||
numeric value can be used, as in the 2nd example above. Or a
|
||||
wild-card asterisk can be used to specify a range of atom types. This
|
||||
takes the form "*" or "*n" or "n*" or "m*n". If N = the number of
|
||||
atom types, then an asterisk with no numeric values means all types
|
||||
from 1 to N. A leading asterisk means all types from 1 to n
|
||||
(inclusive). A trailing asterisk means all types from n to N
|
||||
(inclusive). A middle asterisk means all types from m to n
|
||||
(inclusive).
|
||||
atomic neighborhood lacks orientational symmetry, |{q}6| << 1.
|
||||
|
||||
The value of all order parameters will be zero for atoms not in the
|
||||
specified compute group. An order parameter for atoms that have no
|
||||
|
@ -88,19 +70,15 @@ the neighbor list.
|
|||
|
||||
[Output info:]
|
||||
|
||||
If single {type1} keyword is specified (or if none are specified),
|
||||
this compute calculates a per-atom array with 2 columns, giving the
|
||||
This compute calculates a per-atom array with 2 columns, giving the
|
||||
real and imaginary parts of {q}6, respectively.
|
||||
If multiple {typeN} keywords are specified, this compute calculates
|
||||
a per-atom array with 2*N columns, with each consecutive pair of
|
||||
columns giving the real and imaginary parts of {q}6.
|
||||
|
||||
These values can be accessed by any command that uses
|
||||
per-atom values from a compute as input. See "Section_howto
|
||||
15"_Section_howto.html#howto_15 for an overview of LAMMPS output
|
||||
options.
|
||||
|
||||
The per-atom array values will be pairs of numbers representing the
|
||||
The per-atom array contain pairs of numbers representing the
|
||||
real and imaginary parts of {q}6, a complex number subject to the
|
||||
constraint |{q}6| <= 1.
|
||||
|
||||
|
|
|
@ -38,33 +38,12 @@ using namespace LAMMPS_NS;
|
|||
ComputeHexOrderAtom::ComputeHexOrderAtom(LAMMPS *lmp, int narg, char **arg) :
|
||||
Compute(lmp, narg, arg)
|
||||
{
|
||||
if (narg < 4) error->all(FLERR,"Illegal compute hexorder/atom command");
|
||||
if (narg != 4) error->all(FLERR,"Illegal compute hexorder/atom command");
|
||||
|
||||
double cutoff = force->numeric(FLERR,arg[3]);
|
||||
cutsq = cutoff*cutoff;
|
||||
|
||||
ncol = narg-4 + 1;
|
||||
int ntypes = atom->ntypes;
|
||||
typelo = new int[ncol];
|
||||
typehi = new int[ncol];
|
||||
|
||||
if (narg == 4) {
|
||||
ncol = 2;
|
||||
typelo[0] = 1;
|
||||
typehi[0] = ntypes;
|
||||
} else {
|
||||
ncol = 0;
|
||||
int iarg = 4;
|
||||
while (iarg < narg) {
|
||||
force->bounds(arg[iarg],ntypes,typelo[ncol],typehi[ncol]);
|
||||
if (typelo[ncol] > typehi[ncol])
|
||||
error->all(FLERR,"Illegal compute hexorder/atom command");
|
||||
typelo[ncol+1] = typelo[ncol];
|
||||
typehi[ncol+1] = typehi[ncol];
|
||||
ncol+=2;
|
||||
iarg++;
|
||||
}
|
||||
}
|
||||
ncol = 2;
|
||||
|
||||
peratom_flag = 1;
|
||||
size_peratom_cols = ncol;
|
||||
|
@ -77,8 +56,6 @@ ComputeHexOrderAtom::ComputeHexOrderAtom(LAMMPS *lmp, int narg, char **arg) :
|
|||
|
||||
ComputeHexOrderAtom::~ComputeHexOrderAtom()
|
||||
{
|
||||
delete [] typelo;
|
||||
delete [] typehi;
|
||||
memory->destroy(q6array);
|
||||
}
|
||||
|
||||
|
@ -119,10 +96,9 @@ void ComputeHexOrderAtom::init_list(int id, NeighList *ptr)
|
|||
|
||||
void ComputeHexOrderAtom::compute_peratom()
|
||||
{
|
||||
int i,j,m,ii,jj,inum,jnum,jtype;
|
||||
int i,j,m,ii,jj,inum,jnum;
|
||||
double xtmp,ytmp,ztmp,delx,dely,delz,rsq;
|
||||
int *ilist,*jlist,*numneigh,**firstneigh;
|
||||
double *count;
|
||||
|
||||
invoked_peratom = update->ntimestep;
|
||||
|
||||
|
@ -148,93 +124,43 @@ void ComputeHexOrderAtom::compute_peratom()
|
|||
// use full neighbor list to count atoms less than cutoff
|
||||
|
||||
double **x = atom->x;
|
||||
int *type = atom->type;
|
||||
int *mask = atom->mask;
|
||||
|
||||
if (ncol == 2) {
|
||||
for (ii = 0; ii < inum; ii++) {
|
||||
i = ilist[ii];
|
||||
double* q6 = q6array[i];
|
||||
q6[0] = q6[1] = 0.0;
|
||||
if (mask[i] & groupbit) {
|
||||
xtmp = x[i][0];
|
||||
ytmp = x[i][1];
|
||||
ztmp = x[i][2];
|
||||
jlist = firstneigh[i];
|
||||
jnum = numneigh[i];
|
||||
|
||||
double usum = 0.0;
|
||||
double vsum = 0.0;
|
||||
int ncount = 0;
|
||||
|
||||
for (jj = 0; jj < jnum; jj++) {
|
||||
j = jlist[jj];
|
||||
j &= NEIGHMASK;
|
||||
|
||||
jtype = type[j];
|
||||
delx = xtmp - x[j][0];
|
||||
dely = ytmp - x[j][1];
|
||||
delz = ztmp - x[j][2];
|
||||
rsq = delx*delx + dely*dely + delz*delz;
|
||||
if (rsq < cutsq && jtype >= typelo[0] && jtype <= typehi[0]) {
|
||||
double u, v;
|
||||
calc_q6(delx, dely, u, v);
|
||||
usum += u;
|
||||
vsum += v;
|
||||
ncount++;
|
||||
}
|
||||
}
|
||||
if (ncount > 0) {
|
||||
double ninv = 1.0/ncount ;
|
||||
q6[0] = usum*ninv;
|
||||
q6[1] = vsum*ninv;
|
||||
for (ii = 0; ii < inum; ii++) {
|
||||
i = ilist[ii];
|
||||
double* q6 = q6array[i];
|
||||
q6[0] = q6[1] = 0.0;
|
||||
if (mask[i] & groupbit) {
|
||||
xtmp = x[i][0];
|
||||
ytmp = x[i][1];
|
||||
ztmp = x[i][2];
|
||||
jlist = firstneigh[i];
|
||||
jnum = numneigh[i];
|
||||
|
||||
double usum = 0.0;
|
||||
double vsum = 0.0;
|
||||
int ncount = 0;
|
||||
|
||||
for (jj = 0; jj < jnum; jj++) {
|
||||
j = jlist[jj];
|
||||
j &= NEIGHMASK;
|
||||
|
||||
delx = xtmp - x[j][0];
|
||||
dely = ytmp - x[j][1];
|
||||
delz = ztmp - x[j][2];
|
||||
rsq = delx*delx + dely*dely + delz*delz;
|
||||
if (rsq < cutsq) {
|
||||
double u, v;
|
||||
calc_q6(delx, dely, u, v);
|
||||
usum += u;
|
||||
vsum += v;
|
||||
ncount++;
|
||||
}
|
||||
}
|
||||
}
|
||||
} else {
|
||||
for (ii = 0; ii < inum; ii++) {
|
||||
i = ilist[ii];
|
||||
double* q6 = q6array[i];
|
||||
for (m = 0; m < ncol; m++) q6[m] = 0.0;
|
||||
|
||||
if (mask[i] & groupbit) {
|
||||
xtmp = x[i][0];
|
||||
ytmp = x[i][1];
|
||||
ztmp = x[i][2];
|
||||
jlist = firstneigh[i];
|
||||
jnum = numneigh[i];
|
||||
|
||||
for (m = 0; m < ncol; m+=2) {
|
||||
|
||||
double usum = 0.0;
|
||||
double vsum = 0.0;
|
||||
int ncount = 0;
|
||||
|
||||
for (jj = 0; jj < jnum; jj++) {
|
||||
j = jlist[jj];
|
||||
j &= NEIGHMASK;
|
||||
|
||||
jtype = type[j];
|
||||
delx = xtmp - x[j][0];
|
||||
dely = ytmp - x[j][1];
|
||||
delz = ztmp - x[j][2];
|
||||
rsq = delx*delx + dely*dely + delz*delz;
|
||||
if (rsq < cutsq) {
|
||||
if (jtype >= typelo[m] && jtype <= typehi[m]) {
|
||||
double u, v;
|
||||
calc_q6(delx, dely, u, v);
|
||||
usum += u;
|
||||
vsum += v;
|
||||
ncount++;
|
||||
}
|
||||
}
|
||||
if (ncount > 0) {
|
||||
double ninv = 1.0/ncount ;
|
||||
q6[m] = usum*ninv;
|
||||
q6[m+1] = vsum*ninv;
|
||||
}
|
||||
}
|
||||
}
|
||||
if (ncount > 0) {
|
||||
double ninv = 1.0/ncount ;
|
||||
q6[0] = usum*ninv;
|
||||
q6[1] = vsum*ninv;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
|
|
@ -38,7 +38,6 @@ class ComputeHexOrderAtom : public Compute {
|
|||
double cutsq;
|
||||
class NeighList *list;
|
||||
|
||||
int *typelo,*typehi;
|
||||
double **q6array;
|
||||
|
||||
void calc_q6(double, double, double&, double&);
|
||||
|
|
Loading…
Reference in New Issue