Added hexatic bond orientational order parameter

git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@14233 f3b2605a-c512-4ea7-a41b-209d697bcdaa
This commit is contained in:
athomps 2015-11-04 23:56:47 +00:00
parent 984132322e
commit a91bbaf7f2
3 changed files with 47 additions and 144 deletions

View File

@ -15,53 +15,35 @@ compute ID group-ID hexorder/atom cutoff type1 type2 ... :pre
ID, group-ID are documented in "compute"_compute.html command
hexorder/atom = style name of this compute command
cutoff = distance within which to count neighbors (distance units)
typeN = atom type for Nth order parameter (see asterisk form below) :ul
[Examples:]
compute 1 all hexorder/atom 2.0
compute 1 all hexorder/atom 6.0 1 2
compute 1 all hexorder/atom 6.0 2*4 5*8 * :pre
compute 1 all hexorder/atom 2.0 :pre
[Description:]
Define a computation that calculates one or more hexatic bond orientational
order parameters for each atom in a group. The hexatic bond orientational order
parameter {q}6 "(Nelson)"_#Nelson for an atom is a complex number (stored as two real numbers).
It is defined as follows:
Define a computation that calculates {q}6 the hexatic bond-orientational
order parameter for each atom in a group. This order
parameter was introduced by "Nelson and Halperin"_#Nelson as a way to detect
hexagonal symmetry in two-dimensional systems. For a each atoms, {q}6
is a complex number (stored as two real numbers) defined as follows:
:c,image(Eqs/hexorder.jpg)
where the sum is over atoms of the specified atom type(s) that are within
where the sum is over all atoms that are within
the specified cutoff distance from the central atom. The angle theta
is formed by the bond vector rij and the {x} axis. theta is calculated
only using the {x} and {y} components, whereas the distance from the
central atom is calculated using all three
{x}, {y}, and {z} components of the bond vector.
Atoms not in the group
Neighbor atoms not in the group
are included in the order parameter of atoms in the group.
If the neighbors of the central atom lie on a hexagonal lattice,
then |{q}6| = 1.
The complex phase of {q}6 depends on the orientation of the
lattice relative to the {x} axis. For a liquid in which the
atomic neighborhood lacks orientational symmettry, |{q}6| << 1.
The {typeN} keywords allow you to specify which atom types contribute
to each order parameter. One order parameter is computed for
each of the {typeN} keywords listed. If no {typeN} keywords are
listed, a single order parameter is calculated, which includes
atoms of all types (same as the "*" format, see below).
The {typeN} keywords can be specified in one of two ways. An explicit
numeric value can be used, as in the 2nd example above. Or a
wild-card asterisk can be used to specify a range of atom types. This
takes the form "*" or "*n" or "n*" or "m*n". If N = the number of
atom types, then an asterisk with no numeric values means all types
from 1 to N. A leading asterisk means all types from 1 to n
(inclusive). A trailing asterisk means all types from n to N
(inclusive). A middle asterisk means all types from m to n
(inclusive).
atomic neighborhood lacks orientational symmetry, |{q}6| << 1.
The value of all order parameters will be zero for atoms not in the
specified compute group. An order parameter for atoms that have no
@ -88,19 +70,15 @@ the neighbor list.
[Output info:]
If single {type1} keyword is specified (or if none are specified),
this compute calculates a per-atom array with 2 columns, giving the
This compute calculates a per-atom array with 2 columns, giving the
real and imaginary parts of {q}6, respectively.
If multiple {typeN} keywords are specified, this compute calculates
a per-atom array with 2*N columns, with each consecutive pair of
columns giving the real and imaginary parts of {q}6.
These values can be accessed by any command that uses
per-atom values from a compute as input. See "Section_howto
15"_Section_howto.html#howto_15 for an overview of LAMMPS output
options.
The per-atom array values will be pairs of numbers representing the
The per-atom array contain pairs of numbers representing the
real and imaginary parts of {q}6, a complex number subject to the
constraint |{q}6| <= 1.

View File

@ -38,33 +38,12 @@ using namespace LAMMPS_NS;
ComputeHexOrderAtom::ComputeHexOrderAtom(LAMMPS *lmp, int narg, char **arg) :
Compute(lmp, narg, arg)
{
if (narg < 4) error->all(FLERR,"Illegal compute hexorder/atom command");
if (narg != 4) error->all(FLERR,"Illegal compute hexorder/atom command");
double cutoff = force->numeric(FLERR,arg[3]);
cutsq = cutoff*cutoff;
ncol = narg-4 + 1;
int ntypes = atom->ntypes;
typelo = new int[ncol];
typehi = new int[ncol];
if (narg == 4) {
ncol = 2;
typelo[0] = 1;
typehi[0] = ntypes;
} else {
ncol = 0;
int iarg = 4;
while (iarg < narg) {
force->bounds(arg[iarg],ntypes,typelo[ncol],typehi[ncol]);
if (typelo[ncol] > typehi[ncol])
error->all(FLERR,"Illegal compute hexorder/atom command");
typelo[ncol+1] = typelo[ncol];
typehi[ncol+1] = typehi[ncol];
ncol+=2;
iarg++;
}
}
ncol = 2;
peratom_flag = 1;
size_peratom_cols = ncol;
@ -77,8 +56,6 @@ ComputeHexOrderAtom::ComputeHexOrderAtom(LAMMPS *lmp, int narg, char **arg) :
ComputeHexOrderAtom::~ComputeHexOrderAtom()
{
delete [] typelo;
delete [] typehi;
memory->destroy(q6array);
}
@ -119,10 +96,9 @@ void ComputeHexOrderAtom::init_list(int id, NeighList *ptr)
void ComputeHexOrderAtom::compute_peratom()
{
int i,j,m,ii,jj,inum,jnum,jtype;
int i,j,m,ii,jj,inum,jnum;
double xtmp,ytmp,ztmp,delx,dely,delz,rsq;
int *ilist,*jlist,*numneigh,**firstneigh;
double *count;
invoked_peratom = update->ntimestep;
@ -148,93 +124,43 @@ void ComputeHexOrderAtom::compute_peratom()
// use full neighbor list to count atoms less than cutoff
double **x = atom->x;
int *type = atom->type;
int *mask = atom->mask;
if (ncol == 2) {
for (ii = 0; ii < inum; ii++) {
i = ilist[ii];
double* q6 = q6array[i];
q6[0] = q6[1] = 0.0;
if (mask[i] & groupbit) {
xtmp = x[i][0];
ytmp = x[i][1];
ztmp = x[i][2];
jlist = firstneigh[i];
jnum = numneigh[i];
double usum = 0.0;
double vsum = 0.0;
int ncount = 0;
for (jj = 0; jj < jnum; jj++) {
j = jlist[jj];
j &= NEIGHMASK;
jtype = type[j];
delx = xtmp - x[j][0];
dely = ytmp - x[j][1];
delz = ztmp - x[j][2];
rsq = delx*delx + dely*dely + delz*delz;
if (rsq < cutsq && jtype >= typelo[0] && jtype <= typehi[0]) {
double u, v;
calc_q6(delx, dely, u, v);
usum += u;
vsum += v;
ncount++;
}
}
if (ncount > 0) {
double ninv = 1.0/ncount ;
q6[0] = usum*ninv;
q6[1] = vsum*ninv;
for (ii = 0; ii < inum; ii++) {
i = ilist[ii];
double* q6 = q6array[i];
q6[0] = q6[1] = 0.0;
if (mask[i] & groupbit) {
xtmp = x[i][0];
ytmp = x[i][1];
ztmp = x[i][2];
jlist = firstneigh[i];
jnum = numneigh[i];
double usum = 0.0;
double vsum = 0.0;
int ncount = 0;
for (jj = 0; jj < jnum; jj++) {
j = jlist[jj];
j &= NEIGHMASK;
delx = xtmp - x[j][0];
dely = ytmp - x[j][1];
delz = ztmp - x[j][2];
rsq = delx*delx + dely*dely + delz*delz;
if (rsq < cutsq) {
double u, v;
calc_q6(delx, dely, u, v);
usum += u;
vsum += v;
ncount++;
}
}
}
} else {
for (ii = 0; ii < inum; ii++) {
i = ilist[ii];
double* q6 = q6array[i];
for (m = 0; m < ncol; m++) q6[m] = 0.0;
if (mask[i] & groupbit) {
xtmp = x[i][0];
ytmp = x[i][1];
ztmp = x[i][2];
jlist = firstneigh[i];
jnum = numneigh[i];
for (m = 0; m < ncol; m+=2) {
double usum = 0.0;
double vsum = 0.0;
int ncount = 0;
for (jj = 0; jj < jnum; jj++) {
j = jlist[jj];
j &= NEIGHMASK;
jtype = type[j];
delx = xtmp - x[j][0];
dely = ytmp - x[j][1];
delz = ztmp - x[j][2];
rsq = delx*delx + dely*dely + delz*delz;
if (rsq < cutsq) {
if (jtype >= typelo[m] && jtype <= typehi[m]) {
double u, v;
calc_q6(delx, dely, u, v);
usum += u;
vsum += v;
ncount++;
}
}
if (ncount > 0) {
double ninv = 1.0/ncount ;
q6[m] = usum*ninv;
q6[m+1] = vsum*ninv;
}
}
}
if (ncount > 0) {
double ninv = 1.0/ncount ;
q6[0] = usum*ninv;
q6[1] = vsum*ninv;
}
}
}

View File

@ -38,7 +38,6 @@ class ComputeHexOrderAtom : public Compute {
double cutsq;
class NeighList *list;
int *typelo,*typehi;
double **q6array;
void calc_q6(double, double, double&, double&);