forked from lijiext/lammps
convert wall fixes to embedded math
This commit is contained in:
parent
b25f781071
commit
a508138510
Binary file not shown.
Before Width: | Height: | Size: 18 KiB |
|
@ -1,14 +0,0 @@
|
|||
\documentstyle[12pt]{article}
|
||||
|
||||
\begin{document}
|
||||
|
||||
\begin{eqnarray}
|
||||
E &=& \epsilon \left[ \frac{\sigma^{6}}{7560}
|
||||
\left(\frac{6R-D}{D^{7}} + \frac{D+8R}{(D+2R)^{7}} \right) -
|
||||
\frac{}{} \right. \nonumber \\
|
||||
&&\qquad \left. \frac{1}{6} \left(\frac{2R(D+R) + D(D+2R)
|
||||
\left[ \ln D - \ln (D+2R) \right]}{D(D+2R)} \right) \right]
|
||||
\qquad r < r_c \nonumber
|
||||
\end{eqnarray}
|
||||
|
||||
\end{document}
|
Binary file not shown.
Before Width: | Height: | Size: 104 KiB |
|
@ -1,10 +0,0 @@
|
|||
\documentclass[12pt]{article}
|
||||
|
||||
\begin{document}
|
||||
|
||||
$$
|
||||
E = \epsilon \left[ \frac{2 \sigma_{LJ}^{12} \left(7 r^5+14 r^3 \sigma_{n}^2+3 r \sigma_{n}^4\right) }{945 \left(r^2-\sigma_{n}^2\right)^7} -\frac{ \sigma_{LJ}^6 \left(2 r \sigma_{n}^3+\sigma_{n}^2 \left(r^2-\sigma_{n}^2\right)\log{ \left[\frac{r-\sigma_{n}}{r+\sigma_{n}}\right]}\right) }{12 \sigma_{n}^5 \left(r^2-\sigma_{n}^2\right)} \right]\qquad \sigma_n < r < r_c
|
||||
$$
|
||||
|
||||
|
||||
\end{document}
|
Binary file not shown.
Before Width: | Height: | Size: 2.4 KiB |
|
@ -1,9 +0,0 @@
|
|||
\documentstyle[12pt]{article}
|
||||
|
||||
\begin{document}
|
||||
|
||||
$$
|
||||
E = \epsilon \hspace{0.1cm} (r - r_c)^2 \qquad r < r_c
|
||||
$$
|
||||
|
||||
\end{document}
|
Binary file not shown.
Before Width: | Height: | Size: 11 KiB |
|
@ -1,12 +0,0 @@
|
|||
\documentstyle[12pt]{article}
|
||||
|
||||
\begin{document}
|
||||
|
||||
$$
|
||||
E = 2 \pi \epsilon \left[ \frac{2}{5} \left(\frac{\sigma}{r}\right)^{10} -
|
||||
\left(\frac{\sigma}{r}\right)^4 -
|
||||
\frac{\sqrt(2)\sigma^3}{3\left(r+\left(0.61/\sqrt(2)\right)\sigma\right)^3}\right]
|
||||
\qquad r < r_c
|
||||
$$
|
||||
|
||||
\end{document}
|
Binary file not shown.
Before Width: | Height: | Size: 4.8 KiB |
|
@ -1,11 +0,0 @@
|
|||
\documentstyle[12pt]{article}
|
||||
|
||||
\begin{document}
|
||||
|
||||
$$
|
||||
E = \epsilon \left[ \frac{2}{15} \left(\frac{\sigma}{r}\right)^{9} -
|
||||
\left(\frac{\sigma}{r}\right)^3 \right]
|
||||
\qquad r < r_c
|
||||
$$
|
||||
|
||||
\end{document}
|
|
@ -104,35 +104,58 @@ wall-particle interactions depends on the style.
|
|||
|
||||
For style *wall/lj93*\ , the energy E is given by the 9/3 potential:
|
||||
|
||||
.. image:: Eqs/fix_wall_lj93.jpg
|
||||
:align: center
|
||||
.. math::
|
||||
|
||||
E = \epsilon \left[ \frac{2}{15} \left(\frac{\sigma}{r}\right)^{9} -
|
||||
\left(\frac{\sigma}{r}\right)^3 \right]
|
||||
\qquad r < r_c
|
||||
|
||||
|
||||
For style *wall/lj126*\ , the energy E is given by the 12/6 potential:
|
||||
|
||||
.. image:: Eqs/pair_lj.jpg
|
||||
:align: center
|
||||
.. math::
|
||||
|
||||
E = 4 \epsilon \left[ \left(\frac{\sigma}{r}\right)^{12} -
|
||||
\left(\frac{\sigma}{r}\right)^6 \right]
|
||||
\qquad r < r_c
|
||||
|
||||
|
||||
For style *wall/lj1043*\ , the energy E is given by the 10/4/3 potential:
|
||||
|
||||
.. image:: Eqs/fix_wall_lj1043.jpg
|
||||
:align: center
|
||||
.. math::
|
||||
|
||||
E = 2 \pi \epsilon \left[ \frac{2}{5} \left(\frac{\sigma}{r}\right)^{10} -
|
||||
\left(\frac{\sigma}{r}\right)^4 -
|
||||
\frac{\sqrt(2)\sigma^3}{3\left(r+\left(0.61/\sqrt(2)\right)\sigma\right)^3}\right]
|
||||
\qquad r < r_c
|
||||
|
||||
|
||||
For style *wall/colloid*\ , the energy E is given by an integrated form
|
||||
of the :doc:`pair_style colloid <pair_colloid>` potential:
|
||||
|
||||
.. image:: Eqs/fix_wall_colloid.jpg
|
||||
:align: center
|
||||
.. math::
|
||||
|
||||
E = & \epsilon \left[ \frac{\sigma^{6}}{7560}
|
||||
\left(\frac{6R-D}{D^{7}} + \frac{D+8R}{(D+2R)^{7}} \right) \right. \\
|
||||
& \left. - \frac{1}{6} \left(\frac{2R(D+R) + D(D+2R)
|
||||
\left[ \ln D - \ln (D+2R) \right]}{D(D+2R)} \right) \right] \qquad r < r_c
|
||||
|
||||
|
||||
For style *wall/harmonic*\ , the energy E is given by a harmonic spring
|
||||
potential:
|
||||
|
||||
.. image:: Eqs/fix_wall_harmonic.jpg
|
||||
:align: center
|
||||
.. math::
|
||||
|
||||
E = \epsilon \quad (r - r_c)^2 \qquad r < r_c
|
||||
|
||||
|
||||
For style *wall/morse*\ , the energy E is given by a Morse potential:
|
||||
|
||||
.. image:: Eqs/pair_morse.jpg
|
||||
:align: center
|
||||
.. math::
|
||||
|
||||
E = D_0 \left[ e^{- 2 \alpha (r - r_0)} - 2 e^{- \alpha (r - r_0)} \right]
|
||||
\qquad r < r_c
|
||||
|
||||
|
||||
In all cases, *r* is the distance from the particle to the wall at
|
||||
position *coord*\ , and Rc is the *cutoff* distance at which the
|
||||
|
|
|
@ -65,15 +65,16 @@ group by generating a force on the atom in a direction perpendicular to
|
|||
the wall and a torque parallel with the wall. The energy of
|
||||
wall-particle interactions E is given by:
|
||||
|
||||
.. image:: Eqs/fix_wall_ees.jpg
|
||||
:align: center
|
||||
.. math::
|
||||
|
||||
E = \epsilon \left[ \frac{2 \sigma_{LJ}^{12} \left(7 r^5+14 r^3 \sigma_{n}^2+3 r \sigma_{n}^4\right) }{945 \left(r^2-\sigma_{n}^2\right)^7} -\frac{ \sigma_{LJ}^6 \left(2 r \sigma_{n}^3+\sigma_{n}^2 \left(r^2-\sigma_{n}^2\right)\log{ \left[\frac{r-\sigma_{n}}{r+\sigma_{n}}\right]}\right) }{12 \sigma_{n}^5 \left(r^2-\sigma_{n}^2\right)} \right]\qquad \sigma_n < r < r_c
|
||||
|
||||
|
||||
Introduced by Babadi and Ejtehadi in :ref:`(Babadi) <BabadiEjtehadi>`. Here,
|
||||
*r* is the distance from the particle to the wall at position *coord*\ ,
|
||||
and Rc is the *cutoff* distance at which the particle and wall no
|
||||
longer interact. Also, sigma\_n is the distance between center of
|
||||
ellipsoid and the nearest point of its surface to the wall. The energy
|
||||
of the wall is:
|
||||
longer interact. Also, :math:`\sigma_n` is the distance between center of
|
||||
ellipsoid and the nearest point of its surface to the wall as shown below.
|
||||
|
||||
.. image:: JPG/fix_wall_ees_image.jpg
|
||||
:align: center
|
||||
|
@ -82,24 +83,30 @@ Details of using this command and specifications are the same as
|
|||
fix/wall command. You can also find an example in USER/ees/ under
|
||||
examples/ directory.
|
||||
|
||||
The prefactor *epsilon* can be thought of as an
|
||||
The prefactor :math:`\epsilon` can be thought of as an
|
||||
effective Hamaker constant with energy units for the strength of the
|
||||
ellipsoid-wall interaction. More specifically, the *epsilon* pre-factor
|
||||
= 8 \* pi\^2 \* rho\_wall \* rho\_ellipsoid \* epsilon
|
||||
\* sigma\_a \* sigma\_b \* sigma\_c, where epsilon is the LJ parameters for
|
||||
the constituent LJ particles and sigma\_a, sigma\_b, and sigma\_c are radii
|
||||
of ellipsoidal particles. Rho\_wall and rho\_ellipsoid are the number
|
||||
density of the constituent particles, in the wall and ellipsoid
|
||||
respectively, in units of 1/volume.
|
||||
ellipsoid-wall interaction. More specifically, the :math:`\epsilon`
|
||||
pre-factor is
|
||||
|
||||
.. math::
|
||||
|
||||
8 \pi^2 \quad \rho_{wall} \quad \rho_{ellipsoid} \quad \epsilon \quad \sigma_a \quad \sigma_b \quad \sigma_c
|
||||
|
||||
|
||||
where :math:`\epsilon` is the LJ energy parameter for the constituent LJ
|
||||
particles and :math:`\sigma_a`, :math:`\sigma_b`, and :math:`\sigma_c`
|
||||
are the radii of the ellipsoidal particles. :math:`\rho_{wall}` and
|
||||
:math:`\rho_{ellipsoid}` are the number density of the constituent
|
||||
particles, in the wall and ellipsoid respectively, in units of 1/volume.
|
||||
|
||||
.. note::
|
||||
|
||||
You must insure that r is always bigger than sigma\_n for
|
||||
You must insure that r is always bigger than :math:`\sigma_n` for
|
||||
all particles in the group, or LAMMPS will generate an error. This
|
||||
means you cannot start your simulation with particles touching the wall
|
||||
position *coord* (r = sigma\_n) or with particles penetrating the wall
|
||||
(0 =< r < sigma\_n) or with particles on the wrong side of the
|
||||
wall (r < 0).
|
||||
position *coord* (:math:`r = \sigma_n`) or with particles penetrating
|
||||
the wall (:math:`0 =< r < \sigma_n`) or with particles on the wrong
|
||||
side of the wall (:math:`r < 0`).
|
||||
|
||||
Fix *wall/region/ees* treats the surface of the geometric region defined
|
||||
by the *region-ID* as a bounding wall which interacts with nearby
|
||||
|
|
|
@ -132,38 +132,62 @@ style.
|
|||
|
||||
For style *lj93*\ , the energy E is given by the 9/3 potential:
|
||||
|
||||
.. image:: Eqs/fix_wall_lj93.jpg
|
||||
:align: center
|
||||
.. math::
|
||||
|
||||
E = \epsilon \left[ \frac{2}{15} \left(\frac{\sigma}{r}\right)^{9} -
|
||||
\left(\frac{\sigma}{r}\right)^3 \right]
|
||||
\qquad r < r_c
|
||||
|
||||
|
||||
For style *lj126*\ , the energy E is given by the 12/6 potential:
|
||||
|
||||
.. image:: Eqs/pair_lj.jpg
|
||||
:align: center
|
||||
.. math::
|
||||
|
||||
E = 4 \epsilon \left[ \left(\frac{\sigma}{r}\right)^{12} -
|
||||
\left(\frac{\sigma}{r}\right)^6 \right]
|
||||
\qquad r < r_c
|
||||
|
||||
|
||||
For style *wall/lj1043*\ , the energy E is given by the 10/4/3 potential:
|
||||
|
||||
.. image:: Eqs/fix_wall_lj1043.jpg
|
||||
:align: center
|
||||
.. math::
|
||||
|
||||
E = 2 \pi \epsilon \left[ \frac{2}{5} \left(\frac{\sigma}{r}\right)^{10} -
|
||||
\left(\frac{\sigma}{r}\right)^4 -
|
||||
\frac{\sqrt(2)\sigma^3}{3\left(r+\left(0.61/\sqrt(2)\right)\sigma\right)^3}\right]
|
||||
\qquad r < r_c
|
||||
|
||||
|
||||
For style *colloid*\ , the energy E is given by an integrated form of
|
||||
the :doc:`pair_style colloid <pair_colloid>` potential:
|
||||
|
||||
.. image:: Eqs/fix_wall_colloid.jpg
|
||||
:align: center
|
||||
.. math::
|
||||
|
||||
E = & \epsilon \left[ \frac{\sigma^{6}}{7560}
|
||||
\left(\frac{6R-D}{D^{7}} + \frac{D+8R}{(D+2R)^{7}} \right) \right. \\
|
||||
& \left. - \frac{1}{6} \left(\frac{2R(D+R) + D(D+2R)
|
||||
\left[ \ln D - \ln (D+2R) \right]}{D(D+2R)} \right) \right] \qquad r < r_c
|
||||
|
||||
|
||||
For style *wall/harmonic*\ , the energy E is given by a harmonic spring
|
||||
potential (the distance parameter is ignored):
|
||||
|
||||
.. image:: Eqs/fix_wall_harmonic.jpg
|
||||
:align: center
|
||||
.. math::
|
||||
|
||||
E = \epsilon \quad (r - r_c)^2 \qquad r < r_c
|
||||
|
||||
|
||||
For style *wall/morse*\ , the energy E is given by the Morse potential:
|
||||
|
||||
.. image:: Eqs/pair_morse.jpg
|
||||
:align: center
|
||||
.. math::
|
||||
|
||||
Unlike other styles, this requires three parameters (*D\_0*, *alpha*\ , *r\_0*
|
||||
in this order) instead of two like for the other wall styles.
|
||||
E = D_0 \left[ e^{- 2 \alpha (r - r_0)} - 2 e^{- \alpha (r - r_0)} \right]
|
||||
\qquad r < r_c
|
||||
|
||||
|
||||
Unlike other styles, this requires three parameters (:math:`D_0`,
|
||||
:math:`\alpha`, and :math:`r_0` in this order) instead of two like
|
||||
for the other wall styles.
|
||||
|
||||
In all cases, *r* is the distance from the particle to the region
|
||||
surface, and Rc is the *cutoff* distance at which the particle and
|
||||
|
|
Loading…
Reference in New Issue