convert wall fixes to embedded math

This commit is contained in:
Axel Kohlmeyer 2020-02-15 11:50:08 -05:00
parent b25f781071
commit a508138510
No known key found for this signature in database
GPG Key ID: D9B44E93BF0C375A
13 changed files with 97 additions and 99 deletions

Binary file not shown.

Before

Width:  |  Height:  |  Size: 18 KiB

View File

@ -1,14 +0,0 @@
\documentstyle[12pt]{article}
\begin{document}
\begin{eqnarray}
E &=& \epsilon \left[ \frac{\sigma^{6}}{7560}
\left(\frac{6R-D}{D^{7}} + \frac{D+8R}{(D+2R)^{7}} \right) -
\frac{}{} \right. \nonumber \\
&&\qquad \left. \frac{1}{6} \left(\frac{2R(D+R) + D(D+2R)
\left[ \ln D - \ln (D+2R) \right]}{D(D+2R)} \right) \right]
\qquad r < r_c \nonumber
\end{eqnarray}
\end{document}

Binary file not shown.

Before

Width:  |  Height:  |  Size: 104 KiB

View File

@ -1,10 +0,0 @@
\documentclass[12pt]{article}
\begin{document}
$$
E = \epsilon \left[ \frac{2 \sigma_{LJ}^{12} \left(7 r^5+14 r^3 \sigma_{n}^2+3 r \sigma_{n}^4\right) }{945 \left(r^2-\sigma_{n}^2\right)^7} -\frac{ \sigma_{LJ}^6 \left(2 r \sigma_{n}^3+\sigma_{n}^2 \left(r^2-\sigma_{n}^2\right)\log{ \left[\frac{r-\sigma_{n}}{r+\sigma_{n}}\right]}\right) }{12 \sigma_{n}^5 \left(r^2-\sigma_{n}^2\right)} \right]\qquad \sigma_n < r < r_c
$$
\end{document}

Binary file not shown.

Before

Width:  |  Height:  |  Size: 2.4 KiB

View File

@ -1,9 +0,0 @@
\documentstyle[12pt]{article}
\begin{document}
$$
E = \epsilon \hspace{0.1cm} (r - r_c)^2 \qquad r < r_c
$$
\end{document}

Binary file not shown.

Before

Width:  |  Height:  |  Size: 11 KiB

View File

@ -1,12 +0,0 @@
\documentstyle[12pt]{article}
\begin{document}
$$
E = 2 \pi \epsilon \left[ \frac{2}{5} \left(\frac{\sigma}{r}\right)^{10} -
\left(\frac{\sigma}{r}\right)^4 -
\frac{\sqrt(2)\sigma^3}{3\left(r+\left(0.61/\sqrt(2)\right)\sigma\right)^3}\right]
\qquad r < r_c
$$
\end{document}

Binary file not shown.

Before

Width:  |  Height:  |  Size: 4.8 KiB

View File

@ -1,11 +0,0 @@
\documentstyle[12pt]{article}
\begin{document}
$$
E = \epsilon \left[ \frac{2}{15} \left(\frac{\sigma}{r}\right)^{9} -
\left(\frac{\sigma}{r}\right)^3 \right]
\qquad r < r_c
$$
\end{document}

View File

@ -104,35 +104,58 @@ wall-particle interactions depends on the style.
For style *wall/lj93*\ , the energy E is given by the 9/3 potential:
.. image:: Eqs/fix_wall_lj93.jpg
:align: center
.. math::
E = \epsilon \left[ \frac{2}{15} \left(\frac{\sigma}{r}\right)^{9} -
\left(\frac{\sigma}{r}\right)^3 \right]
\qquad r < r_c
For style *wall/lj126*\ , the energy E is given by the 12/6 potential:
.. image:: Eqs/pair_lj.jpg
:align: center
.. math::
E = 4 \epsilon \left[ \left(\frac{\sigma}{r}\right)^{12} -
\left(\frac{\sigma}{r}\right)^6 \right]
\qquad r < r_c
For style *wall/lj1043*\ , the energy E is given by the 10/4/3 potential:
.. image:: Eqs/fix_wall_lj1043.jpg
:align: center
.. math::
E = 2 \pi \epsilon \left[ \frac{2}{5} \left(\frac{\sigma}{r}\right)^{10} -
\left(\frac{\sigma}{r}\right)^4 -
\frac{\sqrt(2)\sigma^3}{3\left(r+\left(0.61/\sqrt(2)\right)\sigma\right)^3}\right]
\qquad r < r_c
For style *wall/colloid*\ , the energy E is given by an integrated form
of the :doc:`pair_style colloid <pair_colloid>` potential:
.. image:: Eqs/fix_wall_colloid.jpg
:align: center
.. math::
E = & \epsilon \left[ \frac{\sigma^{6}}{7560}
\left(\frac{6R-D}{D^{7}} + \frac{D+8R}{(D+2R)^{7}} \right) \right. \\
& \left. - \frac{1}{6} \left(\frac{2R(D+R) + D(D+2R)
\left[ \ln D - \ln (D+2R) \right]}{D(D+2R)} \right) \right] \qquad r < r_c
For style *wall/harmonic*\ , the energy E is given by a harmonic spring
potential:
.. image:: Eqs/fix_wall_harmonic.jpg
:align: center
.. math::
E = \epsilon \quad (r - r_c)^2 \qquad r < r_c
For style *wall/morse*\ , the energy E is given by a Morse potential:
.. image:: Eqs/pair_morse.jpg
:align: center
.. math::
E = D_0 \left[ e^{- 2 \alpha (r - r_0)} - 2 e^{- \alpha (r - r_0)} \right]
\qquad r < r_c
In all cases, *r* is the distance from the particle to the wall at
position *coord*\ , and Rc is the *cutoff* distance at which the

View File

@ -65,15 +65,16 @@ group by generating a force on the atom in a direction perpendicular to
the wall and a torque parallel with the wall. The energy of
wall-particle interactions E is given by:
.. image:: Eqs/fix_wall_ees.jpg
:align: center
.. math::
E = \epsilon \left[ \frac{2 \sigma_{LJ}^{12} \left(7 r^5+14 r^3 \sigma_{n}^2+3 r \sigma_{n}^4\right) }{945 \left(r^2-\sigma_{n}^2\right)^7} -\frac{ \sigma_{LJ}^6 \left(2 r \sigma_{n}^3+\sigma_{n}^2 \left(r^2-\sigma_{n}^2\right)\log{ \left[\frac{r-\sigma_{n}}{r+\sigma_{n}}\right]}\right) }{12 \sigma_{n}^5 \left(r^2-\sigma_{n}^2\right)} \right]\qquad \sigma_n < r < r_c
Introduced by Babadi and Ejtehadi in :ref:`(Babadi) <BabadiEjtehadi>`. Here,
*r* is the distance from the particle to the wall at position *coord*\ ,
and Rc is the *cutoff* distance at which the particle and wall no
longer interact. Also, sigma\_n is the distance between center of
ellipsoid and the nearest point of its surface to the wall. The energy
of the wall is:
longer interact. Also, :math:`\sigma_n` is the distance between center of
ellipsoid and the nearest point of its surface to the wall as shown below.
.. image:: JPG/fix_wall_ees_image.jpg
:align: center
@ -82,24 +83,30 @@ Details of using this command and specifications are the same as
fix/wall command. You can also find an example in USER/ees/ under
examples/ directory.
The prefactor *epsilon* can be thought of as an
The prefactor :math:`\epsilon` can be thought of as an
effective Hamaker constant with energy units for the strength of the
ellipsoid-wall interaction. More specifically, the *epsilon* pre-factor
= 8 \* pi\^2 \* rho\_wall \* rho\_ellipsoid \* epsilon
\* sigma\_a \* sigma\_b \* sigma\_c, where epsilon is the LJ parameters for
the constituent LJ particles and sigma\_a, sigma\_b, and sigma\_c are radii
of ellipsoidal particles. Rho\_wall and rho\_ellipsoid are the number
density of the constituent particles, in the wall and ellipsoid
respectively, in units of 1/volume.
ellipsoid-wall interaction. More specifically, the :math:`\epsilon`
pre-factor is
.. math::
8 \pi^2 \quad \rho_{wall} \quad \rho_{ellipsoid} \quad \epsilon \quad \sigma_a \quad \sigma_b \quad \sigma_c
where :math:`\epsilon` is the LJ energy parameter for the constituent LJ
particles and :math:`\sigma_a`, :math:`\sigma_b`, and :math:`\sigma_c`
are the radii of the ellipsoidal particles. :math:`\rho_{wall}` and
:math:`\rho_{ellipsoid}` are the number density of the constituent
particles, in the wall and ellipsoid respectively, in units of 1/volume.
.. note::
You must insure that r is always bigger than sigma\_n for
You must insure that r is always bigger than :math:`\sigma_n` for
all particles in the group, or LAMMPS will generate an error. This
means you cannot start your simulation with particles touching the wall
position *coord* (r = sigma\_n) or with particles penetrating the wall
(0 =< r < sigma\_n) or with particles on the wrong side of the
wall (r < 0).
position *coord* (:math:`r = \sigma_n`) or with particles penetrating
the wall (:math:`0 =< r < \sigma_n`) or with particles on the wrong
side of the wall (:math:`r < 0`).
Fix *wall/region/ees* treats the surface of the geometric region defined
by the *region-ID* as a bounding wall which interacts with nearby

View File

@ -132,38 +132,62 @@ style.
For style *lj93*\ , the energy E is given by the 9/3 potential:
.. image:: Eqs/fix_wall_lj93.jpg
:align: center
.. math::
E = \epsilon \left[ \frac{2}{15} \left(\frac{\sigma}{r}\right)^{9} -
\left(\frac{\sigma}{r}\right)^3 \right]
\qquad r < r_c
For style *lj126*\ , the energy E is given by the 12/6 potential:
.. image:: Eqs/pair_lj.jpg
:align: center
.. math::
E = 4 \epsilon \left[ \left(\frac{\sigma}{r}\right)^{12} -
\left(\frac{\sigma}{r}\right)^6 \right]
\qquad r < r_c
For style *wall/lj1043*\ , the energy E is given by the 10/4/3 potential:
.. image:: Eqs/fix_wall_lj1043.jpg
:align: center
.. math::
E = 2 \pi \epsilon \left[ \frac{2}{5} \left(\frac{\sigma}{r}\right)^{10} -
\left(\frac{\sigma}{r}\right)^4 -
\frac{\sqrt(2)\sigma^3}{3\left(r+\left(0.61/\sqrt(2)\right)\sigma\right)^3}\right]
\qquad r < r_c
For style *colloid*\ , the energy E is given by an integrated form of
the :doc:`pair_style colloid <pair_colloid>` potential:
.. image:: Eqs/fix_wall_colloid.jpg
:align: center
.. math::
E = & \epsilon \left[ \frac{\sigma^{6}}{7560}
\left(\frac{6R-D}{D^{7}} + \frac{D+8R}{(D+2R)^{7}} \right) \right. \\
& \left. - \frac{1}{6} \left(\frac{2R(D+R) + D(D+2R)
\left[ \ln D - \ln (D+2R) \right]}{D(D+2R)} \right) \right] \qquad r < r_c
For style *wall/harmonic*\ , the energy E is given by a harmonic spring
potential (the distance parameter is ignored):
.. image:: Eqs/fix_wall_harmonic.jpg
:align: center
.. math::
E = \epsilon \quad (r - r_c)^2 \qquad r < r_c
For style *wall/morse*\ , the energy E is given by the Morse potential:
.. image:: Eqs/pair_morse.jpg
:align: center
.. math::
Unlike other styles, this requires three parameters (*D\_0*, *alpha*\ , *r\_0*
in this order) instead of two like for the other wall styles.
E = D_0 \left[ e^{- 2 \alpha (r - r_0)} - 2 e^{- \alpha (r - r_0)} \right]
\qquad r < r_c
Unlike other styles, this requires three parameters (:math:`D_0`,
:math:`\alpha`, and :math:`r_0` in this order) instead of two like
for the other wall styles.
In all cases, *r* is the distance from the particle to the region
surface, and Rc is the *cutoff* distance at which the particle and