Updated compute hexorder/atom, added compute orientorder/atom

git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@14252 f3b2605a-c512-4ea7-a41b-209d697bcdaa
This commit is contained in:
athomps 2015-11-16 17:45:59 +00:00
parent 70aba85d31
commit 9dc8102ac4
7 changed files with 19 additions and 15 deletions

Binary file not shown.

Before

Width:  |  Height:  |  Size: 48 KiB

After

Width:  |  Height:  |  Size: 16 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 125 KiB

After

Width:  |  Height:  |  Size: 34 KiB

View File

@ -6,7 +6,7 @@ $$
$$
$$
Q^2_l = \frac{4 \pi}{2 l + 1} \sum_{m = -l}^{m = l} \bar{Y}_{lm} \bar{Y}^*_{lm}
Q_l = \sqrt{\frac{4 \pi}{2 l + 1} \sum_{m = -l}^{m = l} \bar{Y}_{lm} \bar{Y}^*_{lm}}
$$
\end{document}

View File

@ -21,17 +21,17 @@
<LI>one or more keyword/value pairs may be appended
<PRE>keyword = <I>n</I> or <I>nnn</I> or <I>cutoff</I>
<PRE>keyword = <I>degree</I> or <I>nnn</I> or <I>cutoff</I>
<I>cutoff</I> value = distance cutoff
<I>nnn</I> value = number of nearest neighbors
<I>n</I> value = degree of order parameter
<I>degree</I> value = degree <I>n</I> of order parameter
</PRE>
</UL>
<P><B>Examples:</B>
</P>
<PRE>compute 1 all hexorder/atom
compute 1 all hexorder/atom n 4 nnn 4 cutoff 1.2
compute 1 all hexorder/atom degree 4 nnn 4 cutoff 1.2
</PRE>
<P><B>Description:</B>
</P>
@ -62,7 +62,7 @@ neighbors used to calculate <I>qn</I>. The default value is 6.
If the value is NULL, then all neighbors up to the
distance cutoff are used.
</P>
<P>The optional keyword <I>n</I> sets the degree of the order parameter.
<P>The optional keyword <I>degree</I> sets the degree <I>n</I> of the order parameter.
The default value is 6. For a perfect hexagonal lattice with
<I>nnn</I> = 6,
<I>q</I>6 = exp(6 i phi) for all atoms, where the constant 0 < phi < pi/3
@ -114,7 +114,7 @@ options.
</P>
<P><B>Default:</B>
</P>
<P>The option defaults are <I>n</I> = 6, <I>nnn</I> = 6, <I>cutoff</I> = pair style cutoff
<P>The option defaults are <I>cutoff</I> = pair style cutoff, <I>nnn</I> = 6, <I>degree</I> = 6
</P>
<HR>

View File

@ -15,17 +15,17 @@ compute ID group-ID hexorder/atom keyword values ... :pre
ID, group-ID are documented in "compute"_compute.html command :ulb,l
hexorder/atom = style name of this compute command :l
one or more keyword/value pairs may be appended :l
keyword = {n} or {nnn} or {cutoff}
keyword = {degree} or {nnn} or {cutoff}
{cutoff} value = distance cutoff
{nnn} value = number of nearest neighbors
{n} value = degree of order parameter :pre
{degree} value = degree {n} of order parameter :pre
:ule
[Examples:]
compute 1 all hexorder/atom
compute 1 all hexorder/atom n 4 nnn 4 cutoff 1.2 :pre
compute 1 all hexorder/atom degree 4 nnn 4 cutoff 1.2 :pre
[Description:]
@ -56,7 +56,7 @@ neighbors used to calculate {qn}. The default value is 6.
If the value is NULL, then all neighbors up to the
distance cutoff are used.
The optional keyword {n} sets the degree of the order parameter.
The optional keyword {degree} sets the degree {n} of the order parameter.
The default value is 6. For a perfect hexagonal lattice with
{nnn} = 6,
{q}6 = exp(6 i phi) for all atoms, where the constant 0 < phi < pi/3
@ -108,7 +108,7 @@ options.
[Default:]
The option defaults are {n} = 6, {nnn} = 6, {cutoff} = pair style cutoff
The option defaults are {cutoff} = pair style cutoff, {nnn} = 6, {degree} = 6
:line

View File

@ -45,8 +45,8 @@ The summation is over the {nnn} nearest
neighbors of the central atom.
The angles theta and phi are the standard spherical polar angles
defining the direction of the bond vector {rij}.
The second equation defines the square power of {Ql}, which are
rotationally invariant scalar quantities obtained by summing
The second equation defines {Ql}, which is a
rotationally invariant scalar quantity obtained by summing
over all the components of degree {l}.
The optional keyword {cutoff} defines the distance cutoff
@ -65,7 +65,9 @@ parameters. This is followed by that number of integers giving the
degree of each order parameter. Because {Q}2 and all odd-degree
order parameters are zero for atoms in cubic crystals
(see "Steinhardt"_#Steinhardt), the default order parameters
are {Q}4, {Q}6, {Q}8, {Q}10, and {Q}12.
are {Q}4, {Q}6, {Q}8, {Q}10, and {Q}12. The correct
numerical values for commonly encountered high-symmetry
structures are given by "Mickel et al."_#Mickel
The value of {Ql} is set to zero for atoms not in the
specified compute group, as well as for atoms that have less than
@ -113,3 +115,5 @@ The option defaults are {cutoff} = pair style cutoff, {nnn} = 12, {degrees} = 5
:link(Steinhardt)
[(Steinhardt)] P. Steinhardt, D. Nelson, and M. Ronchetti, Phys. Rev. B 28, 784 (1983).
:link(Mickel)
[(Mickel)] W. Mickel, S. C. Kapfer, G. E. Schroeder-Turkand, K. Mecke, J. Chem. Phys. 138, 044501 (2013).

View File

@ -56,7 +56,7 @@ ComputeHexOrderAtom::ComputeHexOrderAtom(LAMMPS *lmp, int narg, char **arg) :
int iarg = 3;
while (iarg < narg) {
if (strcmp(arg[iarg],"n") == 0) {
if (strcmp(arg[iarg],"degree") == 0) {
if (iarg+2 > narg) error->all(FLERR,"Illegal compute hexorder/atom command");
ndegree = force->numeric(FLERR,arg[iarg+1]);
if (ndegree < 0)