forked from lijiext/lammps
git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@6713 f3b2605a-c512-4ea7-a41b-209d697bcdaa
This commit is contained in:
parent
0ade235efa
commit
99c9091025
File diff suppressed because it is too large
Load Diff
|
@ -0,0 +1,131 @@
|
|||
/* -*- c++ -*- ----------------------------------------------------------
|
||||
LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
|
||||
http://lammps.sandia.gov, Sandia National Laboratories
|
||||
Steve Plimpton, sjplimp@sandia.gov
|
||||
|
||||
Copyright (2003) Sandia Corporation. Under the terms of Contract
|
||||
DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains
|
||||
certain rights in this software. This software is distributed under
|
||||
the GNU General Public License.
|
||||
|
||||
See the README file in the top-level LAMMPS directory.
|
||||
------------------------------------------------------------------------- */
|
||||
|
||||
/* ----------------------------------------------------------------------
|
||||
The FixIMD class contains code from VMD and NAMD which is copyrighted
|
||||
by the Board of Trustees of the University of Illinois and is free to
|
||||
use with LAMMPS according to point 2 of the UIUC license (10% clause):
|
||||
|
||||
" Licensee may, at its own expense, create and freely distribute
|
||||
complimentary works that interoperate with the Software, directing others to
|
||||
the TCBG server to license and obtain the Software itself. Licensee may, at
|
||||
its own expense, modify the Software to make derivative works. Except as
|
||||
explicitly provided below, this License shall apply to any derivative work
|
||||
as it does to the original Software distributed by Illinois. Any derivative
|
||||
work should be clearly marked and renamed to notify users that it is a
|
||||
modified version and not the original Software distributed by Illinois.
|
||||
Licensee agrees to reproduce the copyright notice and other proprietary
|
||||
markings on any derivative work and to include in the documentation of such
|
||||
work the acknowledgement:
|
||||
|
||||
"This software includes code developed by the Theoretical and Computational
|
||||
Biophysics Group in the Beckman Institute for Advanced Science and
|
||||
Technology at the University of Illinois at Urbana-Champaign."
|
||||
|
||||
Licensee may redistribute without restriction works with up to 1/2 of their
|
||||
non-comment source code derived from at most 1/10 of the non-comment source
|
||||
code developed by Illinois and contained in the Software, provided that the
|
||||
above directions for notice and acknowledgement are observed. Any other
|
||||
distribution of the Software or any derivative work requires a separate
|
||||
license with Illinois. Licensee may contact Illinois (vmd@ks.uiuc.edu) to
|
||||
negotiate an appropriate license for such distribution."
|
||||
------------------------------------------------------------------------- */
|
||||
|
||||
#ifdef FIX_CLASS
|
||||
|
||||
FixStyle(imd,FixIMD)
|
||||
|
||||
#else
|
||||
|
||||
#ifndef LMP_FIX_IMD_H
|
||||
#define LMP_FIX_IMD_H
|
||||
|
||||
#include "fix.h"
|
||||
|
||||
#if defined(LAMMPS_ASYNC_IMD)
|
||||
#include <pthread.h>
|
||||
#endif
|
||||
|
||||
/* prototype for c wrapper that calls the real worker */
|
||||
extern "C" void *fix_imd_ioworker(void *);
|
||||
|
||||
namespace LAMMPS_NS {
|
||||
|
||||
class FixIMD : public Fix {
|
||||
public:
|
||||
FixIMD(class LAMMPS *, int, char **);
|
||||
~FixIMD();
|
||||
int setmask();
|
||||
void init();
|
||||
void setup(int);
|
||||
void post_force(int);
|
||||
void post_force_respa(int, int, int);
|
||||
double memory_usage();
|
||||
|
||||
protected:
|
||||
int imd_port;
|
||||
void *localsock;
|
||||
void *clientsock;
|
||||
|
||||
int num_coords; // total number of atoms controlled by this fix
|
||||
int size_one; // bytes per atom in communication buffer.
|
||||
int maxbuf; // size of atom communication buffer.
|
||||
void *comm_buf; // communication buffer
|
||||
void *idmap; // hash for mapping atom indices to consistent order.
|
||||
int *rev_idmap; // list of the hash keys for reverse mapping.
|
||||
|
||||
int imd_forces; // number of forces communicated via IMD.
|
||||
void *force_buf; // force data buffer
|
||||
double imd_fscale; // scale factor for forces. in case VMD's units are off.
|
||||
|
||||
int imd_inactive; // true if IMD connection stopped.
|
||||
int imd_terminate; // true if IMD requests termination of run.
|
||||
int imd_trate; // IMD transmission rate.
|
||||
|
||||
int unwrap_flag; // true if coordinates need to be unwrapped before sending
|
||||
int nowait_flag; // true if LAMMPS should not wait with the execution for VMD.
|
||||
int connect_msg; // flag to indicate whether a "listen for connection message" is needed.
|
||||
|
||||
int me; // my MPI rank in this "world".
|
||||
int nlevels_respa; // flag to determine respa levels.
|
||||
|
||||
int msglen;
|
||||
char *msgdata;
|
||||
|
||||
#if defined(LAMMPS_ASYNC_IMD)
|
||||
int buf_has_data; // flag to indicate to the i/o thread what to do.
|
||||
pthread_mutex_t write_mutex; // mutex for sending coordinates to i/o thread
|
||||
pthread_cond_t write_cond; // conditional variable for coordinate i/o
|
||||
pthread_mutex_t read_mutex; // mutex for accessing data receieved by i/o thread
|
||||
pthread_t iothread; // thread id for i/o thread.
|
||||
pthread_attr_t iot_attr; // i/o thread attributes.
|
||||
public:
|
||||
void ioworker(void);
|
||||
#endif
|
||||
|
||||
protected:
|
||||
int reconnect();
|
||||
};
|
||||
|
||||
}
|
||||
|
||||
#endif
|
||||
#endif
|
||||
|
||||
// Local Variables:
|
||||
// mode: c++
|
||||
// compile-command: "make -j4 openmpi"
|
||||
// c-basic-offset: 2
|
||||
// fill-column: 76
|
||||
// indent-tabs-mode: nil
|
||||
// End:
|
|
@ -0,0 +1,403 @@
|
|||
/* ----------------------------------------------------------------------
|
||||
LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
|
||||
http://lammps.sandia.gov, Sandia National Laboratories
|
||||
Steve Plimpton, sjplimp@sandia.gov
|
||||
|
||||
Copyright (2003) Sandia Corporation. Under the terms of Contract
|
||||
DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains
|
||||
certain rights in this software. This software is distributed under
|
||||
the GNU General Public License.
|
||||
|
||||
See the README file in the top-level LAMMPS directory.
|
||||
------------------------------------------------------------------------- */
|
||||
|
||||
/* ----------------------------------------------------------------------
|
||||
Contributing author: Axel Kohlmeyer (UPenn)
|
||||
based on fix spring by: Paul Crozier (SNL)
|
||||
------------------------------------------------------------------------- */
|
||||
|
||||
#include "math.h"
|
||||
#include "stdlib.h"
|
||||
#include "string.h"
|
||||
#include "fix_smd.h"
|
||||
#include "atom.h"
|
||||
#include "comm.h"
|
||||
#include "update.h"
|
||||
#include "respa.h"
|
||||
#include "domain.h"
|
||||
#include "error.h"
|
||||
#include "group.h"
|
||||
|
||||
using namespace LAMMPS_NS;
|
||||
|
||||
enum { SMD_NONE=0,
|
||||
SMD_TETHER=1<<0, SMD_COUPLE=1<<1,
|
||||
SMD_CVEL=1<<2, SMD_CFOR=1<<3,
|
||||
SMD_AUTOX=1<<4, SMD_AUTOY=1<<5, SMD_AUTOZ=1<<6};
|
||||
|
||||
#define SMALL 0.001
|
||||
|
||||
/* ---------------------------------------------------------------------- */
|
||||
|
||||
FixSMD::FixSMD(LAMMPS *lmp, int narg, char **arg) :
|
||||
Fix(lmp, narg, arg)
|
||||
{
|
||||
styleflag = SMD_NONE;
|
||||
k_smd = f_smd = v_smd = -1.0;
|
||||
xflag = yflag = zflag = 1;
|
||||
xc = yc = zc = 0.0;
|
||||
xn = yn = zn = 1.0;
|
||||
pmf = r_old = r_now = r0 = 0.0;
|
||||
|
||||
restart_global = 1;
|
||||
vector_flag = 1;
|
||||
size_vector = 7;
|
||||
global_freq = 1;
|
||||
extvector = 1;
|
||||
|
||||
int argoffs=3;
|
||||
if (strcmp(arg[argoffs],"cvel") == 0) {
|
||||
if (narg < argoffs+3) error->all("Illegal fix smd command");
|
||||
styleflag |= SMD_CVEL;
|
||||
k_smd = atof(arg[argoffs+1]);
|
||||
v_smd = atof(arg[argoffs+2]); // to be multiplied by update->dt when used.
|
||||
argoffs += 3;
|
||||
} else if (strcmp(arg[argoffs],"cfor") == 0) {
|
||||
if (narg < argoffs+2) error->all("Illegal fix smd command");
|
||||
styleflag |= SMD_CFOR;
|
||||
f_smd = atof(arg[argoffs+1]);
|
||||
argoffs += 2;
|
||||
} else error->all("Illegal fix smd command");
|
||||
|
||||
if (strcmp(arg[argoffs],"tether") == 0) {
|
||||
if (narg < argoffs+5) error->all("Illegal fix smd command");
|
||||
styleflag |= SMD_TETHER;
|
||||
if (strcmp(arg[argoffs+1],"NULL") == 0) xflag = 0;
|
||||
else xc = atof(arg[argoffs+1]);
|
||||
if (strcmp(arg[argoffs+2],"NULL") == 0) yflag = 0;
|
||||
else yc = atof(arg[argoffs+2]);
|
||||
if (strcmp(arg[argoffs+3],"NULL") == 0) zflag = 0;
|
||||
else zc = atof(arg[argoffs+3]);
|
||||
r0 = atof(arg[argoffs+4]);
|
||||
if (r0 < 0) error->all("R0 < 0 for fix smd command");
|
||||
argoffs += 5;
|
||||
} else if (strcmp(arg[argoffs],"couple") == 0) {
|
||||
if (narg < argoffs+6) error->all("Illegal fix smd command");
|
||||
styleflag |= SMD_COUPLE;
|
||||
igroup2 = group->find(arg[argoffs+1]);
|
||||
if (igroup2 == -1)
|
||||
error->all("Could not find fix smd couple group ID");
|
||||
if (igroup2 == igroup)
|
||||
error->all("Two groups cannot be the same in fix smd couple");
|
||||
group2bit = group->bitmask[igroup2];
|
||||
|
||||
if (strcmp(arg[argoffs+2],"NULL") == 0) xflag = 0;
|
||||
else if (strcmp(arg[argoffs+2],"auto") == 0) styleflag |= SMD_AUTOX;
|
||||
else xc = atof(arg[argoffs+2]);
|
||||
if (strcmp(arg[argoffs+3],"NULL") == 0) yflag = 0;
|
||||
else if (strcmp(arg[argoffs+3],"auto") == 0) styleflag |= SMD_AUTOY;
|
||||
else yc = atof(arg[argoffs+3]);
|
||||
if (strcmp(arg[argoffs+4],"NULL") == 0) zflag = 0;
|
||||
else if (strcmp(arg[argoffs+4],"auto") == 0) styleflag |= SMD_AUTOZ;
|
||||
else zc = atof(arg[argoffs+4]);
|
||||
|
||||
r0 = atof(arg[argoffs+5]);
|
||||
if (r0 < 0) error->all("R0 < 0 for fix smd command");
|
||||
argoffs +=6;
|
||||
} else error->all("Illegal fix smd command");
|
||||
|
||||
force_flag = 0;
|
||||
ftotal[0] = ftotal[1] = ftotal[2] = 0.0;
|
||||
}
|
||||
|
||||
/* ---------------------------------------------------------------------- */
|
||||
|
||||
int FixSMD::setmask()
|
||||
{
|
||||
int mask = 0;
|
||||
mask |= POST_FORCE;
|
||||
mask |= POST_FORCE_RESPA;
|
||||
return mask;
|
||||
}
|
||||
|
||||
/* ---------------------------------------------------------------------- */
|
||||
|
||||
void FixSMD::init()
|
||||
{
|
||||
double xcm[3], xcm2[3];
|
||||
masstotal = group->mass(igroup);
|
||||
group->xcm(igroup,masstotal,xcm);
|
||||
|
||||
double dx,dy,dz;
|
||||
if (styleflag & SMD_TETHER) {
|
||||
dx = xc - xcm[0];
|
||||
dy = yc - xcm[1];
|
||||
dz = zc - xcm[2];
|
||||
} else { /* SMD_COUPLE */
|
||||
masstotal2 = group->mass(igroup2);
|
||||
group->xcm(igroup2,masstotal2,xcm2);
|
||||
if (styleflag & SMD_AUTOX) dx = xcm2[0] - xcm[0];
|
||||
else dx = xc;
|
||||
if (styleflag & SMD_AUTOY) dy = xcm2[1] - xcm[1];
|
||||
else dy = yc;
|
||||
if (styleflag & SMD_AUTOZ) dz = xcm2[2] - xcm[2];
|
||||
else dz = zc;
|
||||
}
|
||||
|
||||
if (!xflag) dx = 0.0;
|
||||
if (!yflag) dy = 0.0;
|
||||
if (!zflag) dz = 0.0;
|
||||
r_old = sqrt(dx*dx + dy*dy + dz*dz);
|
||||
if (r_old > SMALL) {
|
||||
xn = dx/r_old;
|
||||
yn = dy/r_old;
|
||||
zn = dz/r_old;
|
||||
}
|
||||
|
||||
if (strstr(update->integrate_style,"respa"))
|
||||
nlevels_respa = ((Respa *) update->integrate)->nlevels;
|
||||
}
|
||||
|
||||
/* ---------------------------------------------------------------------- */
|
||||
|
||||
void FixSMD::setup(int vflag)
|
||||
{
|
||||
if (strstr(update->integrate_style,"verlet"))
|
||||
post_force(vflag);
|
||||
else {
|
||||
((Respa *) update->integrate)->copy_flevel_f(nlevels_respa-1);
|
||||
post_force_respa(vflag,nlevels_respa-1,0);
|
||||
((Respa *) update->integrate)->copy_f_flevel(nlevels_respa-1);
|
||||
}
|
||||
}
|
||||
|
||||
/* ---------------------------------------------------------------------- */
|
||||
|
||||
void FixSMD::post_force(int vflag)
|
||||
{
|
||||
if (styleflag & SMD_TETHER) smd_tether();
|
||||
else smd_couple();
|
||||
|
||||
if (styleflag & SMD_CVEL) r_old += v_smd * update->dt;
|
||||
}
|
||||
|
||||
/* ---------------------------------------------------------------------- */
|
||||
|
||||
void FixSMD::smd_tether()
|
||||
{
|
||||
double xcm[3];
|
||||
group->xcm(igroup,masstotal,xcm);
|
||||
|
||||
// fx,fy,fz = components of k * (r-r0)
|
||||
|
||||
double dx,dy,dz,fx,fy,fz,r,dr;
|
||||
|
||||
dx = xcm[0] - xc;
|
||||
dy = xcm[1] - yc;
|
||||
dz = xcm[2] - zc;
|
||||
r_now = sqrt(dx*dx + dy*dy + dz*dz);
|
||||
|
||||
if (!xflag) dx = 0.0;
|
||||
if (!yflag) dy = 0.0;
|
||||
if (!zflag) dz = 0.0;
|
||||
r = sqrt(dx*dx + dy*dy + dz*dz);
|
||||
if (styleflag & SMD_CVEL) {
|
||||
if(r > SMALL) {
|
||||
double fsign;
|
||||
fsign = (v_smd<0.0) ? -1.0 : 1.0;
|
||||
dr = r - r0 - r_old;
|
||||
fx = k_smd*dx*dr/r;
|
||||
fy = k_smd*dy*dr/r;
|
||||
fz = k_smd*dz*dr/r;
|
||||
pmf += (fx*xn + fy*yn + fz*zn) * v_smd * update->dt;
|
||||
}
|
||||
} else {
|
||||
r_old = r;
|
||||
fx = f_smd*dx/r;
|
||||
fy = f_smd*dy/r;
|
||||
fz = f_smd*dz/r;
|
||||
}
|
||||
|
||||
// apply restoring force to atoms in group
|
||||
// f = -k*(r-r0)*mass/masstotal
|
||||
|
||||
double **f = atom->f;
|
||||
int *mask = atom->mask;
|
||||
int *type = atom->type;
|
||||
double *mass = atom->mass;
|
||||
int nlocal = atom->nlocal;
|
||||
|
||||
ftotal[0] = ftotal[1] = ftotal[2] = 0.0;
|
||||
force_flag = 0;
|
||||
|
||||
double massfrac;
|
||||
for (int i = 0; i < nlocal; i++)
|
||||
if (mask[i] & groupbit) {
|
||||
massfrac = mass[type[i]]/masstotal;
|
||||
f[i][0] -= fx*massfrac;
|
||||
f[i][1] -= fy*massfrac;
|
||||
f[i][2] -= fz*massfrac;
|
||||
ftotal[0] -= fx*massfrac;
|
||||
ftotal[1] -= fy*massfrac;
|
||||
ftotal[2] -= fz*massfrac;
|
||||
}
|
||||
}
|
||||
|
||||
/* ---------------------------------------------------------------------- */
|
||||
|
||||
void FixSMD::smd_couple()
|
||||
{
|
||||
double xcm[3],xcm2[3];
|
||||
group->xcm(igroup,masstotal,xcm);
|
||||
group->xcm(igroup2,masstotal2,xcm2);
|
||||
|
||||
// renormalize direction of spring
|
||||
double dx,dy,dz,r,dr;
|
||||
if (styleflag & SMD_AUTOX) dx = xcm2[0] - xcm[0];
|
||||
else dx = xn*r_old;
|
||||
if (styleflag & SMD_AUTOY) dy = xcm2[1] - xcm[1];
|
||||
else dy = yn*r_old;
|
||||
if (styleflag & SMD_AUTOZ) dz = xcm2[2] - xcm[2];
|
||||
else dz = zn*r_old;
|
||||
if (!xflag) dx = 0.0;
|
||||
if (!yflag) dy = 0.0;
|
||||
if (!zflag) dz = 0.0;
|
||||
r = sqrt(dx*dx + dy*dy + dz*dz);
|
||||
if (r > SMALL) {
|
||||
xn = dx/r; yn = dy/r; zn = dz/r;
|
||||
}
|
||||
|
||||
double fx,fy,fz;
|
||||
if (styleflag & SMD_CVEL) {
|
||||
dx = xcm2[0] - xcm[0];
|
||||
dy = xcm2[1] - xcm[1];
|
||||
dz = xcm2[2] - xcm[2];
|
||||
r_now = sqrt(dx*dx + dy*dy + dz*dz);
|
||||
|
||||
dx -= xn*r_old;
|
||||
dy -= yn*r_old;
|
||||
dz -= zn*r_old;
|
||||
|
||||
if (!xflag) dx = 0.0;
|
||||
if (!yflag) dy = 0.0;
|
||||
if (!zflag) dz = 0.0;
|
||||
r = sqrt(dx*dx + dy*dy + dz*dz);
|
||||
dr = r - r0;
|
||||
|
||||
if (r > SMALL) {
|
||||
double fsign;
|
||||
fsign = (v_smd<0.0) ? -1.0 : 1.0;
|
||||
|
||||
fx = k_smd*dx*dr/r;
|
||||
fy = k_smd*dy*dr/r;
|
||||
fz = k_smd*dz*dr/r;
|
||||
pmf += (fx*xn + fy*yn + fz*zn) * fsign * v_smd * update->dt;
|
||||
}
|
||||
|
||||
} else {
|
||||
dx = xcm2[0] - xcm[0];
|
||||
dy = xcm2[1] - xcm[1];
|
||||
dz = xcm2[2] - xcm[2];
|
||||
r_now = sqrt(dx*dx + dy*dy + dz*dz);
|
||||
r_old = r;
|
||||
|
||||
fx = f_smd*xn;
|
||||
fy = f_smd*yn;
|
||||
fz = f_smd*zn;
|
||||
}
|
||||
|
||||
// apply restoring force to atoms in group
|
||||
// f = -k*(r-r0)*mass/masstotal
|
||||
|
||||
double **f = atom->f;
|
||||
int *mask = atom->mask;
|
||||
int *type = atom->type;
|
||||
double *mass = atom->mass;
|
||||
int nlocal = atom->nlocal;
|
||||
|
||||
ftotal[0] = ftotal[1] = ftotal[2] = 0.0;
|
||||
force_flag = 0;
|
||||
|
||||
double massfrac;
|
||||
for (int i = 0; i < nlocal; i++) {
|
||||
if (mask[i] & groupbit) {
|
||||
massfrac = mass[type[i]]/masstotal;
|
||||
f[i][0] += fx*massfrac;
|
||||
f[i][1] += fy*massfrac;
|
||||
f[i][2] += fz*massfrac;
|
||||
ftotal[0] += fx*massfrac;
|
||||
ftotal[1] += fy*massfrac;
|
||||
ftotal[2] += fz*massfrac;
|
||||
}
|
||||
if (mask[i] & group2bit) {
|
||||
massfrac = mass[type[i]]/masstotal2;
|
||||
f[i][0] -= fx*massfrac;
|
||||
f[i][1] -= fy*massfrac;
|
||||
f[i][2] -= fz*massfrac;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/* ---------------------------------------------------------------------- */
|
||||
|
||||
void FixSMD::write_restart(FILE *fp)
|
||||
{
|
||||
#define RESTART_ITEMS 5
|
||||
double buf[RESTART_ITEMS], fsign;
|
||||
|
||||
if (comm->me == 0) {
|
||||
// make sure we project the force into the direction of the pulling.
|
||||
fsign = (v_smd<0.0) ? -1.0 : 1.0;
|
||||
buf[0] = r_old;
|
||||
buf[1] = xn*fsign;
|
||||
buf[2] = yn*fsign;
|
||||
buf[3] = zn*fsign;
|
||||
buf[4] = pmf;
|
||||
int size = RESTART_ITEMS*sizeof(double);
|
||||
fwrite(&size,sizeof(int),1,fp);
|
||||
fwrite(&buf[0],sizeof(double),RESTART_ITEMS,fp);
|
||||
}
|
||||
}
|
||||
|
||||
/* ---------------------------------------------------------------------- */
|
||||
|
||||
void FixSMD::restart(char *buf)
|
||||
{
|
||||
double *list = (double *)buf;
|
||||
r_old = list[0];
|
||||
xn=list[1];
|
||||
yn=list[2];
|
||||
zn=list[3];
|
||||
pmf=list[4];
|
||||
}
|
||||
|
||||
/* ---------------------------------------------------------------------- */
|
||||
|
||||
void FixSMD::post_force_respa(int vflag, int ilevel, int iloop)
|
||||
{
|
||||
if (ilevel == nlevels_respa-1) post_force(vflag);
|
||||
}
|
||||
|
||||
/* ----------------------------------------------------------------------
|
||||
return components of total smd force on fix group
|
||||
------------------------------------------------------------------------- */
|
||||
|
||||
double FixSMD::compute_vector(int n)
|
||||
{
|
||||
// only sum across procs one time
|
||||
|
||||
if (force_flag == 0) {
|
||||
MPI_Allreduce(ftotal,ftotal_all,3,MPI_DOUBLE,MPI_SUM,world);
|
||||
force_flag = 1;
|
||||
if (styleflag & SMD_CVEL) {
|
||||
ftotal_all[3]=ftotal_all[0]*xn+ftotal_all[1]*yn+ftotal_all[2]*zn;
|
||||
ftotal_all[4]=r_old;
|
||||
} else {
|
||||
ftotal_all[3]=f_smd;
|
||||
ftotal_all[4]=r_old;
|
||||
}
|
||||
ftotal_all[5]=r_now;
|
||||
ftotal_all[6]=pmf;
|
||||
}
|
||||
return ftotal_all[n];
|
||||
}
|
|
@ -0,0 +1,60 @@
|
|||
/* ----------------------------------------------------------------------
|
||||
LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
|
||||
http://lammps.sandia.gov, Sandia National Laboratories
|
||||
Steve Plimpton, sjplimp@sandia.gov
|
||||
|
||||
Copyright (2003) Sandia Corporation. Under the terms of Contract
|
||||
DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains
|
||||
certain rights in this software. This software is distributed under
|
||||
the GNU General Public License.
|
||||
|
||||
See the README file in the top-level LAMMPS directory.
|
||||
------------------------------------------------------------------------- */
|
||||
|
||||
#ifdef FIX_CLASS
|
||||
|
||||
FixStyle(smd,FixSMD)
|
||||
|
||||
#else
|
||||
|
||||
#ifndef LMP_FIX_SMD_H
|
||||
#define LMP_FIX_SMD_H
|
||||
|
||||
#include "fix.h"
|
||||
|
||||
namespace LAMMPS_NS {
|
||||
|
||||
class FixSMD : public Fix {
|
||||
public:
|
||||
FixSMD(class LAMMPS *, int, char **);
|
||||
int setmask();
|
||||
void init();
|
||||
void setup(int);
|
||||
void post_force(int);
|
||||
void post_force_respa(int, int, int);
|
||||
double compute_vector(int);
|
||||
|
||||
void write_restart(FILE *);
|
||||
void restart(char *);
|
||||
|
||||
private:
|
||||
double xc,yc,zc,xn,yn,zn,r0;
|
||||
double k_smd,f_smd,v_smd;
|
||||
int xflag,yflag,zflag;
|
||||
int styleflag;
|
||||
double r_old,r_now,pmf;
|
||||
|
||||
int igroup2,group2bit;
|
||||
double masstotal,masstotal2;
|
||||
int nlevels_respa;
|
||||
double ftotal[3],ftotal_all[7];
|
||||
int force_flag;
|
||||
|
||||
void smd_tether();
|
||||
void smd_couple();
|
||||
};
|
||||
|
||||
}
|
||||
|
||||
#endif
|
||||
#endif
|
|
@ -0,0 +1,642 @@
|
|||
/* ----------------------------------------------------------------------
|
||||
LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
|
||||
http://lammps.sandia.gov, Sandia National Laboratories
|
||||
Steve Plimpton, sjplimp@sandia.gov
|
||||
|
||||
Copyright (2003) Sandia Corporation. Under the terms of Contract
|
||||
DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains
|
||||
certain rights in this software. This software is distributed under
|
||||
the GNU General Public License.
|
||||
|
||||
See the README file in the top-level LAMMPS directory.
|
||||
------------------------------------------------------------------------- */
|
||||
|
||||
/* ----------------------------------------------------------------------
|
||||
Contributing author: Alexander Stukowski
|
||||
Technical University of Darmstadt,
|
||||
Germany Department of Materials Science
|
||||
------------------------------------------------------------------------- */
|
||||
|
||||
#include "math.h"
|
||||
#include "stdio.h"
|
||||
#include "stdlib.h"
|
||||
#include "string.h"
|
||||
#include "pair_cdeam.h"
|
||||
#include "atom.h"
|
||||
#include "force.h"
|
||||
#include "comm.h"
|
||||
#include "neighbor.h"
|
||||
#include "neigh_list.h"
|
||||
#include "memory.h"
|
||||
#include "error.h"
|
||||
|
||||
using namespace LAMMPS_NS;
|
||||
|
||||
// This is for debugging purposes. The ASSERT() macro is used in the code to check
|
||||
// if everything runs as expected. Change this to #if 0 if you don't need the checking.
|
||||
#if 0
|
||||
#define ASSERT(cond) ((!(cond)) ? my_failure(error,__FILE__,__LINE__) : my_noop())
|
||||
|
||||
inline void my_noop() {}
|
||||
inline void my_failure(Error* error, const char* file, int line) {
|
||||
char str[1024];
|
||||
sprintf(str,"Assertion failure: File %s, line %i", file, line);
|
||||
error->one(str);
|
||||
}
|
||||
#else
|
||||
#define ASSERT(cond)
|
||||
#endif
|
||||
|
||||
#define MAXLINE 1024 // This sets the maximum line length in EAM input files.
|
||||
|
||||
PairCDEAM::PairCDEAM(LAMMPS *lmp, int _cdeamVersion) : PairEAM(lmp), PairEAMAlloy(lmp), cdeamVersion(_cdeamVersion)
|
||||
{
|
||||
single_enable = 0;
|
||||
rhoB = NULL;
|
||||
D_values = NULL;
|
||||
hcoeff = NULL;
|
||||
|
||||
// Set communication buffer sizes needed by this pair style.
|
||||
if(cdeamVersion == 1) {
|
||||
comm_forward = 4;
|
||||
comm_reverse = 3;
|
||||
}
|
||||
else if(cdeamVersion == 2) {
|
||||
comm_forward = 3;
|
||||
comm_reverse = 2;
|
||||
}
|
||||
else {
|
||||
error->all("Invalid CD-EAM potential version.");
|
||||
}
|
||||
}
|
||||
|
||||
PairCDEAM::~PairCDEAM()
|
||||
{
|
||||
memory->destroy(rhoB);
|
||||
memory->destroy(D_values);
|
||||
if(hcoeff) delete[] hcoeff;
|
||||
}
|
||||
|
||||
void PairCDEAM::compute(int eflag, int vflag)
|
||||
{
|
||||
int i,j,ii,jj,inum,jnum,itype,jtype;
|
||||
double xtmp,ytmp,ztmp,delx,dely,delz,evdwl,fpair;
|
||||
double rsq,rhoip,rhojp,recip,phi;
|
||||
int *ilist,*jlist,*numneigh,**firstneigh;
|
||||
|
||||
evdwl = 0.0;
|
||||
if (eflag || vflag) ev_setup(eflag,vflag);
|
||||
else evflag = vflag_fdotr = eflag_global = eflag_atom = 0;
|
||||
|
||||
// Grow per-atom arrays if necessary
|
||||
if(atom->nmax > nmax) {
|
||||
memory->destroy(rho);
|
||||
memory->destroy(fp);
|
||||
memory->destroy(rhoB);
|
||||
memory->destroy(D_values);
|
||||
nmax = atom->nmax;
|
||||
memory->create(rho,nmax,"pair:rho");
|
||||
memory->create(rhoB,nmax,"pair:rhoB");
|
||||
memory->create(fp,nmax,"pair:fp");
|
||||
memory->create(D_values,nmax,"pair:D_values");
|
||||
}
|
||||
|
||||
double **x = atom->x;
|
||||
double **f = atom->f;
|
||||
int *type = atom->type;
|
||||
int nlocal = atom->nlocal;
|
||||
int newton_pair = force->newton_pair;
|
||||
|
||||
inum = list->inum;
|
||||
ilist = list->ilist;
|
||||
numneigh = list->numneigh;
|
||||
firstneigh = list->firstneigh;
|
||||
|
||||
// Zero out per-atom arrays.
|
||||
int m = nlocal + atom->nghost;
|
||||
for(i = 0; i < m; i++) {
|
||||
rho[i] = 0.0;
|
||||
rhoB[i] = 0.0;
|
||||
D_values[i] = 0.0;
|
||||
}
|
||||
|
||||
// Stage I
|
||||
|
||||
// Compute rho and rhoB at each local atom site.
|
||||
// Additionally calculate the D_i values here if we are using the one-site formulation.
|
||||
// For the two-site formulation we have to calculate the D values in an extra loop (Stage II).
|
||||
for(ii = 0; ii < inum; ii++) {
|
||||
i = ilist[ii];
|
||||
xtmp = x[i][0];
|
||||
ytmp = x[i][1];
|
||||
ztmp = x[i][2];
|
||||
itype = type[i];
|
||||
jlist = firstneigh[i];
|
||||
jnum = numneigh[i];
|
||||
|
||||
for(jj = 0; jj < jnum; jj++) {
|
||||
j = jlist[jj];
|
||||
j &= NEIGHMASK;
|
||||
|
||||
delx = xtmp - x[j][0];
|
||||
dely = ytmp - x[j][1];
|
||||
delz = ztmp - x[j][2];
|
||||
rsq = delx*delx + dely*dely + delz*delz;
|
||||
|
||||
if(rsq < cutforcesq) {
|
||||
jtype = type[j];
|
||||
double r = sqrt(rsq);
|
||||
const EAMTableIndex index = radiusToTableIndex(r);
|
||||
double localrho = RhoOfR(index, jtype, itype);
|
||||
rho[i] += localrho;
|
||||
if(jtype == speciesB) rhoB[i] += localrho;
|
||||
if(newton_pair || j < nlocal) {
|
||||
localrho = RhoOfR(index, itype, jtype);
|
||||
rho[j] += localrho;
|
||||
if(itype == speciesB) rhoB[j] += localrho;
|
||||
}
|
||||
|
||||
if(cdeamVersion == 1 && itype != jtype) {
|
||||
// Note: if the i-j interaction is not concentration dependent (because either
|
||||
// i or j are not species A or B) then its contribution to D_i and D_j should
|
||||
// be ignored.
|
||||
// This if-clause is only required for a ternary.
|
||||
if((itype == speciesA && jtype == speciesB) || (jtype == speciesA && itype == speciesB)) {
|
||||
double Phi_AB = PhiOfR(index, itype, jtype, 1.0 / r);
|
||||
D_values[i] += Phi_AB;
|
||||
if(newton_pair || j < nlocal)
|
||||
D_values[j] += Phi_AB;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Communicate and sum densities.
|
||||
if(newton_pair) {
|
||||
communicationStage = 1;
|
||||
comm->reverse_comm_pair(this);
|
||||
}
|
||||
|
||||
// fp = derivative of embedding energy at each atom
|
||||
// phi = embedding energy at each atom
|
||||
for(ii = 0; ii < inum; ii++) {
|
||||
i = ilist[ii];
|
||||
EAMTableIndex index = rhoToTableIndex(rho[i]);
|
||||
fp[i] = FPrimeOfRho(index, type[i]);
|
||||
if(eflag) {
|
||||
phi = FofRho(index, type[i]);
|
||||
if (eflag_global) eng_vdwl += phi;
|
||||
if (eflag_atom) eatom[i] += phi;
|
||||
}
|
||||
}
|
||||
|
||||
// Communicate derivative of embedding function and densities
|
||||
// and D_values (this for one-site formulation only).
|
||||
communicationStage = 2;
|
||||
comm->forward_comm_pair(this);
|
||||
|
||||
// The electron densities may not drop to zero because then the concentration would no longer be defined.
|
||||
// But the concentration is not needed anyway if there is no interaction with another atom, which is the case
|
||||
// if the electron density is exactly zero. That's why the following lines have been commented out.
|
||||
//
|
||||
//for(i = 0; i < nlocal + atom->nghost; i++) {
|
||||
// if(rho[i] == 0 && (type[i] == speciesA || type[i] == speciesB))
|
||||
// error->one("CD-EAM potential routine: Detected atom with zero electron density.");
|
||||
//}
|
||||
|
||||
// Stage II
|
||||
// This is only required for the original two-site formulation of the CD-EAM potential.
|
||||
|
||||
if(cdeamVersion == 2) {
|
||||
// Compute intermediate value D_i for each atom.
|
||||
for(ii = 0; ii < inum; ii++) {
|
||||
i = ilist[ii];
|
||||
xtmp = x[i][0];
|
||||
ytmp = x[i][1];
|
||||
ztmp = x[i][2];
|
||||
itype = type[i];
|
||||
jlist = firstneigh[i];
|
||||
jnum = numneigh[i];
|
||||
|
||||
// This code line is required for ternary alloys.
|
||||
if(itype != speciesA && itype != speciesB) continue;
|
||||
|
||||
double x_i = rhoB[i] / rho[i]; // Concentration at atom i.
|
||||
|
||||
for(jj = 0; jj < jnum; jj++) {
|
||||
j = jlist[jj];
|
||||
j &= NEIGHMASK;
|
||||
jtype = type[j];
|
||||
if(itype == jtype) continue;
|
||||
|
||||
// This code line is required for ternary alloys.
|
||||
if(jtype != speciesA && jtype != speciesB) continue;
|
||||
|
||||
delx = xtmp - x[j][0];
|
||||
dely = ytmp - x[j][1];
|
||||
delz = ztmp - x[j][2];
|
||||
rsq = delx*delx + dely*dely + delz*delz;
|
||||
|
||||
if(rsq < cutforcesq) {
|
||||
double r = sqrt(rsq);
|
||||
const EAMTableIndex index = radiusToTableIndex(r);
|
||||
|
||||
// The concentration independent part of the cross pair potential.
|
||||
double Phi_AB = PhiOfR(index, itype, jtype, 1.0 / r);
|
||||
|
||||
// Average concentration of two sites
|
||||
double x_ij = 0.5 * (x_i + rhoB[j]/rho[j]);
|
||||
|
||||
// Calculate derivative of h(x_ij) polynomial function.
|
||||
double h_prime = evalHprime(x_ij);
|
||||
|
||||
D_values[i] += h_prime * Phi_AB / (2.0 * rho[i] * rho[i]);
|
||||
if(newton_pair || j < nlocal)
|
||||
D_values[j] += h_prime * Phi_AB / (2.0 * rho[j] * rho[j]);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Communicate and sum D values.
|
||||
if(newton_pair) {
|
||||
communicationStage = 3;
|
||||
comm->reverse_comm_pair(this);
|
||||
}
|
||||
communicationStage = 4;
|
||||
comm->forward_comm_pair(this);
|
||||
}
|
||||
|
||||
// Stage III
|
||||
|
||||
// Compute force acting on each atom.
|
||||
for(ii = 0; ii < inum; ii++) {
|
||||
i = ilist[ii];
|
||||
xtmp = x[i][0];
|
||||
ytmp = x[i][1];
|
||||
ztmp = x[i][2];
|
||||
itype = type[i];
|
||||
|
||||
jlist = firstneigh[i];
|
||||
jnum = numneigh[i];
|
||||
|
||||
// Concentration at site i
|
||||
double x_i = -1.0; // The value -1 indicates: no concentration dependence for all interactions of atom i.
|
||||
// It will be replaced by the concentration at site i if atom i is either A or B.
|
||||
|
||||
double D_i, h_prime_i;
|
||||
|
||||
// This if-clause is only required for ternary alloys.
|
||||
if((itype == speciesA || itype == speciesB) && rho[i] != 0.0) {
|
||||
|
||||
// Compute local concentration at site i.
|
||||
x_i = rhoB[i]/rho[i];
|
||||
ASSERT(x_i >= 0 && x_i<=1.0);
|
||||
|
||||
if(cdeamVersion == 1) {
|
||||
// Calculate derivative of h(x_i) polynomial function.
|
||||
h_prime_i = evalHprime(x_i);
|
||||
D_i = D_values[i] * h_prime_i / (2.0 * rho[i] * rho[i]);
|
||||
}
|
||||
else if(cdeamVersion == 2) {
|
||||
D_i = D_values[i];
|
||||
}
|
||||
else ASSERT(false);
|
||||
}
|
||||
|
||||
for(jj = 0; jj < jnum; jj++) {
|
||||
j = jlist[jj];
|
||||
j &= NEIGHMASK;
|
||||
|
||||
delx = xtmp - x[j][0];
|
||||
dely = ytmp - x[j][1];
|
||||
delz = ztmp - x[j][2];
|
||||
rsq = delx*delx + dely*dely + delz*delz;
|
||||
|
||||
if(rsq < cutforcesq) {
|
||||
jtype = type[j];
|
||||
double r = sqrt(rsq);
|
||||
const EAMTableIndex index = radiusToTableIndex(r);
|
||||
|
||||
// rhoip = derivative of (density at atom j due to atom i)
|
||||
// rhojp = derivative of (density at atom i due to atom j)
|
||||
// psip needs both fp[i] and fp[j] terms since r_ij appears in two
|
||||
// terms of embed eng: Fi(sum rho_ij) and Fj(sum rho_ji)
|
||||
// hence embed' = Fi(sum rho_ij) rhojp + Fj(sum rho_ji) rhoip
|
||||
rhoip = RhoPrimeOfR(index, itype, jtype);
|
||||
rhojp = RhoPrimeOfR(index, jtype, itype);
|
||||
fpair = fp[i]*rhojp + fp[j]*rhoip;
|
||||
recip = 1.0/r;
|
||||
|
||||
double x_j = -1; // The value -1 indicates: no concentration dependence for this i-j pair
|
||||
// because atom j is not of species A nor B.
|
||||
|
||||
// This code line is required for ternary alloy.
|
||||
if(jtype == speciesA || jtype == speciesB) {
|
||||
ASSERT(rho[i] != 0.0);
|
||||
ASSERT(rho[j] != 0.0);
|
||||
|
||||
// Compute local concentration at site j.
|
||||
x_j = rhoB[j]/rho[j];
|
||||
ASSERT(x_j >= 0 && x_j<=1.0);
|
||||
|
||||
double D_j;
|
||||
if(cdeamVersion == 1) {
|
||||
// Calculate derivative of h(x_j) polynomial function.
|
||||
double h_prime_j = evalHprime(x_j);
|
||||
D_j = D_values[j] * h_prime_j / (2.0 * rho[j] * rho[j]);
|
||||
}
|
||||
else if(cdeamVersion == 2) {
|
||||
D_j = D_values[j];
|
||||
}
|
||||
else ASSERT(false);
|
||||
|
||||
double t2 = -rhoB[j];
|
||||
if(itype == speciesB) t2 += rho[j];
|
||||
fpair += D_j * rhoip * t2;
|
||||
}
|
||||
|
||||
// This if-clause is only required for a ternary alloy.
|
||||
// Actually we don't need it at all because D_i should be zero anyway if
|
||||
// atom i has no concentration dependent interactions (because it is not species A or B).
|
||||
if(x_i != -1.0) {
|
||||
double t1 = -rhoB[i];
|
||||
if(jtype == speciesB) t1 += rho[i];
|
||||
fpair += D_i * rhojp * t1;
|
||||
}
|
||||
|
||||
double phip;
|
||||
double phi = PhiOfR(index, itype, jtype, recip, phip);
|
||||
if(itype == jtype || x_i == -1.0 || x_j == -1.0) {
|
||||
// Case of no concentration dependence.
|
||||
fpair += phip;
|
||||
}
|
||||
else {
|
||||
// We have a concentration dependence for the i-j interaction.
|
||||
double h;
|
||||
if(cdeamVersion == 1) {
|
||||
// Calculate h(x_i) polynomial function.
|
||||
double h_i = evalH(x_i);
|
||||
// Calculate h(x_j) polynomial function.
|
||||
double h_j = evalH(x_j);
|
||||
h = 0.5 * (h_i + h_j);
|
||||
}
|
||||
else if(cdeamVersion == 2) {
|
||||
// Average concentration.
|
||||
double x_ij = 0.5 * (x_i + x_j);
|
||||
// Calculate h(x_ij) polynomial function.
|
||||
h = evalH(x_ij);
|
||||
}
|
||||
else ASSERT(false);
|
||||
fpair += h * phip;
|
||||
phi *= h;
|
||||
}
|
||||
|
||||
// Divide by r_ij and negate to get forces from gradient.
|
||||
fpair /= -r;
|
||||
|
||||
f[i][0] += delx*fpair;
|
||||
f[i][1] += dely*fpair;
|
||||
f[i][2] += delz*fpair;
|
||||
if(newton_pair || j < nlocal) {
|
||||
f[j][0] -= delx*fpair;
|
||||
f[j][1] -= dely*fpair;
|
||||
f[j][2] -= delz*fpair;
|
||||
}
|
||||
|
||||
if(eflag) evdwl = phi;
|
||||
if(evflag) ev_tally(i,j,nlocal,newton_pair,evdwl,0.0,fpair,delx,dely,delz);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if(vflag_fdotr) virial_fdotr_compute();
|
||||
}
|
||||
|
||||
/* ---------------------------------------------------------------------- */
|
||||
|
||||
void PairCDEAM::coeff(int narg, char **arg)
|
||||
{
|
||||
PairEAMAlloy::coeff(narg, arg);
|
||||
|
||||
// Make sure the EAM file is a CD-EAM binary alloy.
|
||||
if(setfl->nelements < 2)
|
||||
error->all("The EAM file must contain at least 2 elements to be used with the eam/cd pair style.");
|
||||
|
||||
// Read in the coefficients of the h polynomial from the end of the EAM file.
|
||||
read_h_coeff(arg[2]);
|
||||
|
||||
// Determine which atom type is the A species and which is the B species in the alloy.
|
||||
// By default take the first element (index 0) in the EAM file as the A species
|
||||
// and the second element (index 1) in the EAM file as the B species.
|
||||
speciesA = -1;
|
||||
speciesB = -1;
|
||||
for(int i = 1; i <= atom->ntypes; i++) {
|
||||
if(map[i] == 0) {
|
||||
if(speciesA >= 0)
|
||||
error->all("The first element from the EAM file may only be mapped to a single atom type.");
|
||||
speciesA = i;
|
||||
}
|
||||
if(map[i] == 1) {
|
||||
if(speciesB >= 0)
|
||||
error->all("The second element from the EAM file may only be mapped to a single atom type.");
|
||||
speciesB = i;
|
||||
}
|
||||
}
|
||||
if(speciesA < 0)
|
||||
error->all("The first element from the EAM file must be mapped to exactly one atom type.");
|
||||
if(speciesB < 0)
|
||||
error->all("The second element from the EAM file must be mapped to exactly one atom type.");
|
||||
}
|
||||
|
||||
/* ----------------------------------------------------------------------
|
||||
Reads in the h(x) polynomial coefficients
|
||||
------------------------------------------------------------------------- */
|
||||
void PairCDEAM::read_h_coeff(char *filename)
|
||||
{
|
||||
if(comm->me == 0) {
|
||||
// Open potential file
|
||||
FILE *fp;
|
||||
char line[MAXLINE];
|
||||
char nextline[MAXLINE];
|
||||
fp = fopen(filename,"r");
|
||||
if (fp == NULL) {
|
||||
char str[128];
|
||||
sprintf(str,"Cannot open EAM potential file %s", filename);
|
||||
error->one(str);
|
||||
}
|
||||
|
||||
// h coefficients are stored at the end of the file.
|
||||
// Skip to last line of file.
|
||||
while(fgets(nextline, MAXLINE, fp) != NULL) {
|
||||
strcpy(line, nextline);
|
||||
}
|
||||
char* ptr = strtok(line, " \t\n\r\f");
|
||||
int degree = atoi(ptr);
|
||||
nhcoeff = degree+1;
|
||||
hcoeff = new double[nhcoeff];
|
||||
int i = 0;
|
||||
while((ptr = strtok(NULL," \t\n\r\f")) != NULL && i < nhcoeff) {
|
||||
hcoeff[i++] = atof(ptr);
|
||||
}
|
||||
if(i != nhcoeff || nhcoeff < 1)
|
||||
error->one("Failed to read h(x) function coefficients from EAM file.");
|
||||
|
||||
// Close the potential file.
|
||||
fclose(fp);
|
||||
}
|
||||
|
||||
MPI_Bcast(&nhcoeff, 1, MPI_INT, 0, world);
|
||||
if(comm->me != 0) hcoeff = new double[nhcoeff];
|
||||
MPI_Bcast(hcoeff, nhcoeff, MPI_DOUBLE, 0, world);
|
||||
}
|
||||
|
||||
|
||||
/* ---------------------------------------------------------------------- */
|
||||
|
||||
int PairCDEAM::pack_comm(int n, int *list, double *buf, int pbc_flag, int *pbc)
|
||||
{
|
||||
int i,j,m;
|
||||
|
||||
m = 0;
|
||||
if(communicationStage == 2) {
|
||||
if(cdeamVersion == 1) {
|
||||
for (i = 0; i < n; i++) {
|
||||
j = list[i];
|
||||
buf[m++] = fp[j];
|
||||
buf[m++] = rho[j];
|
||||
buf[m++] = rhoB[j];
|
||||
buf[m++] = D_values[j];
|
||||
}
|
||||
return 4;
|
||||
}
|
||||
else if(cdeamVersion == 2) {
|
||||
for (i = 0; i < n; i++) {
|
||||
j = list[i];
|
||||
buf[m++] = fp[j];
|
||||
buf[m++] = rho[j];
|
||||
buf[m++] = rhoB[j];
|
||||
}
|
||||
return 3;
|
||||
}
|
||||
else { ASSERT(false); return 0; }
|
||||
}
|
||||
else if(communicationStage == 4) {
|
||||
for (i = 0; i < n; i++) {
|
||||
j = list[i];
|
||||
buf[m++] = D_values[j];
|
||||
}
|
||||
return 1;
|
||||
}
|
||||
else return 0;
|
||||
}
|
||||
|
||||
/* ---------------------------------------------------------------------- */
|
||||
|
||||
void PairCDEAM::unpack_comm(int n, int first, double *buf)
|
||||
{
|
||||
int i,m,last;
|
||||
|
||||
m = 0;
|
||||
last = first + n;
|
||||
if(communicationStage == 2) {
|
||||
if(cdeamVersion == 1) {
|
||||
for(i = first; i < last; i++) {
|
||||
fp[i] = buf[m++];
|
||||
rho[i] = buf[m++];
|
||||
rhoB[i] = buf[m++];
|
||||
D_values[i] = buf[m++];
|
||||
}
|
||||
}
|
||||
else if(cdeamVersion == 2) {
|
||||
for(i = first; i < last; i++) {
|
||||
fp[i] = buf[m++];
|
||||
rho[i] = buf[m++];
|
||||
rhoB[i] = buf[m++];
|
||||
}
|
||||
}
|
||||
else ASSERT(false);
|
||||
}
|
||||
else if(communicationStage == 4) {
|
||||
for(i = first; i < last; i++) {
|
||||
D_values[i] = buf[m++];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/* ---------------------------------------------------------------------- */
|
||||
int PairCDEAM::pack_reverse_comm(int n, int first, double *buf)
|
||||
{
|
||||
int i,m,last;
|
||||
|
||||
m = 0;
|
||||
last = first + n;
|
||||
|
||||
if(communicationStage == 1) {
|
||||
if(cdeamVersion == 1) {
|
||||
for(i = first; i < last; i++) {
|
||||
buf[m++] = rho[i];
|
||||
buf[m++] = rhoB[i];
|
||||
buf[m++] = D_values[i];
|
||||
}
|
||||
return 3;
|
||||
}
|
||||
else if(cdeamVersion == 2) {
|
||||
for(i = first; i < last; i++) {
|
||||
buf[m++] = rho[i];
|
||||
buf[m++] = rhoB[i];
|
||||
}
|
||||
return 2;
|
||||
}
|
||||
else { ASSERT(false); return 0; }
|
||||
}
|
||||
else if(communicationStage == 3) {
|
||||
for(i = first; i < last; i++) {
|
||||
buf[m++] = D_values[i];
|
||||
}
|
||||
return 1;
|
||||
}
|
||||
else return 0;
|
||||
}
|
||||
|
||||
/* ---------------------------------------------------------------------- */
|
||||
|
||||
void PairCDEAM::unpack_reverse_comm(int n, int *list, double *buf)
|
||||
{
|
||||
int i,j,m;
|
||||
|
||||
m = 0;
|
||||
if(communicationStage == 1) {
|
||||
if(cdeamVersion == 1) {
|
||||
for(i = 0; i < n; i++) {
|
||||
j = list[i];
|
||||
rho[j] += buf[m++];
|
||||
rhoB[j] += buf[m++];
|
||||
D_values[j] += buf[m++];
|
||||
}
|
||||
}
|
||||
else if(cdeamVersion == 2) {
|
||||
for(i = 0; i < n; i++) {
|
||||
j = list[i];
|
||||
rho[j] += buf[m++];
|
||||
rhoB[j] += buf[m++];
|
||||
}
|
||||
}
|
||||
else ASSERT(false);
|
||||
}
|
||||
else if(communicationStage == 3) {
|
||||
for(i = 0; i < n; i++) {
|
||||
j = list[i];
|
||||
D_values[j] += buf[m++];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/* ----------------------------------------------------------------------
|
||||
memory usage of local atom-based arrays
|
||||
------------------------------------------------------------------------- */
|
||||
double PairCDEAM::memory_usage()
|
||||
{
|
||||
double bytes = 2 * nmax * sizeof(double);
|
||||
return PairEAMAlloy::memory_usage() + bytes;
|
||||
}
|
|
@ -0,0 +1,230 @@
|
|||
/* ----------------------------------------------------------------------
|
||||
LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
|
||||
http://lammps.sandia.gov, Sandia National Laboratories
|
||||
Steve Plimpton, sjplimp@sandia.gov
|
||||
|
||||
Copyright (2003) Sandia Corporation. Under the terms of Contract
|
||||
DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains
|
||||
certain rights in this software. This software is distributed under
|
||||
the GNU General Public License.
|
||||
|
||||
See the README file in the top-level LAMMPS directory.
|
||||
------------------------------------------------------------------------- */
|
||||
|
||||
#ifdef PAIR_CLASS
|
||||
|
||||
PairStyle(eam/cd,PairCDEAM_OneSite)
|
||||
PairStyle(eam/cd/old,PairCDEAM_TwoSite)
|
||||
|
||||
#else
|
||||
|
||||
#ifndef LMP_PAIR_CDEAM_H
|
||||
#define LMP_PAIR_CDEAM_H
|
||||
|
||||
#include "pair_eam_alloy.h"
|
||||
|
||||
namespace LAMMPS_NS {
|
||||
|
||||
class PairCDEAM : public PairEAMAlloy
|
||||
{
|
||||
public:
|
||||
/// Constructor.
|
||||
PairCDEAM(class LAMMPS*, int cdeamVersion);
|
||||
|
||||
/// Destructor.
|
||||
virtual ~PairCDEAM();
|
||||
|
||||
/// Calculates the energies and forces for all atoms in the system.
|
||||
void compute(int, int);
|
||||
|
||||
/// Parses the pair_coeff command parameters for this pair style.
|
||||
void coeff(int, char **);
|
||||
|
||||
/// This is for MPI communication with neighbor nodes.
|
||||
int pack_comm(int, int *, double *, int, int *);
|
||||
void unpack_comm(int, int, double *);
|
||||
int pack_reverse_comm(int, int, double *);
|
||||
void unpack_reverse_comm(int, int *, double *);
|
||||
|
||||
/// Reports the memory usage of this pair style to LAMMPS.
|
||||
double memory_usage();
|
||||
|
||||
/// Parses the coefficients of the h polynomial from the end of the EAM file.
|
||||
void read_h_coeff(char* filename);
|
||||
|
||||
public:
|
||||
// The public interface exposed by this potential class.
|
||||
|
||||
// Evaluates the h(x) polynomial for a given local concentration x.
|
||||
inline double evalH(double x) const {
|
||||
double v = 0.0;
|
||||
for(int i = nhcoeff-1; i >= 1; i--) {
|
||||
v = (v + hcoeff[i]) * x;
|
||||
}
|
||||
return v + hcoeff[0];
|
||||
}
|
||||
|
||||
// Calculates the derivative of the h(x) polynomial.
|
||||
inline double evalHprime(double x) const {
|
||||
double v = 0.0;
|
||||
for(int i = nhcoeff-1; i >= 2; i--) {
|
||||
v = (v + (double)i * hcoeff[i]) * x;
|
||||
}
|
||||
return v + hcoeff[1];
|
||||
}
|
||||
|
||||
// We have two versions of the CD-EAM potential. The user can choose which one he wants to use:
|
||||
//
|
||||
// Version 1 - One-site concentration: The h(x_i) function depends only on the concentration at the atomic site i.
|
||||
// This is a new version with a slight modification to the formula. It happens to be computationally more efficient.
|
||||
// It has been published in the MSMSE 2009 paper.
|
||||
//
|
||||
// Version 2 - Two-site concentration: The h(x_ij) function depends on the concentrations at two atomic sites i and j.
|
||||
// This is the original version from the 2005 PRL paper.
|
||||
int cdeamVersion;
|
||||
|
||||
// Per-atom arrays
|
||||
|
||||
// The partial density of B atoms at each atom site.
|
||||
double *rhoB;
|
||||
|
||||
// The intermediate value D_i for each atom.
|
||||
// The meaning of these values depend on the version of the CD-EAM potential used:
|
||||
//
|
||||
// For the one-site concentration version these are the v_i values defined in equation (21)
|
||||
// of the MSMSE paper.
|
||||
//
|
||||
// For the old two-site concentration version these are the M_i values defined in equation (12)
|
||||
// of the MSMSE paper.
|
||||
double *D_values;
|
||||
|
||||
// The atom type index that is considered to be the A species in the alloy.
|
||||
int speciesA;
|
||||
|
||||
// The atom type index that is considered to be the B species in the alloy.
|
||||
int speciesB;
|
||||
|
||||
protected:
|
||||
|
||||
// Evaluation functions:
|
||||
|
||||
// This structure specifies an entry in one of the EAM spline tables
|
||||
// and the corresponding floating point part.
|
||||
typedef struct {
|
||||
int m;
|
||||
double p;
|
||||
} EAMTableIndex;
|
||||
|
||||
// Converts a radius value to an index value to be used in a spline table lookup.
|
||||
inline EAMTableIndex radiusToTableIndex(double r) const {
|
||||
EAMTableIndex index;
|
||||
index.p = r*rdr + 1.0;
|
||||
index.m = static_cast<int>(index.p);
|
||||
index.m = index.m <= (nr-1) ? index.m : (nr-1);
|
||||
index.p -= index.m;
|
||||
index.p = index.p <= 1.0 ? index.p : 1.0;
|
||||
return index;
|
||||
}
|
||||
|
||||
// Converts a density value to an index value to be used in a spline table lookup.
|
||||
inline EAMTableIndex rhoToTableIndex(double rho) const {
|
||||
EAMTableIndex index;
|
||||
index.p = rho*rdrho + 1.0;
|
||||
index.m = static_cast<int>(index.p);
|
||||
index.m = index.m <= (nrho-1) ? index.m : (nrho-1);
|
||||
index.p -= index.m;
|
||||
index.p = index.p <= 1.0 ? index.p : 1.0;
|
||||
return index;
|
||||
}
|
||||
|
||||
// Computes the derivative of rho(r)
|
||||
inline double RhoPrimeOfR(const EAMTableIndex& index, int itype, int jtype) const {
|
||||
const double* coeff = rhor_spline[type2rhor[itype][jtype]][index.m];
|
||||
return (coeff[0]*index.p + coeff[1])*index.p + coeff[2];
|
||||
}
|
||||
|
||||
// Computes rho(r)
|
||||
inline double RhoOfR(const EAMTableIndex& index, int itype, int jtype) const {
|
||||
const double* coeff = rhor_spline[type2rhor[itype][jtype]][index.m];
|
||||
return ((coeff[3]*index.p + coeff[4])*index.p + coeff[5])*index.p + coeff[6];
|
||||
}
|
||||
|
||||
// Computes the derivative of F(rho)
|
||||
inline double FPrimeOfRho(const EAMTableIndex& index, int itype) const {
|
||||
const double* coeff = frho_spline[type2frho[itype]][index.m];
|
||||
return (coeff[0]*index.p + coeff[1])*index.p + coeff[2];
|
||||
}
|
||||
|
||||
// Computes F(rho)
|
||||
inline double FofRho(const EAMTableIndex& index, int itype) const {
|
||||
const double* coeff = frho_spline[type2frho[itype]][index.m];
|
||||
return ((coeff[3]*index.p + coeff[4])*index.p + coeff[5])*index.p + coeff[6];
|
||||
}
|
||||
|
||||
// Computes the derivative of z2(r)
|
||||
inline double Z2PrimeOfR(const EAMTableIndex& index, int itype, int jtype) const {
|
||||
const double* coeff = z2r_spline[type2z2r[itype][jtype]][index.m];
|
||||
return (coeff[0]*index.p + coeff[1])*index.p + coeff[2];
|
||||
}
|
||||
|
||||
// Computes z2(r)
|
||||
inline double Z2OfR(const EAMTableIndex& index, int itype, int jtype) const {
|
||||
const double* coeff = z2r_spline[type2z2r[itype][jtype]][index.m];
|
||||
return ((coeff[3]*index.p + coeff[4])*index.p + coeff[5])*index.p + coeff[6];
|
||||
}
|
||||
|
||||
// Computes pair potential V_ij(r).
|
||||
inline double PhiOfR(const EAMTableIndex& index, int itype, int jtype, const double oneOverR) const {
|
||||
// phi = pair potential energy
|
||||
// z2 = phi * r
|
||||
const double* coeff = z2r_spline[type2z2r[itype][jtype]][index.m];
|
||||
const double z2 = ((coeff[3]*index.p + coeff[4])*index.p + coeff[5])*index.p + coeff[6];
|
||||
return z2 * oneOverR;
|
||||
}
|
||||
|
||||
// Computes pair potential V_ij(r) and its derivative.
|
||||
inline double PhiOfR(const EAMTableIndex& index, int itype, int jtype, const double oneOverR, double& phid) const {
|
||||
// phi = pair potential energy
|
||||
// phip = phi'
|
||||
// z2 = phi * r
|
||||
// z2p = (phi * r)' = (phi' r) + phi
|
||||
const double* coeff = z2r_spline[type2z2r[itype][jtype]][index.m];
|
||||
const double z2p = (coeff[0]*index.p + coeff[1])*index.p + coeff[2];
|
||||
const double z2 = ((coeff[3]*index.p + coeff[4])*index.p + coeff[5])*index.p + coeff[6];
|
||||
const double phi = z2 * oneOverR;
|
||||
phid = z2p * oneOverR - phi * oneOverR;
|
||||
return phi;
|
||||
}
|
||||
|
||||
// Parameters
|
||||
|
||||
// h() polynomial function coefficients
|
||||
double* hcoeff;
|
||||
// The number of coefficients in the polynomial.
|
||||
int nhcoeff;
|
||||
|
||||
// This specifies the calculation stage to let the pack/unpack communication routines know
|
||||
// which data to exchange.
|
||||
int communicationStage;
|
||||
};
|
||||
|
||||
/// The one-site concentration formulation of CD-EAM.
|
||||
class PairCDEAM_OneSite : public PairCDEAM
|
||||
{
|
||||
public:
|
||||
/// Constructor.
|
||||
PairCDEAM_OneSite(class LAMMPS* lmp) : PairEAM(lmp), PairCDEAM(lmp, 1) {}
|
||||
};
|
||||
|
||||
/// The two-site concentration formulation of CD-EAM.
|
||||
class PairCDEAM_TwoSite : public PairCDEAM
|
||||
{
|
||||
public:
|
||||
/// Constructor.
|
||||
PairCDEAM_TwoSite(class LAMMPS* lmp) : PairEAM(lmp), PairCDEAM(lmp, 2) {}
|
||||
};
|
||||
|
||||
};
|
||||
|
||||
#endif
|
||||
#endif
|
Loading…
Reference in New Issue