forked from lijiext/lammps
import contributed code for computes coord/atom and orientorder/atom
This commit is contained in:
parent
c31f1e9f22
commit
95706ac846
|
@ -10,22 +10,34 @@ compute coord/atom command :h3
|
|||
|
||||
[Syntax:]
|
||||
|
||||
compute ID group-ID coord/atom cutoff type1 type2 ... :pre
|
||||
compute ID group-ID coord/atom cstyle args ... :pre
|
||||
|
||||
ID, group-ID are documented in "compute"_compute.html command
|
||||
coord/atom = style name of this compute command
|
||||
cutoff = distance within which to count coordination neighbors (distance units)
|
||||
typeN = atom type for Nth coordination count (see asterisk form below) :ul
|
||||
one cstyle must be appended :ul
|
||||
|
||||
cstyle = {cutoff} or {orientorder}
|
||||
|
||||
{cutoff} args = cutoff typeN
|
||||
cutoff = distance within which to count coordination neighbors (distance units)
|
||||
typeN = atom type for Nth coordination count (see asterisk form below) :pre
|
||||
|
||||
{orientorder} args = orientorderID threshold
|
||||
orientorderID = ID of a previously defined orientorder/atom compute
|
||||
threshold = minimum value of the scalar product between two 'connected' atoms (see text for explanation) :pre
|
||||
|
||||
[Examples:]
|
||||
|
||||
compute 1 all coord/atom 2.0
|
||||
compute 1 all coord/atom 6.0 1 2
|
||||
compute 1 all coord/atom 6.0 2*4 5*8 * :pre
|
||||
compute 1 all coord/atom cutoff 2.0
|
||||
compute 1 all coord/atom cutoff 6.0 1 2
|
||||
compute 1 all coord/atom cutoff 6.0 2*4 5*8 *
|
||||
compute 1 all coord/atom orientorder 2 0.5 :pre
|
||||
|
||||
[Description:]
|
||||
|
||||
Define a computation that calculates one or more coordination numbers
|
||||
This compute performs generic calculations between neighboring atoms. So far,
|
||||
there are two cstyles implemented: {cutoff} and {orientorder}.
|
||||
The {cutoff} cstyle calculates one or more coordination numbers
|
||||
for each atom in a group.
|
||||
|
||||
A coordination number is defined as the number of neighbor atoms with
|
||||
|
@ -49,6 +61,14 @@ from 1 to N. A leading asterisk means all types from 1 to n
|
|||
(inclusive). A middle asterisk means all types from m to n
|
||||
(inclusive).
|
||||
|
||||
The {orientorder} cstyle calculates the number of 'connected' atoms j
|
||||
around each atom i. The atom j is connected to i if the scalar product
|
||||
({Ybar_lm(i)},{Ybar_lm(j)}) is larger than {threshold}. Thus, this cstyle
|
||||
will work only if a "compute orientorder/atom"_compute_orientorder_atom.html
|
||||
has been previously defined. This cstyle allows one to apply the
|
||||
ten Wolde's criterion to identify cristal-like atoms in a system
|
||||
(see "ten Wolde et al."_#tenWolde).
|
||||
|
||||
The value of all coordination numbers will be 0.0 for atoms not in the
|
||||
specified compute group.
|
||||
|
||||
|
@ -83,10 +103,19 @@ options.
|
|||
The per-atom vector or array values will be a number >= 0.0, as
|
||||
explained above.
|
||||
|
||||
[Restrictions:] none
|
||||
[Restrictions:]
|
||||
The cstyle {orientorder} can only be used if a
|
||||
"compute orientorder/atom"_compute_orientorder_atom.html command
|
||||
was previously defined. Otherwise, an error message will be issued.
|
||||
|
||||
[Related commands:]
|
||||
|
||||
"compute cluster/atom"_compute_cluster_atom.html
|
||||
"compute orientorder/atom"_compute_orientorder_atom.html
|
||||
|
||||
[Default:] none
|
||||
|
||||
:line
|
||||
|
||||
:link(tenWolde)
|
||||
[(tenWolde)] P. R. ten Wolde, M. J. Ruiz-Montero, D. Frenkel, J. Chem. Phys. 104, 9932 (1996).
|
||||
|
|
|
@ -15,17 +15,19 @@ compute ID group-ID orientorder/atom keyword values ... :pre
|
|||
ID, group-ID are documented in "compute"_compute.html command :ulb,l
|
||||
orientorder/atom = style name of this compute command :l
|
||||
one or more keyword/value pairs may be appended :l
|
||||
keyword = {cutoff} or {nnn} or {degrees}
|
||||
keyword = {cutoff} or {nnn} or {degrees} or {components}
|
||||
{cutoff} value = distance cutoff
|
||||
{nnn} value = number of nearest neighbors
|
||||
{degrees} values = nlvalues, l1, l2,... :pre
|
||||
{degrees} values = nlvalues, l1, l2,...
|
||||
{components} value = l :pre
|
||||
|
||||
:ule
|
||||
|
||||
[Examples:]
|
||||
|
||||
compute 1 all orientorder/atom
|
||||
compute 1 all orientorder/atom degrees 5 4 6 8 10 12 nnn NULL cutoff 1.5 :pre
|
||||
compute 1 all orientorder/atom degrees 5 4 6 8 10 12 nnn NULL cutoff 1.5
|
||||
compute 1 all orientorder/atom degrees 4 6 components 6 nnn NULL cutoff 3.0 :pre
|
||||
|
||||
[Description:]
|
||||
|
||||
|
@ -71,6 +73,13 @@ The numerical values of all order parameters up to {Q}12
|
|||
for a range of commonly encountered high-symmetry structures are given
|
||||
in Table I of "Mickel et al."_#Mickel.
|
||||
|
||||
The optional keyword {components} will output the components of
|
||||
the normalized complex vector {Ybar_lm} of degree {l}, which must be
|
||||
explicitly included in the keyword {degrees}. This option can be used
|
||||
in conjunction with "compute coord_atom"_compute_coord_atom.html to
|
||||
calculate the ten Wolde's criterion to identify crystal-like particles
|
||||
(see "ten Wolde et al."_#tenWolde96).
|
||||
|
||||
The value of {Ql} is set to zero for atoms not in the
|
||||
specified compute group, as well as for atoms that have less than
|
||||
{nnn} neighbors within the distance cutoff.
|
||||
|
@ -98,6 +107,12 @@ the neighbor list.
|
|||
This compute calculates a per-atom array with {nlvalues} columns, giving the
|
||||
{Ql} values for each atom, which are real numbers on the range 0 <= {Ql} <= 1.
|
||||
|
||||
If the keyword {components} is set, then the real and imaginary parts of each
|
||||
component of (normalized) {Ybar_lm} will be added to the output array in the
|
||||
following order:
|
||||
Re({Ybar_-m}) Im({Ybar_-m}) Re({Ybar_-m+1}) Im({Ybar_-m+1}) ... Re({Ybar_m}) Im({Ybar_m}).
|
||||
This way, the per-atom array will have a total of {nlvalues}+2*(2{l}+1) columns.
|
||||
|
||||
These values can be accessed by any command that uses
|
||||
per-atom values from a compute as input. See "Section
|
||||
6.15"_Section_howto.html#howto_15 for an overview of LAMMPS output
|
||||
|
@ -117,5 +132,9 @@ The option defaults are {cutoff} = pair style cutoff, {nnn} = 12, {degrees} = 5
|
|||
|
||||
:link(Steinhardt)
|
||||
[(Steinhardt)] P. Steinhardt, D. Nelson, and M. Ronchetti, Phys. Rev. B 28, 784 (1983).
|
||||
|
||||
:link(Mickel)
|
||||
[(Mickel)] W. Mickel, S. C. Kapfer, G. E. Schroeder-Turkand, K. Mecke, J. Chem. Phys. 138, 044501 (2013).
|
||||
|
||||
:link(tenWolde96)
|
||||
[(tenWolde)] P. R. ten Wolde, M. J. Ruiz-Montero, D. Frenkel, J. Chem. Phys. 104, 9932 (1996).
|
||||
|
|
|
@ -15,6 +15,7 @@
|
|||
#include <string.h>
|
||||
#include <stdlib.h>
|
||||
#include "compute_coord_atom.h"
|
||||
#include "compute_orientorder_atom.h"
|
||||
#include "atom.h"
|
||||
#include "update.h"
|
||||
#include "modify.h"
|
||||
|
@ -29,37 +30,72 @@
|
|||
|
||||
using namespace LAMMPS_NS;
|
||||
|
||||
#define INVOKED_PERATOM 8
|
||||
|
||||
/* ---------------------------------------------------------------------- */
|
||||
|
||||
ComputeCoordAtom::ComputeCoordAtom(LAMMPS *lmp, int narg, char **arg) :
|
||||
Compute(lmp, narg, arg),
|
||||
typelo(NULL), typehi(NULL), cvec(NULL), carray(NULL)
|
||||
cstyle(NULL), id_orientorder(NULL), typelo(NULL), typehi(NULL), cvec(NULL), carray(NULL)
|
||||
{
|
||||
if (narg < 4) error->all(FLERR,"Illegal compute coord/atom command");
|
||||
if (narg < 5) error->all(FLERR,"Illegal compute coord/atom command");
|
||||
|
||||
double cutoff = force->numeric(FLERR,arg[3]);
|
||||
cutsq = cutoff*cutoff;
|
||||
int n = strlen(arg[3]) + 1;
|
||||
cstyle = new char[n];
|
||||
strcpy(cstyle,arg[3]);
|
||||
|
||||
ncol = narg-4 + 1;
|
||||
int ntypes = atom->ntypes;
|
||||
typelo = new int[ncol];
|
||||
typehi = new int[ncol];
|
||||
if (strcmp(cstyle,"cutoff") == 0) {
|
||||
|
||||
double cutoff = force->numeric(FLERR,arg[4]);
|
||||
cutsq = cutoff*cutoff;
|
||||
|
||||
ncol = narg-5 + 1;
|
||||
int ntypes = atom->ntypes;
|
||||
typelo = new int[ncol];
|
||||
typehi = new int[ncol];
|
||||
|
||||
if (narg == 5) {
|
||||
ncol = 1;
|
||||
typelo[0] = 1;
|
||||
typehi[0] = ntypes;
|
||||
} else {
|
||||
ncol = 0;
|
||||
int iarg = 5;
|
||||
while (iarg < narg) {
|
||||
force->bounds(FLERR,arg[iarg],ntypes,typelo[ncol],typehi[ncol]);
|
||||
if (typelo[ncol] > typehi[ncol])
|
||||
error->all(FLERR,"Illegal compute coord/atom command");
|
||||
ncol++;
|
||||
iarg++;
|
||||
}
|
||||
|
||||
if (narg == 4) {
|
||||
ncol = 1;
|
||||
typelo[0] = 1;
|
||||
typehi[0] = ntypes;
|
||||
} else {
|
||||
ncol = 0;
|
||||
int iarg = 4;
|
||||
while (iarg < narg) {
|
||||
force->bounds(FLERR,arg[iarg],ntypes,typelo[ncol],typehi[ncol]);
|
||||
if (typelo[ncol] > typehi[ncol])
|
||||
error->all(FLERR,"Illegal compute coord/atom command");
|
||||
ncol++;
|
||||
iarg++;
|
||||
}
|
||||
}
|
||||
|
||||
} else if (strcmp(cstyle,"orientorder") == 0) {
|
||||
|
||||
if (narg != 6) error->all(FLERR,"Illegal compute coord/atom command");
|
||||
|
||||
n = strlen(arg[4]) + 1;
|
||||
id_orientorder = new char[n];
|
||||
strcpy(id_orientorder,arg[4]);
|
||||
|
||||
int iorientorder = modify->find_compute(id_orientorder);
|
||||
if (iorientorder < 0)
|
||||
error->all(FLERR,"Could not find compute coord/atom compute ID");
|
||||
if (strcmp(modify->compute[iorientorder]->style,"orientorder/atom") != 0)
|
||||
error->all(FLERR,"Compute coord/atom compute ID does not compute orientorder/atom");
|
||||
|
||||
threshold = force->numeric(FLERR,arg[5]);
|
||||
if (threshold <= -1.0 || threshold >= 1.0)
|
||||
error->all(FLERR,"Compute coord/atom threshold value must lie between -1 and 1");
|
||||
|
||||
ncol = 1;
|
||||
typelo = new int[ncol];
|
||||
typehi = new int[ncol];
|
||||
typelo[0] = 1;
|
||||
typehi[0] = atom->ntypes;
|
||||
|
||||
} else error->all(FLERR,"Invalid cstyle in compute coord/atom");
|
||||
|
||||
peratom_flag = 1;
|
||||
if (ncol == 1) size_peratom_cols = 0;
|
||||
|
@ -82,6 +118,17 @@ ComputeCoordAtom::~ComputeCoordAtom()
|
|||
|
||||
void ComputeCoordAtom::init()
|
||||
{
|
||||
if (strcmp(cstyle,"orientorder") == 0) {
|
||||
int iorientorder = modify->find_compute(id_orientorder);
|
||||
c_orientorder = (ComputeOrientOrderAtom*)(modify->compute[iorientorder]);
|
||||
cutsq = c_orientorder->cutsq;
|
||||
l = c_orientorder->qlcomp;
|
||||
// communicate real and imaginary 2*l+1 components of the normalized vector
|
||||
comm_forward = 2*(2*l+1);
|
||||
if (c_orientorder->iqlcomp < 0)
|
||||
error->all(FLERR,"Compute coord/atom requires components option in compute orientorder/atom be defined");
|
||||
}
|
||||
|
||||
if (force->pair == NULL)
|
||||
error->all(FLERR,"Compute coord/atom requires a pair style be defined");
|
||||
if (sqrt(cutsq) > force->pair->cutforce)
|
||||
|
@ -122,6 +169,9 @@ void ComputeCoordAtom::compute_peratom()
|
|||
|
||||
invoked_peratom = update->ntimestep;
|
||||
|
||||
// printf("Number of degrees %i components degree %i",nqlist,l);
|
||||
// printf("Particle \t %i \t Norm \t %g \n",0,norm[0][0]);
|
||||
|
||||
// grow coordination array if necessary
|
||||
|
||||
if (atom->nmax > nmax) {
|
||||
|
@ -138,6 +188,19 @@ void ComputeCoordAtom::compute_peratom()
|
|||
}
|
||||
}
|
||||
|
||||
if (strcmp(cstyle,"orientorder") == 0) {
|
||||
if (!(c_orientorder->invoked_flag & INVOKED_PERATOM)) {
|
||||
c_orientorder->compute_peratom();
|
||||
c_orientorder->invoked_flag |= INVOKED_PERATOM;
|
||||
}
|
||||
nqlist = c_orientorder->nqlist;
|
||||
int ltmp = l;
|
||||
// l = c_orientorder->qlcomp;
|
||||
if (ltmp != l) error->all(FLERR,"Debug error, ltmp != l\n");
|
||||
normv = c_orientorder->array_atom;
|
||||
comm->forward_comm_compute(this);
|
||||
}
|
||||
|
||||
// invoke full neighbor list (will copy or build if necessary)
|
||||
|
||||
neighbor->build_one(list);
|
||||
|
@ -154,65 +217,131 @@ void ComputeCoordAtom::compute_peratom()
|
|||
int *type = atom->type;
|
||||
int *mask = atom->mask;
|
||||
|
||||
if (ncol == 1) {
|
||||
for (ii = 0; ii < inum; ii++) {
|
||||
i = ilist[ii];
|
||||
if (mask[i] & groupbit) {
|
||||
xtmp = x[i][0];
|
||||
ytmp = x[i][1];
|
||||
ztmp = x[i][2];
|
||||
jlist = firstneigh[i];
|
||||
jnum = numneigh[i];
|
||||
if (strcmp(cstyle,"cutoff") == 0) {
|
||||
|
||||
n = 0;
|
||||
for (jj = 0; jj < jnum; jj++) {
|
||||
j = jlist[jj];
|
||||
j &= NEIGHMASK;
|
||||
if (ncol == 1) {
|
||||
|
||||
jtype = type[j];
|
||||
delx = xtmp - x[j][0];
|
||||
dely = ytmp - x[j][1];
|
||||
delz = ztmp - x[j][2];
|
||||
rsq = delx*delx + dely*dely + delz*delz;
|
||||
if (rsq < cutsq && jtype >= typelo[0] && jtype <= typehi[0]) n++;
|
||||
}
|
||||
for (ii = 0; ii < inum; ii++) {
|
||||
i = ilist[ii];
|
||||
if (mask[i] & groupbit) {
|
||||
xtmp = x[i][0];
|
||||
ytmp = x[i][1];
|
||||
ztmp = x[i][2];
|
||||
jlist = firstneigh[i];
|
||||
jnum = numneigh[i];
|
||||
|
||||
cvec[i] = n;
|
||||
} else cvec[i] = 0.0;
|
||||
}
|
||||
n = 0;
|
||||
for (jj = 0; jj < jnum; jj++) {
|
||||
j = jlist[jj];
|
||||
j &= NEIGHMASK;
|
||||
|
||||
} else {
|
||||
for (ii = 0; ii < inum; ii++) {
|
||||
i = ilist[ii];
|
||||
count = carray[i];
|
||||
for (m = 0; m < ncol; m++) count[m] = 0.0;
|
||||
jtype = type[j];
|
||||
delx = xtmp - x[j][0];
|
||||
dely = ytmp - x[j][1];
|
||||
delz = ztmp - x[j][2];
|
||||
rsq = delx*delx + dely*dely + delz*delz;
|
||||
if (rsq < cutsq && jtype >= typelo[0] && jtype <= typehi[0])
|
||||
n++;
|
||||
}
|
||||
|
||||
if (mask[i] & groupbit) {
|
||||
xtmp = x[i][0];
|
||||
ytmp = x[i][1];
|
||||
ztmp = x[i][2];
|
||||
jlist = firstneigh[i];
|
||||
jnum = numneigh[i];
|
||||
cvec[i] = n;
|
||||
} else cvec[i] = 0.0;
|
||||
}
|
||||
|
||||
} else {
|
||||
for (ii = 0; ii < inum; ii++) {
|
||||
i = ilist[ii];
|
||||
count = carray[i];
|
||||
for (m = 0; m < ncol; m++) count[m] = 0.0;
|
||||
|
||||
if (mask[i] & groupbit) {
|
||||
xtmp = x[i][0];
|
||||
ytmp = x[i][1];
|
||||
ztmp = x[i][2];
|
||||
jlist = firstneigh[i];
|
||||
jnum = numneigh[i];
|
||||
|
||||
|
||||
for (jj = 0; jj < jnum; jj++) {
|
||||
j = jlist[jj];
|
||||
j &= NEIGHMASK;
|
||||
for (jj = 0; jj < jnum; jj++) {
|
||||
j = jlist[jj];
|
||||
j &= NEIGHMASK;
|
||||
|
||||
jtype = type[j];
|
||||
delx = xtmp - x[j][0];
|
||||
dely = ytmp - x[j][1];
|
||||
delz = ztmp - x[j][2];
|
||||
rsq = delx*delx + dely*dely + delz*delz;
|
||||
if (rsq < cutsq) {
|
||||
for (m = 0; m < ncol; m++)
|
||||
if (jtype >= typelo[m] && jtype <= typehi[m])
|
||||
count[m] += 1.0;
|
||||
jtype = type[j];
|
||||
delx = xtmp - x[j][0];
|
||||
dely = ytmp - x[j][1];
|
||||
delz = ztmp - x[j][2];
|
||||
rsq = delx*delx + dely*dely + delz*delz;
|
||||
if (rsq < cutsq) {
|
||||
for (m = 0; m < ncol; m++)
|
||||
if (jtype >= typelo[m] && jtype <= typehi[m])
|
||||
count[m] += 1.0;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
} else if (strcmp(cstyle,"orientorder") == 0) {
|
||||
|
||||
for (ii = 0; ii < inum; ii++) {
|
||||
i = ilist[ii];
|
||||
if (mask[i] & groupbit) {
|
||||
xtmp = x[i][0];
|
||||
ytmp = x[i][1];
|
||||
ztmp = x[i][2];
|
||||
jlist = firstneigh[i];
|
||||
jnum = numneigh[i];
|
||||
|
||||
n = 0;
|
||||
for (jj = 0; jj < jnum; jj++) {
|
||||
j = jlist[jj];
|
||||
j &= NEIGHMASK;
|
||||
|
||||
delx = xtmp - x[j][0];
|
||||
dely = ytmp - x[j][1];
|
||||
delz = ztmp - x[j][2];
|
||||
rsq = delx*delx + dely*dely + delz*delz;
|
||||
if (rsq < cutsq) {
|
||||
double dot_product = 0.0;
|
||||
for (int m=0; m < 2*(2*l+1); m++) {
|
||||
dot_product += normv[i][nqlist+m]*normv[j][nqlist+m];
|
||||
}
|
||||
if (dot_product > threshold) n++;
|
||||
}
|
||||
}
|
||||
cvec[i] = n;
|
||||
} else cvec[i] = 0.0;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/* ---------------------------------------------------------------------- */
|
||||
|
||||
int ComputeCoordAtom::pack_forward_comm(int n, int *list, double *buf,
|
||||
int pbc_flag, int *pbc)
|
||||
{
|
||||
int i,m=0,j;
|
||||
for (i = 0; i < n; ++i) {
|
||||
for (j = nqlist; j < nqlist + 2*(2*l+1); ++j) {
|
||||
buf[m++] = normv[list[i]][j];
|
||||
}
|
||||
}
|
||||
|
||||
return m;
|
||||
}
|
||||
|
||||
/* ---------------------------------------------------------------------- */
|
||||
|
||||
void ComputeCoordAtom::unpack_forward_comm(int n, int first, double *buf)
|
||||
{
|
||||
int i,last,m=0,j;
|
||||
last = first + n;
|
||||
for (i = first; i < last; ++i) {
|
||||
for (j = nqlist; j < nqlist + 2*(2*l+1); ++j) {
|
||||
normv[i][j] = buf[m++];
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
/* ----------------------------------------------------------------------
|
||||
|
|
|
@ -31,6 +31,8 @@ class ComputeCoordAtom : public Compute {
|
|||
void init();
|
||||
void init_list(int, class NeighList *);
|
||||
void compute_peratom();
|
||||
int pack_forward_comm(int, int *, double *, int, int *);
|
||||
void unpack_forward_comm(int, int, double *);
|
||||
double memory_usage();
|
||||
|
||||
private:
|
||||
|
@ -41,6 +43,12 @@ class ComputeCoordAtom : public Compute {
|
|||
int *typelo,*typehi;
|
||||
double *cvec;
|
||||
double **carray;
|
||||
|
||||
class ComputeOrientOrderAtom *c_orientorder;
|
||||
char *cstyle,*id_orientorder;
|
||||
double threshold;
|
||||
double **normv;
|
||||
int nqlist,l;
|
||||
};
|
||||
|
||||
}
|
||||
|
|
|
@ -54,6 +54,7 @@ ComputeOrientOrderAtom::ComputeOrientOrderAtom(LAMMPS *lmp, int narg, char **arg
|
|||
|
||||
nnn = 12;
|
||||
cutsq = 0.0;
|
||||
qlcompflag = 0;
|
||||
|
||||
// specify which orders to request
|
||||
|
||||
|
@ -96,6 +97,20 @@ ComputeOrientOrderAtom::ComputeOrientOrderAtom(LAMMPS *lmp, int narg, char **arg
|
|||
if (qlist[iw] > qmax) qmax = qlist[iw];
|
||||
}
|
||||
iarg += nqlist;
|
||||
if (strcmp(arg[iarg],"components") == 0) {
|
||||
qlcompflag = 1;
|
||||
if (iarg+2 > narg) error->all(FLERR,"Illegal compute orientorder/atom command");
|
||||
qlcomp = force->numeric(FLERR,arg[iarg+1]);
|
||||
if (qlcomp <= 0) error->all(FLERR,"Illegal compute orientorder/atom command");
|
||||
iqlcomp = -1;
|
||||
for (int iw = 0; iw < nqlist; iw++)
|
||||
if (qlcomp == qlist[iw]) {
|
||||
iqlcomp = iw;
|
||||
break;
|
||||
}
|
||||
if (iqlcomp < 0) error->all(FLERR,"Illegal compute orientorder/atom command");
|
||||
iarg += 2;
|
||||
}
|
||||
} else if (strcmp(arg[iarg],"cutoff") == 0) {
|
||||
if (iarg+2 > narg) error->all(FLERR,"Illegal compute orientorder/atom command");
|
||||
double cutoff = force->numeric(FLERR,arg[iarg+1]);
|
||||
|
@ -105,7 +120,9 @@ ComputeOrientOrderAtom::ComputeOrientOrderAtom(LAMMPS *lmp, int narg, char **arg
|
|||
} else error->all(FLERR,"Illegal compute orientorder/atom command");
|
||||
}
|
||||
|
||||
ncol = nqlist;
|
||||
if (qlcompflag) ncol = nqlist + 2*(2*qlcomp+1);
|
||||
else ncol = nqlist;
|
||||
|
||||
peratom_flag = 1;
|
||||
size_peratom_cols = ncol;
|
||||
|
||||
|
@ -434,6 +451,7 @@ void ComputeOrientOrderAtom::calc_boop(double **rlist,
|
|||
}
|
||||
|
||||
double fac = sqrt(MY_4PI) / ncount;
|
||||
double normfac = 0.0;
|
||||
for (int iw = 0; iw < nqlist; iw++) {
|
||||
int n = qlist[iw];
|
||||
double qm_sum = 0.0;
|
||||
|
@ -443,6 +461,18 @@ void ComputeOrientOrderAtom::calc_boop(double **rlist,
|
|||
// qnm_r[iw][m]*qnm_r[iw][m] + qnm_i[iw][m]*qnm_i[iw][m]);
|
||||
}
|
||||
qn[iw] = fac * sqrt(qm_sum / (2*n+1));
|
||||
if (qlcompflag && iqlcomp == iw) normfac = 1.0/sqrt(qm_sum);
|
||||
|
||||
}
|
||||
|
||||
// output of the complex vector
|
||||
|
||||
if (qlcompflag) {
|
||||
int j = nqlist;
|
||||
for(int m = 0; m < 2*qlcomp+1; m++) {
|
||||
qn[j++] = qnm_r[iqlcomp][m] * normfac;
|
||||
qn[j++] = qnm_i[iqlcomp][m] * normfac;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
|
|
@ -32,6 +32,10 @@ class ComputeOrientOrderAtom : public Compute {
|
|||
void init_list(int, class NeighList *);
|
||||
void compute_peratom();
|
||||
double memory_usage();
|
||||
double cutsq;
|
||||
int iqlcomp, qlcomp, qlcompflag;
|
||||
int *qlist;
|
||||
int nqlist;
|
||||
|
||||
private:
|
||||
int nmax,maxneigh,ncol,nnn;
|
||||
|
@ -39,11 +43,8 @@ class ComputeOrientOrderAtom : public Compute {
|
|||
double *distsq;
|
||||
int *nearest;
|
||||
double **rlist;
|
||||
int *qlist;
|
||||
int nqlist;
|
||||
int qmax;
|
||||
double **qnarray;
|
||||
double cutsq;
|
||||
double **qnm_r;
|
||||
double **qnm_i;
|
||||
|
||||
|
|
Loading…
Reference in New Issue