git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@3592 f3b2605a-c512-4ea7-a41b-209d697bcdaa

This commit is contained in:
sjplimp 2009-12-21 17:27:08 +00:00
parent 6b656f965e
commit 94fcde12ac
8 changed files with 507 additions and 6 deletions

View File

@ -346,12 +346,13 @@ of each style or click on the style itself for a full description:
each style or click on the style itself for a full description:
</P>
<DIV ALIGN=center><TABLE BORDER=1 >
<TR ALIGN="center"><TD ><A HREF = "compute_angle_local.html">angle/local</A></TD><TD ><A HREF = "compute_bond_local.html">bond/local</A></TD><TD ><A HREF = "compute_cna_atom.html">cna/atom</A></TD><TD ><A HREF = "compute_com.html">com</A></TD><TD ><A HREF = "compute_coord_atom.html">coord/atom</A></TD><TD ><A HREF = "compute_damage_atom.html">damage/atom</A></TD></TR>
<TR ALIGN="center"><TD ><A HREF = "compute_dihedral_local.html">dihedral/local</A></TD><TD ><A HREF = "compute_displace_atom.html">displace/atom</A></TD><TD ><A HREF = "compute_erotate_asphere.html">erotate/asphere</A></TD><TD ><A HREF = "compute_erotate_sphere.html">erotate/sphere</A></TD><TD ><A HREF = "compute_event_displace.html">event/displace</A></TD><TD ><A HREF = "compute_group_group.html">group/group</A></TD></TR>
<TR ALIGN="center"><TD ><A HREF = "compute_gyration.html">gyration</A></TD><TD ><A HREF = "compute_heat_flux.html">heat/flux</A></TD><TD ><A HREF = "compute_improper_local.html">improper/local</A></TD><TD ><A HREF = "compute_ke.html">ke</A></TD><TD ><A HREF = "compute_ke_atom.html">ke/atom</A></TD><TD ><A HREF = "compute_msd.html">msd</A></TD></TR>
<TR ALIGN="center"><TD ><A HREF = "compute_pe.html">pe</A></TD><TD ><A HREF = "compute_pe_atom.html">pe/atom</A></TD><TD ><A HREF = "compute_pressure.html">pressure</A></TD><TD ><A HREF = "compute_property_atom.html">property/atom</A></TD><TD ><A HREF = "compute_property_local.html">property/local</A></TD><TD ><A HREF = "compute_rdf.html">rdf</A></TD></TR>
<TR ALIGN="center"><TD ><A HREF = "compute_reduce.html">reduce</A></TD><TD ><A HREF = "compute_reduce.html">reduce/region</A></TD><TD ><A HREF = "compute_stress_atom.html">stress/atom</A></TD><TD ><A HREF = "compute_temp.html">temp</A></TD><TD ><A HREF = "compute_temp_asphere.html">temp/asphere</A></TD><TD ><A HREF = "compute_temp_com.html">temp/com</A></TD></TR>
<TR ALIGN="center"><TD ><A HREF = "compute_temp_deform.html">temp/deform</A></TD><TD ><A HREF = "compute_temp_partial.html">temp/partial</A></TD><TD ><A HREF = "compute_temp_profile.html">temp/profile</A></TD><TD ><A HREF = "compute_temp_ramp.html">temp/ramp</A></TD><TD ><A HREF = "compute_temp_region.html">temp/region</A></TD><TD ><A HREF = "compute_temp_sphere.html">temp/sphere</A>
<TR ALIGN="center"><TD ><A HREF = "compute_angle_local.html">angle/local</A></TD><TD ><A HREF = "compute_bond_local.html">bond/local</A></TD><TD ><A HREF = "compute_cna_atom.html">cna/atom</A></TD><TD ><A HREF = "compute_com.html">com</A></TD><TD ><A HREF = "compute_com_molecule.html">com/molecule</A></TD><TD ><A HREF = "compute_coord_atom.html">coord/atom</A></TD></TR>
<TR ALIGN="center"><TD ><A HREF = "compute_damage_atom.html">damage/atom</A></TD><TD ><A HREF = "compute_dihedral_local.html">dihedral/local</A></TD><TD ><A HREF = "compute_displace_atom.html">displace/atom</A></TD><TD ><A HREF = "compute_erotate_asphere.html">erotate/asphere</A></TD><TD ><A HREF = "compute_erotate_sphere.html">erotate/sphere</A></TD><TD ><A HREF = "compute_event_displace.html">event/displace</A></TD></TR>
<TR ALIGN="center"><TD ><A HREF = "compute_group_group.html">group/group</A></TD><TD ><A HREF = "compute_gyration.html">gyration</A></TD><TD ><A HREF = "compute_gyration_molecule.html">gyration/molecule</A></TD><TD ><A HREF = "compute_heat_flux.html">heat/flux</A></TD><TD ><A HREF = "compute_improper_local.html">improper/local</A></TD><TD ><A HREF = "compute_ke.html">ke</A></TD></TR>
<TR ALIGN="center"><TD ><A HREF = "compute_ke_atom.html">ke/atom</A></TD><TD ><A HREF = "compute_msd.html">msd</A></TD><TD ><A HREF = "compute_msd_molecule.html">msd/molecule</A></TD><TD ><A HREF = "compute_pe.html">pe</A></TD><TD ><A HREF = "compute_pe_atom.html">pe/atom</A></TD><TD ><A HREF = "compute_pressure.html">pressure</A></TD></TR>
<TR ALIGN="center"><TD ><A HREF = "compute_property_atom.html">property/atom</A></TD><TD ><A HREF = "compute_property_local.html">property/local</A></TD><TD ><A HREF = "compute_rdf.html">rdf</A></TD><TD ><A HREF = "compute_reduce.html">reduce</A></TD><TD ><A HREF = "compute_reduce.html">reduce/region</A></TD><TD ><A HREF = "compute_stress_atom.html">stress/atom</A></TD></TR>
<TR ALIGN="center"><TD ><A HREF = "compute_temp.html">temp</A></TD><TD ><A HREF = "compute_temp_asphere.html">temp/asphere</A></TD><TD ><A HREF = "compute_temp_com.html">temp/com</A></TD><TD ><A HREF = "compute_temp_deform.html">temp/deform</A></TD><TD ><A HREF = "compute_temp_partial.html">temp/partial</A></TD><TD ><A HREF = "compute_temp_profile.html">temp/profile</A></TD></TR>
<TR ALIGN="center"><TD ><A HREF = "compute_temp_ramp.html">temp/ramp</A></TD><TD ><A HREF = "compute_temp_region.html">temp/region</A></TD><TD ><A HREF = "compute_temp_sphere.html">temp/sphere</A>
</TD></TR></TABLE></DIV>
<P>These are compute styles contributed by users, which can be used if

View File

@ -171,6 +171,7 @@ available in LAMMPS:
<LI><A HREF = "compute_centro_atom.html">centro/atom</A> - centro-symmetry parameter for each atom
<LI><A HREF = "compute_cna_atom.html">cna/atom</A> - common neighbor analysis (CNA) for each atom
<LI><A HREF = "compute_com.html">com</A> - center-of-mass of group of atoms
<LI><A HREF = "compute_com_molecule.html">com/molecule</A> - center-of-mass for each molecule
<LI><A HREF = "compute_coord_atom.html">coord/atom</A> - coordination number for each atom
<LI><A HREF = "compute_damage_atom.html">damage/atom</A> - Peridynamic damage for each atom
<LI><A HREF = "compute_dihedral_local.html">dihedral/local</A> - angle of each dihedral
@ -180,11 +181,13 @@ available in LAMMPS:
<LI><A HREF = "compute_event_displace.html">event/displace</A> - detect event on atom displacement
<LI><A HREF = "compute_group_group.html">group/group</A> - energy/force between two groups of atoms
<LI><A HREF = "compute_gyration.html">gyration</A> - radius of gyration of group of atoms
<LI><A HREF = "compute_gyration_molecule.html">gyration/molecule</A> - radius of gyration for each molecule
<LI><A HREF = "compute_heat_flux.html">heat/flux</A> - heat flux through a group of atoms
<LI><A HREF = "compute_improper_local.html">improper/local</A> - angle of each improper
<LI><A HREF = "compute_ke.html">ke</A> - translational kinetic energy
<LI><A HREF = "compute_ke_atom.html">ke/atom</A> - kinetic energy for each atom
<LI><A HREF = "compute_msd.html">msd</A> - mean-squared displacement of group of atoms
<LI><A HREF = "compute_msd_molecule.html">msd/molecule</A> - mean-squared displacement for each molecule
<LI><A HREF = "compute_pe.html">pe</A> - potential energy
<LI><A HREF = "compute_pe_atom.html">pe/atom</A> - potential energy for each atom
<LI><A HREF = "compute_pressure.html">pressure</A> - total pressure and pressure tensor

View File

@ -0,0 +1,80 @@
<HTML>
<CENTER><A HREF = "http://lammps.sandia.gov">LAMMPS WWW Site</A> - <A HREF = "Manual.html">LAMMPS Documentation</A> - <A HREF = "Section_commands.html#comm">LAMMPS Commands</A>
</CENTER>
<HR>
<H3>compute com/molecule command
</H3>
<P><B>Syntax:</B>
</P>
<PRE>compute ID group-ID com/molecule
</PRE>
<UL><LI>ID, group-ID are documented in <A HREF = "compute.html">compute</A> command
<LI>com/molecule = style name of this compute command
</UL>
<P><B>Examples:</B>
</P>
<PRE>compute 1 fluid com/molecule
</PRE>
<P><B>Description:</B>
</P>
<P>Define a computation that calculates the center-of-mass of individual
molecules. The calculation includes all effects due to atoms passing
thru periodic boundaries.
</P>
<P>The x,y,z coordinate of the center-of-mass for a particular molecule
is only computed if one or more of its atoms are in the specified
group. Normally all atoms in the molecule should be in the group,
however this is not required. LAMMPS will warn you if this is not the
case. Only atoms in the group contribute to the center-of-mass
calculation for the molecule.
</P>
<P>Let Nmolecules be the number of molecules for which the center-of-mass
is calculated. If not all molecules have atoms in the group, then the
molecule with the lowest ID is the first of the Nmolecules. The next
lowest ID is the second, etc, up to Nmolecules.
</P>
<P>IMPORTANT NOTE: The coordinates of an atom contribute to the
molecule's center-of-mass in "unwrapped" form, by using the image
flags associated with each atom. See the <A HREF = "dump.html">dump custom</A>
command for a discussion of "unwrapped" coordinates. See the Atoms
section of the <A HREF = "read_data.html">read_data</A> command for a discussion of
image flags and how they are set for each atom. You can reset the
image flags (e.g. to 0) before invoking this compute by using the <A HREF = "set.html">set
image</A> command.
</P>
<P>IMPORTANT NOTE: If an atom is part of a rigid body (see the <A HREF = "fix_rigid.html">fix
rigid</A> command), it's periodic image flags are altered,
and its contribution to the center-of-mass may not reflect its true
contribution. See the <A HREF = "fix_rigid.html">fix rigid</A> command for details.
Thus, to compute the center-of-mass of rigid bodies as they cross
periodic boundaries, you will need to post-process a <A HREF = "dump.html">dump
file</A> containing coordinates of the atoms in the bodies.
</P>
<P><B>Output info:</B>
</P>
<P>This compute calculates a global array with the number of rows =
Nmolecules and the number of columns = 3 for the x,y,z center-of-mass
coordinates of each molecule. These values can be accessed by any
command that uses global array values from a compute as input. See
<A HREF = "Section_howto.html#4_15">this section</A> for an overview of LAMMPS
output options.
</P>
<P>The array values are "intensive", meaning they are independent of the
number of atoms in the simulation.
</P>
<P><B>Restrictions:</B> none
</P>
<P><B>Related commands:</B>
</P>
<P><A HREF = "compute_com.html">compute com</A>
</P>
<P><B>Default:</B> none
</P>
</HTML>

View File

@ -0,0 +1,75 @@
"LAMMPS WWW Site"_lws - "LAMMPS Documentation"_ld - "LAMMPS Commands"_lc :c
:link(lws,http://lammps.sandia.gov)
:link(ld,Manual.html)
:link(lc,Section_commands.html#comm)
:line
compute com/molecule command :h3
[Syntax:]
compute ID group-ID com/molecule :pre
ID, group-ID are documented in "compute"_compute.html command
com/molecule = style name of this compute command :ul
[Examples:]
compute 1 fluid com/molecule :pre
[Description:]
Define a computation that calculates the center-of-mass of individual
molecules. The calculation includes all effects due to atoms passing
thru periodic boundaries.
The x,y,z coordinate of the center-of-mass for a particular molecule
is only computed if one or more of its atoms are in the specified
group. Normally all atoms in the molecule should be in the group,
however this is not required. LAMMPS will warn you if this is not the
case. Only atoms in the group contribute to the center-of-mass
calculation for the molecule.
Let Nmolecules be the number of molecules for which the center-of-mass
is calculated. If not all molecules have atoms in the group, then the
molecule with the lowest ID is the first of the Nmolecules. The next
lowest ID is the second, etc, up to Nmolecules.
IMPORTANT NOTE: The coordinates of an atom contribute to the
molecule's center-of-mass in "unwrapped" form, by using the image
flags associated with each atom. See the "dump custom"_dump.html
command for a discussion of "unwrapped" coordinates. See the Atoms
section of the "read_data"_read_data.html command for a discussion of
image flags and how they are set for each atom. You can reset the
image flags (e.g. to 0) before invoking this compute by using the "set
image"_set.html command.
IMPORTANT NOTE: If an atom is part of a rigid body (see the "fix
rigid"_fix_rigid.html command), it's periodic image flags are altered,
and its contribution to the center-of-mass may not reflect its true
contribution. See the "fix rigid"_fix_rigid.html command for details.
Thus, to compute the center-of-mass of rigid bodies as they cross
periodic boundaries, you will need to post-process a "dump
file"_dump.html containing coordinates of the atoms in the bodies.
[Output info:]
This compute calculates a global array with the number of rows =
Nmolecules and the number of columns = 3 for the x,y,z center-of-mass
coordinates of each molecule. These values can be accessed by any
command that uses global array values from a compute as input. See
"this section"_Section_howto.html#4_15 for an overview of LAMMPS
output options.
The array values are "intensive", meaning they are independent of the
number of atoms in the simulation.
[Restrictions:] none
[Related commands:]
"compute com"_compute_com.html
[Default:] none

View File

@ -0,0 +1,78 @@
<HTML>
<CENTER><A HREF = "http://lammps.sandia.gov">LAMMPS WWW Site</A> - <A HREF = "Manual.html">LAMMPS Documentation</A> - <A HREF = "Section_commands.html#comm">LAMMPS Commands</A>
</CENTER>
<HR>
<H3>compute gyration/molecule command
</H3>
<P><B>Syntax:</B>
</P>
<PRE>compute ID group-ID gyration/molecule
</PRE>
<UL><LI>ID, group-ID are documented in <A HREF = "compute.html">compute</A> command
<LI>gyration/molecule = style name of this compute command
</UL>
<P><B>Examples:</B>
</P>
<PRE>compute 1 molecule gyration/molecule
</PRE>
<P><B>Description:</B>
</P>
<P>Define a computation that calculates the radius of gyration Rg of
individual molecules. The calculation includes all effects due to
atoms passing thru periodic boundaries.
</P>
<P>Rg is a measure of the size of a molecule, and is computed by this
formula
</P>
<CENTER><IMG SRC = "Eqs/compute_gyration.jpg">
</CENTER>
<P>where M is the total mass of the molecule and Rcm is the center-of-mass
position of the molecule.
</P>
<P>Rg for a particular molecule is only computed if one or more of its
atoms are in the specified group. Normally all atoms in the molecule
should be in the group, however this is not required. LAMMPS will
warn you if this is not the case. Only atoms in the group contribute
to the Rg calculation for the molecule.
</P>
<P>Let Nmolecules be the number of molecules for which Rg is calculated.
If not all molecules have atoms in the group, then the molecule with
the lowest ID is the first of the Nmolecules. The next lowest ID is
the second, etc, up to Nmolecules.
</P>
<P>IMPORTANT NOTE: The coordinates of an atom contribute to Rg in
"unwrapped" form, by using the image flags associated with each atom.
See the <A HREF = "dump.html">dump custom</A> command for a discussion of
"unwrapped" coordinates. See the Atoms section of the
<A HREF = "read_data.html">read_data</A> command for a discussion of image flags and
how they are set for each atom. You can reset the image flags
(e.g. to 0) before invoking this compute by using the <A HREF = "set.html">set
image</A> command.
</P>
<P><B>Output info:</B>
</P>
<P>This compute calculates a global vector of Rg values with the number
of elements = Nmolecules. These values can be used by any command
that uses a global vector values from a compute as input. See <A HREF = "Section_howto.html#4_15">this
section</A> for an overview of LAMMPS output
options.
</P>
<P>The vector values calculated by this compute are "intensive", meaning
it is independent of the number of atoms in the simulation.
</P>
<P><B>Restrictions:</B> none
</P>
<P><B>Related commands:</B> none
</P>
<P><A HREF = "compute_gyration.html">compute gyration</A>
</P>
<P><B>Default:</B> none
</P>
</HTML>

View File

@ -0,0 +1,73 @@
"LAMMPS WWW Site"_lws - "LAMMPS Documentation"_ld - "LAMMPS Commands"_lc :c
:link(lws,http://lammps.sandia.gov)
:link(ld,Manual.html)
:link(lc,Section_commands.html#comm)
:line
compute gyration/molecule command :h3
[Syntax:]
compute ID group-ID gyration/molecule :pre
ID, group-ID are documented in "compute"_compute.html command
gyration/molecule = style name of this compute command :ul
[Examples:]
compute 1 molecule gyration/molecule :pre
[Description:]
Define a computation that calculates the radius of gyration Rg of
individual molecules. The calculation includes all effects due to
atoms passing thru periodic boundaries.
Rg is a measure of the size of a molecule, and is computed by this
formula
:c,image(Eqs/compute_gyration.jpg)
where M is the total mass of the molecule and Rcm is the center-of-mass
position of the molecule.
Rg for a particular molecule is only computed if one or more of its
atoms are in the specified group. Normally all atoms in the molecule
should be in the group, however this is not required. LAMMPS will
warn you if this is not the case. Only atoms in the group contribute
to the Rg calculation for the molecule.
Let Nmolecules be the number of molecules for which Rg is calculated.
If not all molecules have atoms in the group, then the molecule with
the lowest ID is the first of the Nmolecules. The next lowest ID is
the second, etc, up to Nmolecules.
IMPORTANT NOTE: The coordinates of an atom contribute to Rg in
"unwrapped" form, by using the image flags associated with each atom.
See the "dump custom"_dump.html command for a discussion of
"unwrapped" coordinates. See the Atoms section of the
"read_data"_read_data.html command for a discussion of image flags and
how they are set for each atom. You can reset the image flags
(e.g. to 0) before invoking this compute by using the "set
image"_set.html command.
[Output info:]
This compute calculates a global vector of Rg values with the number
of elements = Nmolecules. These values can be used by any command
that uses a global vector values from a compute as input. See "this
section"_Section_howto.html#4_15 for an overview of LAMMPS output
options.
The vector values calculated by this compute are "intensive", meaning
it is independent of the number of atoms in the simulation.
[Restrictions:] none
[Related commands:] none
"compute gyration"_compute_gyration.html
[Default:] none

View File

@ -0,0 +1,98 @@
<HTML>
<CENTER><A HREF = "http://lammps.sandia.gov">LAMMPS WWW Site</A> - <A HREF = "Manual.html">LAMMPS Documentation</A> - <A HREF = "Section_commands.html#comm">LAMMPS Commands</A>
</CENTER>
<HR>
<H3>compute msd/molecule command
</H3>
<P><B>Syntax:</B>
</P>
<PRE>compute ID group-ID msd/molecule
</PRE>
<UL><LI>ID, group-ID are documented in <A HREF = "compute.html">compute</A> command
<LI>msd/molecule = style name of this compute command
</UL>
<P><B>Examples:</B>
</P>
<PRE>compute 1 all msd/molecule
</PRE>
<P><B>Description:</B>
</P>
<P>Define a computation that calculates the mean-squared displacement
(MSD) of individual molecules. The calculation includes all effects
due to atoms passing thru periodic boundaries.
</P>
<P>Four quantites are calculated by this compute for each molecule. The
first 3 quantities are the squared dx,dy,dz displacements of the
center-of-mass. The 4th component is the total squared displacement,
i.e. (dx*dx + dy*dy + dz*dz) of the center-of-mass.
</P>
<P>The slope of the mean-squared displacement (MSD) versus time is
proportional to the diffusion coefficient of the diffusing molecules.
</P>
<P>The displacement of the center-of-mass of the molecule is from its
original center-of-mass position at the time the compute command was
issued.
</P>
<P>The MSD for a particular molecule is only computed if one or more of
its atoms are in the specified group. Normally all atoms in the
molecule should be in the group, however this is not required. LAMMPS
will warn you if this is not the case. Only atoms in the group
contribute to the center-of-mass calculation for the molecule, which
is used to caculate its initial and current position.
</P>
<P>Let Nmolecules be the number of molecules for which the MSD is
calculated. If not all molecules have atoms in the group, then the
molecule with the lowest ID is the first of the Nmolecules. The next
lowest ID is the second, etc, up to Nmolecules.
</P>
<P>IMPORTANT NOTE: The initial coordinates of each molecule are stored in
"unwrapped" form, by using the image flags associated with each atom.
See the <A HREF = "dump.html">dump custom</A> command for a discussion of
"unwrapped" coordinates. See the Atoms section of the
<A HREF = "read_data.html">read_data</A> command for a discussion of image flags and
how they are set for each atom. You can reset the image flags
(e.g. to 0) before invoking this compute by using the <A HREF = "set.html">set
image</A> command.
</P>
<P>IMPORTANT NOTE: If an atom is part of a rigid body (see the <A HREF = "fix_rigid.html">fix
rigid</A> command), it's periodic image flags are altered,
and its contribution to the MSD may not reflect its true contribution.
See the <A HREF = "fix_rigid.html">fix rigid</A> command for details. Thus, to
compute the MSD of rigid bodies as they cross periodic boundaries, you
will need to post-process a <A HREF = "dump.html">dump file</A> containing
coordinates of the atoms in the bodies.
</P>
<P>IMPORTANT NOTE: Unlike the <A HREF = "compute_msd.html">compute msd</A> command,
this compute does not store the initial center-of-mass coorindates of
its molecules in a restart file. Thus you cannot continue the MSD per
molecule calculation when running from a <A HREF = "read_restart.html">restart
file</A>.
</P>
<P><B>Output info:</B>
</P>
<P>This compute calculates a global array with the number of rows =
Nmolecules and the number of columns = 4 for dx,dy,dz and the total
displacement. These values can be accessed by any command that uses
global array values from a compute as input. See <A HREF = "Section_howto.html#4_15">this
section</A> for an overview of LAMMPS output
options.
</P>
<P>The array values are "intensive", meaning they are independent of the
number of atoms in the simulation.
</P>
<P><B>Restrictions:</B> none
</P>
<P><B>Related commands:</B>
</P>
<P><A HREF = "compute_msd.html">compute msd</A>
</P>
<P><B>Default:</B> none
</P>
</HTML>

View File

@ -0,0 +1,93 @@
"LAMMPS WWW Site"_lws - "LAMMPS Documentation"_ld - "LAMMPS Commands"_lc :c
:link(lws,http://lammps.sandia.gov)
:link(ld,Manual.html)
:link(lc,Section_commands.html#comm)
:line
compute msd/molecule command :h3
[Syntax:]
compute ID group-ID msd/molecule :pre
ID, group-ID are documented in "compute"_compute.html command
msd/molecule = style name of this compute command :ul
[Examples:]
compute 1 all msd/molecule :pre
[Description:]
Define a computation that calculates the mean-squared displacement
(MSD) of individual molecules. The calculation includes all effects
due to atoms passing thru periodic boundaries.
Four quantites are calculated by this compute for each molecule. The
first 3 quantities are the squared dx,dy,dz displacements of the
center-of-mass. The 4th component is the total squared displacement,
i.e. (dx*dx + dy*dy + dz*dz) of the center-of-mass.
The slope of the mean-squared displacement (MSD) versus time is
proportional to the diffusion coefficient of the diffusing molecules.
The displacement of the center-of-mass of the molecule is from its
original center-of-mass position at the time the compute command was
issued.
The MSD for a particular molecule is only computed if one or more of
its atoms are in the specified group. Normally all atoms in the
molecule should be in the group, however this is not required. LAMMPS
will warn you if this is not the case. Only atoms in the group
contribute to the center-of-mass calculation for the molecule, which
is used to caculate its initial and current position.
Let Nmolecules be the number of molecules for which the MSD is
calculated. If not all molecules have atoms in the group, then the
molecule with the lowest ID is the first of the Nmolecules. The next
lowest ID is the second, etc, up to Nmolecules.
IMPORTANT NOTE: The initial coordinates of each molecule are stored in
"unwrapped" form, by using the image flags associated with each atom.
See the "dump custom"_dump.html command for a discussion of
"unwrapped" coordinates. See the Atoms section of the
"read_data"_read_data.html command for a discussion of image flags and
how they are set for each atom. You can reset the image flags
(e.g. to 0) before invoking this compute by using the "set
image"_set.html command.
IMPORTANT NOTE: If an atom is part of a rigid body (see the "fix
rigid"_fix_rigid.html command), it's periodic image flags are altered,
and its contribution to the MSD may not reflect its true contribution.
See the "fix rigid"_fix_rigid.html command for details. Thus, to
compute the MSD of rigid bodies as they cross periodic boundaries, you
will need to post-process a "dump file"_dump.html containing
coordinates of the atoms in the bodies.
IMPORTANT NOTE: Unlike the "compute msd"_compute_msd.html command,
this compute does not store the initial center-of-mass coorindates of
its molecules in a restart file. Thus you cannot continue the MSD per
molecule calculation when running from a "restart
file"_read_restart.html.
[Output info:]
This compute calculates a global array with the number of rows =
Nmolecules and the number of columns = 4 for dx,dy,dz and the total
displacement. These values can be accessed by any command that uses
global array values from a compute as input. See "this
section"_Section_howto.html#4_15 for an overview of LAMMPS output
options.
The array values are "intensive", meaning they are independent of the
number of atoms in the simulation.
[Restrictions:] none
[Related commands:]
"compute msd"_compute_msd.html
[Default:] none