git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@9064 f3b2605a-c512-4ea7-a41b-209d697bcdaa

This commit is contained in:
sjplimp 2012-11-14 16:08:42 +00:00
parent d4b7bd9ec4
commit 92f7702140
4 changed files with 44 additions and 12 deletions

View File

@ -91,9 +91,17 @@ number.
swaps is computed by the fix and can be output. Dividing this
quantity by time and the cross-sectional area of the simulation box
yields a heat flux. The ratio of heat flux to the slope of the
temperature profile is the thermal conductivity of the fluid,
in appopriate units. See the <A HREF = "#Muller-Plathe">Muller-Plathe paper</A> for
details.
temperature profile is proportional to the thermal conductivity of the
fluid, in appropriate units. See the <A HREF = "#Muller-Plathe">Muller-Plathe
paper</A> for details.
</P>
<P>IMPORTANT NOTE: If your system is periodic in the direction of the
heat flux, then the flux is going in 2 directions. This means the
effective heat flux in one direction is reduced by a factor of 2. You
will see this in the equations for thermal conductivity (kappa) in the
Muller-Plathe paper. LAMMPS is simply tallying kinetic energy which
does not account for whether or not your system is periodic; you must
use the value appropriately to yield a kappa for your system.
</P>
<P>IMPORTANT NOTE: After equilibration, if the temperature gradient you
observe is not linear, then you are likely swapping energy too

View File

@ -81,9 +81,17 @@ As described below, the total kinetic energy transferred by these
swaps is computed by the fix and can be output. Dividing this
quantity by time and the cross-sectional area of the simulation box
yields a heat flux. The ratio of heat flux to the slope of the
temperature profile is the thermal conductivity of the fluid,
in appopriate units. See the "Muller-Plathe paper"_#Muller-Plathe for
details.
temperature profile is proportional to the thermal conductivity of the
fluid, in appropriate units. See the "Muller-Plathe
paper"_#Muller-Plathe for details.
IMPORTANT NOTE: If your system is periodic in the direction of the
heat flux, then the flux is going in 2 directions. This means the
effective heat flux in one direction is reduced by a factor of 2. You
will see this in the equations for thermal conductivity (kappa) in the
Muller-Plathe paper. LAMMPS is simply tallying kinetic energy which
does not account for whether or not your system is periodic; you must
use the value appropriately to yield a kappa for your system.
IMPORTANT NOTE: After equilibration, if the temperature gradient you
observe is not linear, then you are likely swapping energy too

View File

@ -92,9 +92,17 @@ sense. This is why <I>Nbin</I> is restricted to being an even number.
swaps is computed by the fix and can be output. Dividing this
quantity by time and the cross-sectional area of the simulation box
yields a momentum flux. The ratio of momentum flux to the slope of
the shear velocity profile is the viscosity of the fluid, in
appopriate units. See the <A HREF = "#Muller-Plathe">Muller-Plathe paper</A> for
details.
the shear velocity profile is proportional to the viscosity of the
fluid, in appropriate units. See the <A HREF = "#Muller-Plathe">Muller-Plathe
paper</A> for details.
</P>
<P>IMPORTANT NOTE: If your system is periodic in the direction of the
momentum flux, then the flux is going in 2 directions. This means the
effective momentum flux in one direction is reduced by a factor of 2.
You will see this in the equations for viscosity in the Muller-Plathe
paper. LAMMPS is simply tallying momentum which does not account for
whether or not your system is periodic; you must use the value
appropriately to yield a viscosity for your system.
</P>
<P>IMPORTANT NOTE: After equilibration, if the velocity profile you
observe is not linear, then you are likely swapping momentum too

View File

@ -81,9 +81,17 @@ As described below, the total momentum transferred by these velocity
swaps is computed by the fix and can be output. Dividing this
quantity by time and the cross-sectional area of the simulation box
yields a momentum flux. The ratio of momentum flux to the slope of
the shear velocity profile is the viscosity of the fluid, in
appopriate units. See the "Muller-Plathe paper"_#Muller-Plathe for
details.
the shear velocity profile is proportional to the viscosity of the
fluid, in appropriate units. See the "Muller-Plathe
paper"_#Muller-Plathe for details.
IMPORTANT NOTE: If your system is periodic in the direction of the
momentum flux, then the flux is going in 2 directions. This means the
effective momentum flux in one direction is reduced by a factor of 2.
You will see this in the equations for viscosity in the Muller-Plathe
paper. LAMMPS is simply tallying momentum which does not account for
whether or not your system is periodic; you must use the value
appropriately to yield a viscosity for your system.
IMPORTANT NOTE: After equilibration, if the velocity profile you
observe is not linear, then you are likely swapping momentum too