removed harmonic bond and angle from repo

This commit is contained in:
cdt1802 2020-01-15 13:47:51 +00:00
parent 331fff0613
commit 902d772b85
2 changed files with 0 additions and 479 deletions

View File

@ -1,264 +0,0 @@
/* ----------------------------------------------------------------------
LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
http://lammps.sandia.gov, Sandia National Laboratories
Steve Plimpton, sjplimp@sandia.gov
Copyright (2003) Sandia Corporation. Under the terms of Contract
DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains
certain rights in this software. This software is distributed under
the GNU General Public License.
See the README file in the top-level LAMMPS directory.
------------------------------------------------------------------------- */
#include <cmath>
#include <cstdlib>
#include "angle_harmonic.h"
#include "atom.h"
#include "neighbor.h"
#include "domain.h"
#include "comm.h"
#include "force.h"
#include "math_const.h"
#include "memory.h"
#include "error.h"
using namespace LAMMPS_NS;
using namespace MathConst;
#define SMALL 0.001
/* ---------------------------------------------------------------------- */
AngleHarmonic::AngleHarmonic(LAMMPS *lmp) : Angle(lmp)
{
k = NULL;
theta0 = NULL;
}
/* ---------------------------------------------------------------------- */
AngleHarmonic::~AngleHarmonic()
{
if (allocated && !copymode) {
memory->destroy(setflag);
memory->destroy(k);
memory->destroy(theta0);
}
}
/* ---------------------------------------------------------------------- */
void AngleHarmonic::compute(int eflag, int vflag)
{
int i1,i2,i3,n,type;
double delx1,dely1,delz1,delx2,dely2,delz2;
double eangle,f1[3],f3[3];
double dtheta,tk;
double rsq1,rsq2,r1,r2,c,s,a,a11,a12,a22;
eangle = 0.0;
if (eflag || vflag) ev_setup(eflag,vflag);
else evflag = 0;
double **x = atom->x;
double **f = atom->f;
int **anglelist = neighbor->anglelist;
int nanglelist = neighbor->nanglelist;
int nlocal = atom->nlocal;
int newton_bond = force->newton_bond;
for (n = 0; n < nanglelist; n++) {
i1 = anglelist[n][0];
i2 = anglelist[n][1];
i3 = anglelist[n][2];
type = anglelist[n][3];
// 1st bond
delx1 = x[i1][0] - x[i2][0];
dely1 = x[i1][1] - x[i2][1];
delz1 = x[i1][2] - x[i2][2];
rsq1 = delx1*delx1 + dely1*dely1 + delz1*delz1;
r1 = sqrt(rsq1);
// 2nd bond
delx2 = x[i3][0] - x[i2][0];
dely2 = x[i3][1] - x[i2][1];
delz2 = x[i3][2] - x[i2][2];
rsq2 = delx2*delx2 + dely2*dely2 + delz2*delz2;
r2 = sqrt(rsq2);
// angle (cos and sin)
c = delx1*delx2 + dely1*dely2 + delz1*delz2;
c /= r1*r2;
if (c > 1.0) c = 1.0;
if (c < -1.0) c = -1.0;
s = sqrt(1.0 - c*c);
if (s < SMALL) s = SMALL;
s = 1.0/s;
// force & energy
dtheta = acos(c) - theta0[type];
tk = k[type] * dtheta;
if (eflag) eangle = tk*dtheta;
a = -2.0 * tk * s;
a11 = a*c / rsq1;
a12 = -a / (r1*r2);
a22 = a*c / rsq2;
f1[0] = a11*delx1 + a12*delx2;
f1[1] = a11*dely1 + a12*dely2;
f1[2] = a11*delz1 + a12*delz2;
f3[0] = a22*delx2 + a12*delx1;
f3[1] = a22*dely2 + a12*dely1;
f3[2] = a22*delz2 + a12*delz1;
// apply force to each of 3 atoms
if (newton_bond || i1 < nlocal) {
f[i1][0] += f1[0];
f[i1][1] += f1[1];
f[i1][2] += f1[2];
}
if (newton_bond || i2 < nlocal) {
f[i2][0] -= f1[0] + f3[0];
f[i2][1] -= f1[1] + f3[1];
f[i2][2] -= f1[2] + f3[2];
}
if (newton_bond || i3 < nlocal) {
f[i3][0] += f3[0];
f[i3][1] += f3[1];
f[i3][2] += f3[2];
}
if (evflag) ev_tally(i1,i2,i3,nlocal,newton_bond,eangle,f1,f3,
delx1,dely1,delz1,delx2,dely2,delz2);
}
}
/* ---------------------------------------------------------------------- */
void AngleHarmonic::allocate()
{
allocated = 1;
int n = atom->nangletypes;
memory->create(k,n+1,"angle:k");
memory->create(theta0,n+1,"angle:theta0");
memory->create(setflag,n+1,"angle:setflag");
for (int i = 1; i <= n; i++) setflag[i] = 0;
}
/* ----------------------------------------------------------------------
set coeffs for one or more types
------------------------------------------------------------------------- */
void AngleHarmonic::coeff(int narg, char **arg)
{
if (narg != 3) error->all(FLERR,"Incorrect args for angle coefficients");
if (!allocated) allocate();
int ilo,ihi;
force->bounds(FLERR,arg[0],atom->nangletypes,ilo,ihi);
double k_one = force->numeric(FLERR,arg[1]);
double theta0_one = force->numeric(FLERR,arg[2]);
// convert theta0 from degrees to radians
int count = 0;
for (int i = ilo; i <= ihi; i++) {
k[i] = k_one;
theta0[i] = theta0_one/180.0 * MY_PI;
setflag[i] = 1;
count++;
}
if (count == 0) error->all(FLERR,"Incorrect args for angle coefficients");
}
/* ---------------------------------------------------------------------- */
double AngleHarmonic::equilibrium_angle(int i)
{
return theta0[i];
}
/* ----------------------------------------------------------------------
proc 0 writes out coeffs to restart file
------------------------------------------------------------------------- */
void AngleHarmonic::write_restart(FILE *fp)
{
fwrite(&k[1],sizeof(double),atom->nangletypes,fp);
fwrite(&theta0[1],sizeof(double),atom->nangletypes,fp);
}
/* ----------------------------------------------------------------------
proc 0 reads coeffs from restart file, bcasts them
------------------------------------------------------------------------- */
void AngleHarmonic::read_restart(FILE *fp)
{
allocate();
if (comm->me == 0) {
fread(&k[1],sizeof(double),atom->nangletypes,fp);
fread(&theta0[1],sizeof(double),atom->nangletypes,fp);
}
MPI_Bcast(&k[1],atom->nangletypes,MPI_DOUBLE,0,world);
MPI_Bcast(&theta0[1],atom->nangletypes,MPI_DOUBLE,0,world);
for (int i = 1; i <= atom->nangletypes; i++) setflag[i] = 1;
}
/* ----------------------------------------------------------------------
proc 0 writes to data file
------------------------------------------------------------------------- */
void AngleHarmonic::write_data(FILE *fp)
{
for (int i = 1; i <= atom->nangletypes; i++)
fprintf(fp,"%d %g %g\n",i,k[i],theta0[i]/MY_PI*180.0);
}
/* ---------------------------------------------------------------------- */
double AngleHarmonic::single(int type, int i1, int i2, int i3)
{
double **x = atom->x;
double delx1 = x[i1][0] - x[i2][0];
double dely1 = x[i1][1] - x[i2][1];
double delz1 = x[i1][2] - x[i2][2];
domain->minimum_image(delx1,dely1,delz1);
double r1 = sqrt(delx1*delx1 + dely1*dely1 + delz1*delz1);
double delx2 = x[i3][0] - x[i2][0];
double dely2 = x[i3][1] - x[i2][1];
double delz2 = x[i3][2] - x[i2][2];
domain->minimum_image(delx2,dely2,delz2);
double r2 = sqrt(delx2*delx2 + dely2*dely2 + delz2*delz2);
double c = delx1*delx2 + dely1*dely2 + delz1*delz2;
c /= r1*r2;
if (c > 1.0) c = 1.0;
if (c < -1.0) c = -1.0;
double dtheta = acos(c) - theta0[type];
double tk = k[type] * dtheta;
return tk*dtheta;
}

View File

@ -1,215 +0,0 @@
/* ----------------------------------------------------------------------
LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
http://lammps.sandia.gov, Sandia National Laboratories
Steve Plimpton, sjplimp@sandia.gov
Copyright (2003) Sandia Corporation. Under the terms of Contract
DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains
certain rights in this software. This software is distributed under
the GNU General Public License.
See the README file in the top-level LAMMPS directory.
------------------------------------------------------------------------- */
#include <cmath>
#include <cstdlib>
#include <cstring>
#include "bond_harmonic.h"
#include "atom.h"
#include "neighbor.h"
#include "domain.h"
#include "comm.h"
#include "force.h"
#include "memory.h"
#include "error.h"
using namespace LAMMPS_NS;
/* ---------------------------------------------------------------------- */
BondHarmonic::BondHarmonic(LAMMPS *lmp) : Bond(lmp)
{
reinitflag = 1;
}
/* ---------------------------------------------------------------------- */
BondHarmonic::~BondHarmonic()
{
if (allocated && !copymode) {
memory->destroy(setflag);
memory->destroy(k);
memory->destroy(r0);
}
}
/* ---------------------------------------------------------------------- */
void BondHarmonic::compute(int eflag, int vflag)
{
int i1,i2,n,type;
double delx,dely,delz,ebond,fbond;
double rsq,r,dr,rk;
ebond = 0.0;
if (eflag || vflag) ev_setup(eflag,vflag);
else evflag = 0;
double **x = atom->x;
double **f = atom->f;
int **bondlist = neighbor->bondlist;
int nbondlist = neighbor->nbondlist;
int nlocal = atom->nlocal;
int newton_bond = force->newton_bond;
for (n = 0; n < nbondlist; n++) {
i1 = bondlist[n][0];
i2 = bondlist[n][1];
type = bondlist[n][2];
delx = x[i1][0] - x[i2][0];
dely = x[i1][1] - x[i2][1];
delz = x[i1][2] - x[i2][2];
rsq = delx*delx + dely*dely + delz*delz;
r = sqrt(rsq);
dr = r - r0[type];
rk = k[type] * dr;
// force & energy
if (r > 0.0) fbond = -2.0*rk/r;
else fbond = 0.0;
if (eflag) ebond = rk*dr;
// apply force to each of 2 atoms
if (newton_bond || i1 < nlocal) {
f[i1][0] += delx*fbond;
f[i1][1] += dely*fbond;
f[i1][2] += delz*fbond;
}
if (newton_bond || i2 < nlocal) {
f[i2][0] -= delx*fbond;
f[i2][1] -= dely*fbond;
f[i2][2] -= delz*fbond;
}
if (evflag) ev_tally(i1,i2,nlocal,newton_bond,ebond,fbond,delx,dely,delz);
}
}
/* ---------------------------------------------------------------------- */
void BondHarmonic::allocate()
{
allocated = 1;
int n = atom->nbondtypes;
memory->create(k,n+1,"bond:k");
memory->create(r0,n+1,"bond:r0");
memory->create(setflag,n+1,"bond:setflag");
for (int i = 1; i <= n; i++) setflag[i] = 0;
}
/* ----------------------------------------------------------------------
set coeffs for one or more types
------------------------------------------------------------------------- */
void BondHarmonic::coeff(int narg, char **arg)
{
if (narg != 3) error->all(FLERR,"Incorrect args for bond coefficients");
if (!allocated) allocate();
int ilo,ihi;
force->bounds(FLERR,arg[0],atom->nbondtypes,ilo,ihi);
double k_one = force->numeric(FLERR,arg[1]);
double r0_one = force->numeric(FLERR,arg[2]);
int count = 0;
for (int i = ilo; i <= ihi; i++) {
k[i] = k_one;
r0[i] = r0_one;
setflag[i] = 1;
count++;
}
if (count == 0) error->all(FLERR,"Incorrect args for bond coefficients");
}
/* ----------------------------------------------------------------------
return an equilbrium bond length
------------------------------------------------------------------------- */
double BondHarmonic::equilibrium_distance(int i)
{
return r0[i];
}
/* ----------------------------------------------------------------------
proc 0 writes out coeffs to restart file
------------------------------------------------------------------------- */
void BondHarmonic::write_restart(FILE *fp)
{
fwrite(&k[1],sizeof(double),atom->nbondtypes,fp);
fwrite(&r0[1],sizeof(double),atom->nbondtypes,fp);
}
/* ----------------------------------------------------------------------
proc 0 reads coeffs from restart file, bcasts them
------------------------------------------------------------------------- */
void BondHarmonic::read_restart(FILE *fp)
{
allocate();
if (comm->me == 0) {
fread(&k[1],sizeof(double),atom->nbondtypes,fp);
fread(&r0[1],sizeof(double),atom->nbondtypes,fp);
}
MPI_Bcast(&k[1],atom->nbondtypes,MPI_DOUBLE,0,world);
MPI_Bcast(&r0[1],atom->nbondtypes,MPI_DOUBLE,0,world);
for (int i = 1; i <= atom->nbondtypes; i++) setflag[i] = 1;
}
/* ----------------------------------------------------------------------
proc 0 writes to data file
------------------------------------------------------------------------- */
void BondHarmonic::write_data(FILE *fp)
{
for (int i = 1; i <= atom->nbondtypes; i++)
fprintf(fp,"%d %g %g\n",i,k[i],r0[i]);
}
/* ---------------------------------------------------------------------- */
double BondHarmonic::single(int type, double rsq, int /*i*/, int /*j*/,
double &fforce)
{
double r = sqrt(rsq);
double dr = r - r0[type];
double rk = k[type] * dr;
fforce = 0;
if (r > 0.0) fforce = -2.0*rk/r;
return rk*dr;
}
/* ----------------------------------------------------------------------
Return ptr to internal members upon request.
------------------------------------------------------------------------ */
void *BondHarmonic::extract( char *str, int &dim )
{
dim = 1;
if( strcmp(str,"kappa")==0) return (void*) k;
if( strcmp(str,"r0")==0) return (void*) r0;
return NULL;
}