git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@9071 f3b2605a-c512-4ea7-a41b-209d697bcdaa

This commit is contained in:
sjplimp 2012-11-14 22:52:26 +00:00
parent 81cddd4f1d
commit 8da7579a57
2 changed files with 824 additions and 0 deletions

743
src/pair_mie_cut.cpp Normal file
View File

@ -0,0 +1,743 @@
/* ----------------------------------------------------------------------
LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
http://lammps.sandia.gov, Sandia National Laboratories
Steve Plimpton, sjplimp@sandia.gov
Copyright (2003) Sandia Corporation. Under the terms of Contract
DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains
certain rights in this software. This software is distributed under
the GNU General Public License.
See the README file in the top-level LAMMPS directory.
------------------------------------------------------------------------- */
/* ----------------------------------------------------------------------
Contributing author: Cassiano Aimoli (aimoli@gmail.com)
------------------------------------------------------------------------- */
#include "math.h"
#include "stdio.h"
#include "stdlib.h"
#include "string.h"
#include "pair_mie_cut.h"
#include "atom.h"
#include "comm.h"
#include "force.h"
#include "neighbor.h"
#include "neigh_list.h"
#include "neigh_request.h"
#include "update.h"
#include "integrate.h"
#include "respa.h"
#include "math_const.h"
#include "memory.h"
#include "error.h"
using namespace LAMMPS_NS;
using namespace MathConst;
/* ---------------------------------------------------------------------- */
PairMIECut::PairMIECut(LAMMPS *lmp) : Pair(lmp)
{
respa_enable = 1;
}
/* ---------------------------------------------------------------------- */
PairMIECut::~PairMIECut()
{
if (allocated) {
memory->destroy(setflag);
memory->destroy(cutsq);
memory->destroy(cut);
memory->destroy(epsilon);
memory->destroy(sigma);
memory->destroy(gamR);
memory->destroy(gamA);
memory->destroy(Cmie);
memory->destroy(mie1);
memory->destroy(mie2);
memory->destroy(mie3);
memory->destroy(mie4);
memory->destroy(offset);
}
}
/* ---------------------------------------------------------------------- */
void PairMIECut::compute(int eflag, int vflag)
{
int i,j,ii,jj,inum,jnum,itype,jtype;
double xtmp,ytmp,ztmp,delx,dely,delz,evdwl,fpair;
double rsq,r2inv,rgamR,rgamA,forcemie,factor_mie;
int *ilist,*jlist,*numneigh,**firstneigh;
evdwl = 0.0;
if (eflag || vflag) ev_setup(eflag,vflag);
else evflag = vflag_fdotr = 0;
double **x = atom->x;
double **f = atom->f;
int *type = atom->type;
int nlocal = atom->nlocal;
double *special_mie = force->special_lj;
int newton_pair = force->newton_pair;
inum = list->inum;
ilist = list->ilist;
numneigh = list->numneigh;
firstneigh = list->firstneigh;
// loop over neighbors of my atoms
for (ii = 0; ii < inum; ii++) {
i = ilist[ii];
xtmp = x[i][0];
ytmp = x[i][1];
ztmp = x[i][2];
itype = type[i];
jlist = firstneigh[i];
jnum = numneigh[i];
for (jj = 0; jj < jnum; jj++) {
j = jlist[jj];
factor_mie = special_mie[sbmask(j)];
j &= NEIGHMASK;
delx = xtmp - x[j][0];
dely = ytmp - x[j][1];
delz = ztmp - x[j][2];
rsq = delx*delx + dely*dely + delz*delz;
jtype = type[j];
if (rsq < cutsq[itype][jtype]) {
r2inv = 1.0/rsq;
rgamA = pow(r2inv,(gamA[itype][jtype]/2.0));
rgamR = pow(r2inv,(gamR[itype][jtype]/2.0));
forcemie = (mie1[itype][jtype]*rgamR - mie2[itype][jtype]*rgamA);
fpair = factor_mie*forcemie*r2inv;
f[i][0] += delx*fpair;
f[i][1] += dely*fpair;
f[i][2] += delz*fpair;
if (newton_pair || j < nlocal) {
f[j][0] -= delx*fpair;
f[j][1] -= dely*fpair;
f[j][2] -= delz*fpair;
}
if (eflag) {
evdwl = (mie3[itype][jtype]*rgamR - mie4[itype][jtype]*rgamA) -
offset[itype][jtype];
evdwl *= factor_mie;
}
if (evflag) ev_tally(i,j,nlocal,newton_pair,
evdwl,0.0,fpair,delx,dely,delz);
}
}
}
if (vflag_fdotr) virial_fdotr_compute();
}
/* ---------------------------------------------------------------------- */
void PairMIECut::compute_inner()
{
int i,j,ii,jj,inum,jnum,itype,jtype;
double xtmp,ytmp,ztmp,delx,dely,delz,fpair;
double rsq,r2inv,rgamR,rgamA,forcemie,factor_mie,rsw;
int *ilist,*jlist,*numneigh,**firstneigh;
double **x = atom->x;
double **f = atom->f;
int *type = atom->type;
int nlocal = atom->nlocal;
double *special_mie = force->special_lj;
int newton_pair = force->newton_pair;
inum = listinner->inum;
ilist = listinner->ilist;
numneigh = listinner->numneigh;
firstneigh = listinner->firstneigh;
double cut_out_on = cut_respa[0];
double cut_out_off = cut_respa[1];
double cut_out_diff = cut_out_off - cut_out_on;
double cut_out_on_sq = cut_out_on*cut_out_on;
double cut_out_off_sq = cut_out_off*cut_out_off;
// loop over neighbors of my atoms
for (ii = 0; ii < inum; ii++) {
i = ilist[ii];
xtmp = x[i][0];
ytmp = x[i][1];
ztmp = x[i][2];
itype = type[i];
jlist = firstneigh[i];
jnum = numneigh[i];
for (jj = 0; jj < jnum; jj++) {
j = jlist[jj];
factor_mie = special_mie[sbmask(j)];
j &= NEIGHMASK;
delx = xtmp - x[j][0];
dely = ytmp - x[j][1];
delz = ztmp - x[j][2];
rsq = delx*delx + dely*dely + delz*delz;
if (rsq < cut_out_off_sq) {
r2inv = 1.0/rsq;
rgamA = pow(r2inv,(gamA[itype][jtype]/2.0));
rgamR = pow(r2inv,(gamR[itype][jtype]/2.0));
jtype = type[j];
forcemie = (mie1[itype][jtype]*rgamR - mie2[itype][jtype]*rgamA);
fpair = factor_mie*forcemie*r2inv;
if (rsq > cut_out_on_sq) {
rsw = (sqrt(rsq) - cut_out_on)/cut_out_diff;
fpair *= 1.0 - rsw*rsw*(3.0 - 2.0*rsw);
}
f[i][0] += delx*fpair;
f[i][1] += dely*fpair;
f[i][2] += delz*fpair;
if (newton_pair || j < nlocal) {
f[j][0] -= delx*fpair;
f[j][1] -= dely*fpair;
f[j][2] -= delz*fpair;
}
}
}
}
}
/* ---------------------------------------------------------------------- */
void PairMIECut::compute_middle()
{
int i,j,ii,jj,inum,jnum,itype,jtype;
double xtmp,ytmp,ztmp,delx,dely,delz,fpair;
double rsq,r2inv,rgamR,rgamA,forcemie,factor_mie,rsw;
int *ilist,*jlist,*numneigh,**firstneigh;
double **x = atom->x;
double **f = atom->f;
int *type = atom->type;
int nlocal = atom->nlocal;
double *special_mie = force->special_lj;
int newton_pair = force->newton_pair;
inum = listmiddle->inum;
ilist = listmiddle->ilist;
numneigh = listmiddle->numneigh;
firstneigh = listmiddle->firstneigh;
double cut_in_off = cut_respa[0];
double cut_in_on = cut_respa[1];
double cut_out_on = cut_respa[2];
double cut_out_off = cut_respa[3];
double cut_in_diff = cut_in_on - cut_in_off;
double cut_out_diff = cut_out_off - cut_out_on;
double cut_in_off_sq = cut_in_off*cut_in_off;
double cut_in_on_sq = cut_in_on*cut_in_on;
double cut_out_on_sq = cut_out_on*cut_out_on;
double cut_out_off_sq = cut_out_off*cut_out_off;
// loop over neighbors of my atoms
for (ii = 0; ii < inum; ii++) {
i = ilist[ii];
xtmp = x[i][0];
ytmp = x[i][1];
ztmp = x[i][2];
itype = type[i];
jlist = firstneigh[i];
jnum = numneigh[i];
for (jj = 0; jj < jnum; jj++) {
j = jlist[jj];
factor_mie = special_mie[sbmask(j)];
j &= NEIGHMASK;
delx = xtmp - x[j][0];
dely = ytmp - x[j][1];
delz = ztmp - x[j][2];
rsq = delx*delx + dely*dely + delz*delz;
if (rsq < cut_out_off_sq && rsq > cut_in_off_sq) {
r2inv = 1.0/rsq;
rgamA = pow(r2inv,(gamA[itype][jtype]/2.0));
rgamR = pow(r2inv,(gamR[itype][jtype]/2.0));
jtype = type[j];
forcemie = (mie1[itype][jtype]*rgamR - mie2[itype][jtype]*rgamA);
fpair = factor_mie*forcemie*r2inv;
if (rsq < cut_in_on_sq) {
rsw = (sqrt(rsq) - cut_in_off)/cut_in_diff;
fpair *= rsw*rsw*(3.0 - 2.0*rsw);
}
if (rsq > cut_out_on_sq) {
rsw = (sqrt(rsq) - cut_out_on)/cut_out_diff;
fpair *= 1.0 + rsw*rsw*(2.0*rsw - 3.0);
}
f[i][0] += delx*fpair;
f[i][1] += dely*fpair;
f[i][2] += delz*fpair;
if (newton_pair || j < nlocal) {
f[j][0] -= delx*fpair;
f[j][1] -= dely*fpair;
f[j][2] -= delz*fpair;
}
}
}
}
}
/* ---------------------------------------------------------------------- */
void PairMIECut::compute_outer(int eflag, int vflag)
{
int i,j,ii,jj,inum,jnum,itype,jtype;
double xtmp,ytmp,ztmp,delx,dely,delz,evdwl,fpair;
double rsq,r2inv,rgamR,rgamA,forcemie,factor_mie,rsw;
int *ilist,*jlist,*numneigh,**firstneigh;
evdwl = 0.0;
if (eflag || vflag) ev_setup(eflag,vflag);
else evflag = 0;
double **x = atom->x;
double **f = atom->f;
int *type = atom->type;
int nlocal = atom->nlocal;
double *special_mie = force->special_lj;
int newton_pair = force->newton_pair;
inum = listouter->inum;
ilist = listouter->ilist;
numneigh = listouter->numneigh;
firstneigh = listouter->firstneigh;
double cut_in_off = cut_respa[2];
double cut_in_on = cut_respa[3];
double cut_in_diff = cut_in_on - cut_in_off;
double cut_in_off_sq = cut_in_off*cut_in_off;
double cut_in_on_sq = cut_in_on*cut_in_on;
// loop over neighbors of my atoms
for (ii = 0; ii < inum; ii++) {
i = ilist[ii];
xtmp = x[i][0];
ytmp = x[i][1];
ztmp = x[i][2];
itype = type[i];
jlist = firstneigh[i];
jnum = numneigh[i];
for (jj = 0; jj < jnum; jj++) {
j = jlist[jj];
factor_mie = special_mie[sbmask(j)];
j &= NEIGHMASK;
delx = xtmp - x[j][0];
dely = ytmp - x[j][1];
delz = ztmp - x[j][2];
rsq = delx*delx + dely*dely + delz*delz;
jtype = type[j];
if (rsq < cutsq[itype][jtype]) {
if (rsq > cut_in_off_sq) {
r2inv = 1.0/rsq;
rgamA = pow(r2inv,(gamA[itype][jtype]/2.0));
rgamR = pow(r2inv,(gamR[itype][jtype]/2.0));
forcemie = (mie1[itype][jtype]*rgamR - mie2[itype][jtype]*rgamA);
fpair = factor_mie*forcemie*r2inv;
if (rsq < cut_in_on_sq) {
rsw = (sqrt(rsq) - cut_in_off)/cut_in_diff;
fpair *= rsw*rsw*(3.0 - 2.0*rsw);
}
f[i][0] += delx*fpair;
f[i][1] += dely*fpair;
f[i][2] += delz*fpair;
if (newton_pair || j < nlocal) {
f[j][0] -= delx*fpair;
f[j][1] -= dely*fpair;
f[j][2] -= delz*fpair;
}
}
if (eflag) {
r2inv = 1.0/rsq;
rgamA = pow(r2inv,(gamA[itype][jtype]/2.0));
rgamR = pow(r2inv,(gamR[itype][jtype]/2.0));
evdwl = (mie3[itype][jtype]*rgamR - mie4[itype][jtype]*rgamA) -
offset[itype][jtype];
evdwl *= factor_mie;
}
if (vflag) {
if (rsq <= cut_in_off_sq) {
r2inv = 1.0/rsq;
rgamA = pow(r2inv,(gamA[itype][jtype]/2.0));
rgamR = pow(r2inv,(gamR[itype][jtype]/2.0));
forcemie = (mie1[itype][jtype]*rgamR - mie2[itype][jtype]*rgamA);
fpair = factor_mie*forcemie*r2inv;
} else if (rsq < cut_in_on_sq)
fpair = factor_mie*forcemie*r2inv;
}
if (evflag) ev_tally(i,j,nlocal,newton_pair,
evdwl,0.0,fpair,delx,dely,delz);
}
}
}
}
/* ----------------------------------------------------------------------
allocate all arrays
------------------------------------------------------------------------- */
void PairMIECut::allocate()
{
allocated = 1;
int n = atom->ntypes;
memory->create(setflag,n+1,n+1,"pair:setflag");
for (int i = 1; i <= n; i++)
for (int j = i; j <= n; j++)
setflag[i][j] = 0;
memory->create(cutsq,n+1,n+1,"pair:cutsq");
memory->create(cut,n+1,n+1,"pair:cut");
memory->create(epsilon,n+1,n+1,"pair:epsilon");
memory->create(sigma,n+1,n+1,"pair:sigma");
memory->create(gamR,n+1,n+1,"pair:gamR");
memory->create(gamA,n+1,n+1,"pair:gamA");
memory->create(Cmie,n+1,n+1,"pair:Cmie");
memory->create(mie1,n+1,n+1,"pair:mie1");
memory->create(mie2,n+1,n+1,"pair:mie2");
memory->create(mie3,n+1,n+1,"pair:mie3");
memory->create(mie4,n+1,n+1,"pair:mie4");
memory->create(offset,n+1,n+1,"pair:offset");
}
/* ----------------------------------------------------------------------
global settings
------------------------------------------------------------------------- */
void PairMIECut::settings(int narg, char **arg)
{
if (narg != 1) error->all(FLERR,"Illegal pair_style command");
cut_global = force->numeric(arg[0]);
// reset cutoffs that have been explicitly set
if (allocated) {
int i,j;
for (i = 1; i <= atom->ntypes; i++)
for (j = i+1; j <= atom->ntypes; j++)
if (setflag[i][j]) cut[i][j] = cut_global;
}
}
/* ----------------------------------------------------------------------
set coeffs for one or more type pairs
------------------------------------------------------------------------- */
void PairMIECut::coeff(int narg, char **arg)
{
if (narg < 6 || narg > 7)
error->all(FLERR,"Incorrect args for pair coefficients");
if (!allocated) allocate();
int ilo,ihi,jlo,jhi;
force->bounds(arg[0],atom->ntypes,ilo,ihi);
force->bounds(arg[1],atom->ntypes,jlo,jhi);
double epsilon_one = force->numeric(arg[2]);
double sigma_one = force->numeric(arg[3]);
double gamR_one = force->numeric(arg[4]);
double gamA_one = force->numeric(arg[5]);
double cut_one = cut_global;
if (narg == 7) cut_one = force->numeric(arg[6]);
int count = 0;
for (int i = ilo; i <= ihi; i++) {
for (int j = MAX(jlo,i); j <= jhi; j++) {
epsilon[i][j] = epsilon_one;
sigma[i][j] = sigma_one;
gamR[i][j] = gamR_one;
gamA[i][j] = gamA_one;
cut[i][j] = cut_one;
setflag[i][j] = 1;
count++;
}
}
if (count == 0) error->all(FLERR,"Incorrect args for pair coefficients");
}
/* ----------------------------------------------------------------------
init specific to this pair style
------------------------------------------------------------------------- */
void PairMIECut::init_style()
{
// request regular or rRESPA neighbor lists
int irequest;
if (update->whichflag == 1 && strstr(update->integrate_style,"respa")) {
int respa = 0;
if (((Respa *) update->integrate)->level_inner >= 0) respa = 1;
if (((Respa *) update->integrate)->level_middle >= 0) respa = 2;
if (respa == 0) irequest = neighbor->request(this);
else if (respa == 1) {
irequest = neighbor->request(this);
neighbor->requests[irequest]->id = 1;
neighbor->requests[irequest]->half = 0;
neighbor->requests[irequest]->respainner = 1;
irequest = neighbor->request(this);
neighbor->requests[irequest]->id = 3;
neighbor->requests[irequest]->half = 0;
neighbor->requests[irequest]->respaouter = 1;
} else {
irequest = neighbor->request(this);
neighbor->requests[irequest]->id = 1;
neighbor->requests[irequest]->half = 0;
neighbor->requests[irequest]->respainner = 1;
irequest = neighbor->request(this);
neighbor->requests[irequest]->id = 2;
neighbor->requests[irequest]->half = 0;
neighbor->requests[irequest]->respamiddle = 1;
irequest = neighbor->request(this);
neighbor->requests[irequest]->id = 3;
neighbor->requests[irequest]->half = 0;
neighbor->requests[irequest]->respaouter = 1;
}
} else irequest = neighbor->request(this);
// set rRESPA cutoffs
if (strstr(update->integrate_style,"respa") &&
((Respa *) update->integrate)->level_inner >= 0)
cut_respa = ((Respa *) update->integrate)->cutoff;
else cut_respa = NULL;
}
/* ----------------------------------------------------------------------
neighbor callback to inform pair style of neighbor list to use
regular or rRESPA
------------------------------------------------------------------------- */
void PairMIECut::init_list(int id, NeighList *ptr)
{
if (id == 0) list = ptr;
else if (id == 1) listinner = ptr;
else if (id == 2) listmiddle = ptr;
else if (id == 3) listouter = ptr;
}
/* ----------------------------------------------------------------------
init for one type pair i,j and corresponding j,i
------------------------------------------------------------------------- */
double PairMIECut::init_one(int i, int j)
{
if (setflag[i][j] == 0) {
epsilon[i][j] = mix_energy(epsilon[i][i],epsilon[j][j],
sigma[i][i],sigma[j][j]);
sigma[i][j] = mix_distance(sigma[i][i],sigma[j][j]);
gamR[i][j] = mix_distance(gamR[i][i],gamR[j][j]);
gamA[i][j] = mix_distance(gamA[i][i],gamA[j][j]);
cut[i][j] = mix_distance(cut[i][i],cut[j][j]);
}
gamA[j][i] = gamA[i][j];
gamR[j][i] = gamR[i][j];
Cmie[i][j] = (gamR[i][j]/(gamR[i][j]-gamA[i][j]) *
pow((gamR[i][j]/gamA[i][j]),
(gamA[i][j]/(gamR[i][j]-gamA[i][j]))));
mie1[i][j] = Cmie[i][j] * gamR[i][j]* epsilon[i][j] *
pow(sigma[i][j],gamR[i][j]);
mie2[i][j] = Cmie[i][j] * gamA[i][j] * epsilon[i][j] *
pow(sigma[i][j],gamA[i][j]);
mie3[i][j] = Cmie[i][j] * epsilon[i][j] * pow(sigma[i][j],gamR[i][j]);
mie4[i][j] = Cmie[i][j] * epsilon[i][j] * pow(sigma[i][j],gamA[i][j]);
if (offset_flag) {
double ratio = sigma[i][j] / cut[i][j];
offset[i][j] = Cmie[i][j] * epsilon[i][j] *
(pow(ratio,gamR[i][j]) - pow(ratio,gamA[i][j]));
} else offset[i][j] = 0.0;
mie1[j][i] = mie1[i][j];
mie2[j][i] = mie2[i][j];
mie3[j][i] = mie3[i][j];
mie4[j][i] = mie4[i][j];
offset[j][i] = offset[i][j];
// check interior rRESPA cutoff
if (cut_respa && cut[i][j] < cut_respa[3])
error->all(FLERR,"Pair cutoff < Respa interior cutoff");
// compute I,J contribution to long-range tail correction
// count total # of atoms of type I and J via Allreduce
if (tail_flag) {
int *type = atom->type;
int nlocal = atom->nlocal;
double count[2],all[2];
count[0] = count[1] = 0.0;
for (int k = 0; k < nlocal; k++) {
if (type[k] == i) count[0] += 1.0;
if (type[k] == j) count[1] += 1.0;
}
MPI_Allreduce(count,all,2,MPI_DOUBLE,MPI_SUM,world);
double siggamA = pow(sigma[i][j],gamA[i][j]);
double siggamR = pow(sigma[i][j],gamR[i][j]);
double rcgamA = pow(cut[i][j],(gamA[i][j]-3.0));
double rcgamR = pow(cut[i][j],(gamR[i][j]-3.0));
etail_ij = Cmie[i][j]*2.0*MY_PI*all[0]*all[1]*epsilon[i][j]*
(siggamR/((gamR[i][j]-3.0)*rcgamR)-siggamA/((gamA[i][j]-3.0)*rcgamA));
ptail_ij = Cmie[i][j]*2.0*MY_PI*all[0]*all[1]*epsilon[i][j]/3.0*
((gamR[i][j]/(gamR[i][j]-3.0))*siggamR/rcgamR-
(gamA[i][j]/(gamA[i][j]-3.0))*siggamA/rcgamA);
}
return cut[i][j];
}
/* ----------------------------------------------------------------------
proc 0 writes to restart file
------------------------------------------------------------------------- */
void PairMIECut::write_restart(FILE *fp)
{
write_restart_settings(fp);
int i,j;
for (i = 1; i <= atom->ntypes; i++)
for (j = i; j <= atom->ntypes; j++) {
fwrite(&setflag[i][j],sizeof(int),1,fp);
if (setflag[i][j]) {
fwrite(&epsilon[i][j],sizeof(double),1,fp);
fwrite(&sigma[i][j],sizeof(double),1,fp);
fwrite(&gamR[i][j],sizeof(double),1,fp);
fwrite(&gamA[i][j],sizeof(double),1,fp);
fwrite(&cut[i][j],sizeof(double),1,fp);
}
}
}
/* ----------------------------------------------------------------------
proc 0 reads from restart file, bcasts
------------------------------------------------------------------------- */
void PairMIECut::read_restart(FILE *fp)
{
read_restart_settings(fp);
allocate();
int i,j;
int me = comm->me;
for (i = 1; i <= atom->ntypes; i++)
for (j = i; j <= atom->ntypes; j++) {
if (me == 0) fread(&setflag[i][j],sizeof(int),1,fp);
MPI_Bcast(&setflag[i][j],1,MPI_INT,0,world);
if (setflag[i][j]) {
if (me == 0) {
fread(&epsilon[i][j],sizeof(double),1,fp);
fread(&sigma[i][j],sizeof(double),1,fp);
fread(&gamR[i][j],sizeof(double),1,fp);
fread(&gamA[i][j],sizeof(double),1,fp);
fread(&cut[i][j],sizeof(double),1,fp);
}
MPI_Bcast(&epsilon[i][j],1,MPI_DOUBLE,0,world);
MPI_Bcast(&sigma[i][j],1,MPI_DOUBLE,0,world);
MPI_Bcast(&gamR[i][j],1,MPI_DOUBLE,0,world);
MPI_Bcast(&gamA[i][j],1,MPI_DOUBLE,0,world);
MPI_Bcast(&cut[i][j],1,MPI_DOUBLE,0,world);
}
}
}
/* ----------------------------------------------------------------------
proc 0 writes to restart file
------------------------------------------------------------------------- */
void PairMIECut::write_restart_settings(FILE *fp)
{
fwrite(&cut_global,sizeof(double),1,fp);
fwrite(&offset_flag,sizeof(int),1,fp);
fwrite(&mix_flag,sizeof(int),1,fp);
fwrite(&tail_flag,sizeof(int),1,fp);
}
/* ----------------------------------------------------------------------
proc 0 reads from restart file, bcasts
------------------------------------------------------------------------- */
void PairMIECut::read_restart_settings(FILE *fp)
{
int me = comm->me;
if (me == 0) {
fread(&cut_global,sizeof(double),1,fp);
fread(&offset_flag,sizeof(int),1,fp);
fread(&mix_flag,sizeof(int),1,fp);
fread(&tail_flag,sizeof(int),1,fp);
}
MPI_Bcast(&cut_global,1,MPI_DOUBLE,0,world);
MPI_Bcast(&offset_flag,1,MPI_INT,0,world);
MPI_Bcast(&mix_flag,1,MPI_INT,0,world);
MPI_Bcast(&tail_flag,1,MPI_INT,0,world);
}
/* ---------------------------------------------------------------------- */
double PairMIECut::single(int i, int j, int itype, int jtype, double rsq,
double factor_coul, double factor_mie,
double &fforce)
{
double r2inv,rgamR,rgamA,forcemie,phimie;
r2inv = 1.0/rsq;
rgamA = pow(r2inv,(gamA[itype][jtype]/2.0));
rgamR = pow(r2inv,(gamR[itype][jtype]/2.0));
forcemie = (mie1[itype][jtype]*rgamR - mie2[itype][jtype]*rgamA);
fforce = factor_mie*forcemie*r2inv;
phimie = (mie3[itype][jtype]*rgamR - mie4[itype][jtype]*rgamA) -
offset[itype][jtype];
return factor_mie*phimie;
}
/* ---------------------------------------------------------------------- */
void *PairMIECut::extract(const char *str, int &dim)
{
dim = 2;
if (strcmp(str,"epsilon") == 0) return (void *) epsilon;
if (strcmp(str,"sigma") == 0) return (void *) sigma;
if (strcmp(str,"gamR") == 0) return (void *) gamR;
if (strcmp(str,"gamA") == 0) return (void *) gamA;
return NULL;
}

81
src/pair_mie_cut.h Normal file
View File

@ -0,0 +1,81 @@
/* ----------------------------------------------------------------------
LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
http://lammps.sandia.gov, Sandia National Laboratories
Steve Plimpton, sjplimp@sandia.gov
Copyright (2003) Sandia Corporation. Under the terms of Contract
DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains
certain rights in this software. This software is distributed under
the GNU General Public License.
See the README file in the top-level LAMMPS directory.
------------------------------------------------------------------------- */
#ifdef PAIR_CLASS
PairStyle(mie/cut,PairMIECut)
#else
#ifndef LMP_PAIR_MIE_CUT_H
#define LMP_PAIR_MIE_CUT_H
#include "pair.h"
namespace LAMMPS_NS {
class PairMIECut : public Pair {
public:
PairMIECut(class LAMMPS *);
virtual ~PairMIECut();
virtual void compute(int, int);
void settings(int, char **);
void coeff(int, char **);
void init_style();
void init_list(int, class NeighList *);
double init_one(int, int);
void write_restart(FILE *);
void read_restart(FILE *);
void write_restart_settings(FILE *);
void read_restart_settings(FILE *);
double single(int, int, int, int, double, double, double, double &);
void *extract(const char *, int &);
void compute_inner();
void compute_middle();
void compute_outer(int, int);
protected:
double cut_global;
double **cut;
double **epsilon,**sigma;
double **gamR,**gamA,**Cmie;
double **mie1,**mie2,**mie3,**mie4,**offset;
double *cut_respa;
void allocate();
};
}
#endif
#endif
/* ERROR/WARNING messages:
E: Illegal ... command
Self-explanatory. Check the input script syntax and compare to the
documentation for the command. You can use -echo screen as a
command-line option when running LAMMPS to see the offending line.
E: Incorrect args for pair coefficients
Self-explanatory. Check the input script or data file.
E: Pair cutoff < Respa interior cutoff
One or more pairwise cutoffs are too short to use with the specified
rRESPA cutoffs.
*/