forked from lijiext/lammps
small tweaks
This commit is contained in:
parent
11cda92ebb
commit
8d427b54ec
|
@ -53,8 +53,7 @@ The colloid-colloid interaction energy is given by
|
|||
\right] \\
|
||||
& \\
|
||||
U_R = & \frac{A_{cc}}{37800} \frac{\sigma^6}{r}
|
||||
\left[ \frac{}{} \right. \\
|
||||
&\qquad \frac{r^2-7r\left(a_1+a_2\right)+6\left(a_1^2+7a_1a_2+a_2^2\right)}
|
||||
\biggl[ \frac{r^2-7r\left(a_1+a_2\right)+6\left(a_1^2+7a_1a_2+a_2^2\right)}
|
||||
{\left(r-a_1-a_2\right)^7} \\
|
||||
&\qquad +\frac{r^2+7r\left(a_1+a_2\right)+6\left(a_1^2+7a_1a_2+a_2^2\right)}
|
||||
{\left(r+a_1+a_2\right)^7} \\
|
||||
|
@ -66,8 +65,8 @@ The colloid-colloid interaction energy is given by
|
|||
& \\
|
||||
U = & U_A + U_R, \qquad r < r_c
|
||||
|
||||
where :math:`A_{cc}` is the Hamaker constant, a\_1 and a\_2 are the
|
||||
radii of the two colloidal particles, and Rc is the cutoff. This
|
||||
where :math:`A_{cc}` is the Hamaker constant, :math:`a_1` and :math:`a_2` are the
|
||||
radii of the two colloidal particles, and :math:`r_c` is the cutoff. This
|
||||
equation results from describing each colloidal particle as an
|
||||
integrated collection of Lennard-Jones particles of size sigma and is
|
||||
derived in :ref:`(Everaers) <Everaers1>`.
|
||||
|
@ -76,12 +75,12 @@ The colloid-solvent interaction energy is given by
|
|||
|
||||
.. math::
|
||||
|
||||
U = & \frac{2 ~ a^3 ~ \sigma^3 ~ A_{cs}}{9 \left( a^2 - r^2 \right)^3}
|
||||
U = \frac{2 ~ a^3 ~ \sigma^3 ~ A_{cs}}{9 \left( a^2 - r^2 \right)^3}
|
||||
\left[ 1 - \frac{\left(5 ~ a^6+45~a^4~r^2+63~a^2~r^4+15~r^6\right) \sigma^6}
|
||||
{15 \left(a-r\right)^6 \left( a+r \right)^6} \right], \quad r < r_c
|
||||
|
||||
where :math:A_{cs}` is the Hamaker constant, a is the radius of the colloidal
|
||||
particle, and Rc is the cutoff. This formula is derived from the
|
||||
where :math:A_{cs}` is the Hamaker constant, *a* is the radius of the colloidal
|
||||
particle, and :math:`r_c` is the cutoff. This formula is derived from the
|
||||
colloid-colloid interaction, letting one of the particle sizes go to
|
||||
zero.
|
||||
|
||||
|
@ -90,16 +89,16 @@ Lennard-Jones formula
|
|||
|
||||
.. math::
|
||||
|
||||
U = & \frac{A_{ss}}{36} \left[ \left( \frac{\sigma}{r}
|
||||
U = \frac{A_{ss}}{36} \left[ \left( \frac{\sigma}{r}
|
||||
\right)^{12} - \left( \frac{ \sigma}{r} \right)^6 \right], \quad
|
||||
r < r_c
|
||||
|
||||
with :math:`A_{ss}` set appropriately, which results from letting both
|
||||
particle sizes go to zero.
|
||||
|
||||
When used in combination with :doc:`pair_style yukawa/colloid <pair_colloid>`, the two terms become the so-called
|
||||
DLVO potential, which combines electrostatic repulsion and van der
|
||||
Waals attraction.
|
||||
When used in combination with :doc:`pair_style yukawa/colloid
|
||||
<pair_colloid>`, the two terms become the so-called DLVO potential,
|
||||
which combines electrostatic repulsion and van der Waals attraction.
|
||||
|
||||
The following coefficients must be defined for each pair of atoms
|
||||
types via the :doc:`pair_coeff <pair_coeff>` command as in the examples
|
||||
|
|
Loading…
Reference in New Issue