git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@11959 f3b2605a-c512-4ea7-a41b-209d697bcdaa
After Width: | Height: | Size: 18 KiB |
|
@ -0,0 +1,7 @@
|
|||
\documentstyle[12pt]{article}
|
||||
|
||||
\begin{document}
|
||||
|
||||
\[ \left< \frac{1}{1 + \exp\left[\left(U_1 - U_0 - \Delta_0^1A \right) /kT \right]} \right>_0 = \left< \frac{1}{1 + \exp\left[\left(U_0 - U_1 + \Delta_0^1A \right) /kT \right]} \right>_1 \]
|
||||
|
||||
\end{document}
|
After Width: | Height: | Size: 15 KiB |
|
@ -0,0 +1,10 @@
|
|||
\documentstyle[12pt]{article}
|
||||
|
||||
\begin{document}
|
||||
|
||||
\[ \Delta_0^1 A = \int_{\lambda=0}^{\lambda=1} \left( \frac{\partial
|
||||
A(\lambda)}{\partial\lambda} \right)_\lambda \mathrm{d}\lambda
|
||||
\approx \sum_{i=0}^{n-1} w_i \frac{A(\lambda_{i} + \delta) -
|
||||
A(\lambda_i)}{\delta} \]
|
||||
|
||||
\end{document}
|
After Width: | Height: | Size: 18 KiB |
|
@ -0,0 +1,9 @@
|
|||
\documentstyle[12pt]{article}
|
||||
|
||||
\begin{document}
|
||||
|
||||
\[ \Delta_0^1 A = \sum_{i=0}^{n-1} \Delta_{\lambda_i}^{\lambda_{i+1}} A =
|
||||
- kT \sum_{i=0}^{n-1} \ln \left< \exp \left( - \frac{U(\lambda_{i+1}) -
|
||||
U(\lambda_i)}{kT} \right) \right>_{\lambda_i} \]
|
||||
|
||||
\end{document}
|
After Width: | Height: | Size: 10 KiB |
|
@ -0,0 +1,10 @@
|
|||
\documentstyle[12pt]{article}
|
||||
|
||||
\begin{document}
|
||||
|
||||
\begin{eqnarray*}
|
||||
\lambda = 0 \quad\Rightarrow\quad U = U_{\mathrm{bg}} + U_0 \\
|
||||
\lambda = 1 \quad\Rightarrow\quad U = U_{\mathrm{bg}} + U_1
|
||||
\end{eqnarray*}
|
||||
|
||||
\end{document}
|
After Width: | Height: | Size: 18 KiB |
|
@ -0,0 +1,10 @@
|
|||
\documentstyle[12pt]{article}
|
||||
|
||||
\begin{document}
|
||||
|
||||
\[ \Delta_0^1 A = \int_{\lambda=0}^{\lambda=1} \left< \frac{\partial
|
||||
U(\lambda)}{\partial\lambda} \right>_\lambda \mathrm{d}\lambda
|
||||
\approx \sum_{i=0}^{n-1} w_i \left< \frac{U(\lambda_{i} + \delta) -
|
||||
U(\lambda_i)}{\delta} \right>_{\lambda_i} \]
|
||||
|
||||
\end{document}
|
After Width: | Height: | Size: 9.1 KiB |
|
@ -0,0 +1,7 @@
|
|||
\documentstyle[12pt]{article}
|
||||
|
||||
\begin{document}
|
||||
|
||||
\[ U(\lambda) = U_{\mathrm{bg}} + U_1(\lambda) + U_0(\lambda) \]
|
||||
|
||||
\end{document}
|
After Width: | Height: | Size: 15 KiB |
|
@ -0,0 +1,9 @@
|
|||
\documentstyle[12pt]{article}
|
||||
|
||||
\begin{document}
|
||||
|
||||
\[ \Delta_0^1 A = - kT \sum_{i=0}^{n-1} \ln \frac{\left< V \exp \left( -
|
||||
\frac{U(\lambda_{i+1}) - U(\lambda_i)}{kT} \right)
|
||||
\right>_{\lambda_i}}{\left< V \right>_{\lambda_i}} \]
|
||||
|
||||
\end{document}
|
After Width: | Height: | Size: 11 KiB |
|
@ -0,0 +1,10 @@
|
|||
\documentstyle[12pt]{article}
|
||||
|
||||
\begin{document}
|
||||
|
||||
\[
|
||||
E = \lambda^n \frac{ C q_i q_j}{\epsilon
|
||||
\left[ \alpha_{\mathrm{C}} (1-\lambda)^2 + r^2 \right]^{1/2}} \qquad r < r_c
|
||||
\]
|
||||
|
||||
\end{document}
|
After Width: | Height: | Size: 18 KiB |
|
@ -0,0 +1,15 @@
|
|||
\documentstyle[12pt]{article}
|
||||
|
||||
\begin{document}
|
||||
|
||||
\[
|
||||
E = \lambda^n 4 \epsilon
|
||||
\left\{
|
||||
\frac{1}{ \left[ \alpha_{\mathrm{LJ}} (1-\lambda)^2 +
|
||||
\left( \displaystyle\frac{r}{\sigma} \right)^6 \right]^2 } -
|
||||
\frac{1}{ \alpha_{\mathrm{LJ}} (1-\lambda)^2 +
|
||||
\left( \displaystyle\frac{r}{\sigma} \right)^6 }
|
||||
\right\} \qquad r < r_c
|
||||
\]
|
||||
|
||||
\end{document}
|