forked from lijiext/lammps
git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@14967 f3b2605a-c512-4ea7-a41b-209d697bcdaa
This commit is contained in:
parent
8d18bc0e60
commit
7376b3393f
|
@ -0,0 +1,221 @@
|
|||
"LAMMPS WWW Site"_lws - "LAMMPS Documentation"_ld - "LAMMPS Commands"_lc :c
|
||||
|
||||
:link(lws,http://lammps.sandia.gov)
|
||||
:link(ld,Manual.html)
|
||||
:link(lc,Section_commands.html#comm)
|
||||
|
||||
:line
|
||||
|
||||
units command :h3
|
||||
|
||||
[Syntax:]
|
||||
|
||||
units style :pre
|
||||
|
||||
style = {lj} or {real} or {metal} or {si} or {cgs} or {electron} or {micro} or {nano} :ul
|
||||
|
||||
[Examples:]
|
||||
|
||||
units metal
|
||||
units lj :pre
|
||||
|
||||
[Description:]
|
||||
|
||||
This command sets the style of units used for a simulation. It
|
||||
determines the units of all quantities specified in the input script
|
||||
and data file, as well as quantities output to the screen, log file,
|
||||
and dump files. Typically, this command is used at the very beginning
|
||||
of an input script.
|
||||
|
||||
For all units except {lj}, LAMMPS uses physical constants from
|
||||
www.physics.nist.gov. For the definition of Kcal in real units,
|
||||
LAMMPS uses the thermochemical calorie = 4.184 J.
|
||||
|
||||
The choice you make for units simply sets some internal conversion
|
||||
factors within LAMMPS. This means that any simulation you perform for
|
||||
one choice of units can be duplicated with any other unit setting
|
||||
LAMMPS supports. In this context "duplicate" means the particles will
|
||||
have identical trajectories and all output generated by the simulation
|
||||
will be identical. This will be the case for some number of timesteps
|
||||
until round-off effects accumulate, since the conversion factors for
|
||||
two different unit systems are not identical to infinite precision.
|
||||
|
||||
To perform the same simulation in a different set of units you must
|
||||
change all the unit-based input parameters in your input script and
|
||||
other input files (data file, potential files, etc) correctly to the
|
||||
new units. And you must correctly convert all output from the new
|
||||
units to the old units when comparing to the original results. That
|
||||
is often not simple to do.
|
||||
|
||||
:line
|
||||
|
||||
For style {lj}, all quantities are unitless. Without loss of
|
||||
generality, LAMMPS sets the fundamental quantities mass, sigma,
|
||||
epsilon, and the Boltzmann constant = 1. The masses, distances,
|
||||
energies you specify are multiples of these fundamental values. The
|
||||
formulas relating the reduced or unitless quantity (with an asterisk)
|
||||
to the same quantity with units is also given. Thus you can use the
|
||||
mass & sigma & epsilon values for a specific material and convert the
|
||||
results from a unitless LJ simulation into physical quantities.
|
||||
|
||||
mass = mass or m
|
||||
distance = sigma, where x* = x / sigma
|
||||
time = tau, where t* = t (epsilon / m / sigma^2)^1/2
|
||||
energy = epsilon, where E* = E / epsilon
|
||||
velocity = sigma/tau, where v* = v tau / sigma
|
||||
force = epsilon/sigma, where f* = f sigma / epsilon
|
||||
torque = epsilon, where t* = t / epsilon
|
||||
temperature = reduced LJ temperature, where T* = T Kb / epsilon
|
||||
pressure = reduced LJ pressure, where P* = P sigma^3 / epsilon
|
||||
dynamic viscosity = reduced LJ viscosity, where eta* = eta sigma^3 / epsilon / tau
|
||||
charge = reduced LJ charge, where q* = q / (4 pi perm0 sigma epsilon)^1/2
|
||||
dipole = reduced LJ dipole, moment where *mu = mu / (4 pi perm0 sigma^3 epsilon)^1/2
|
||||
electric field = force/charge, where E* = E (4 pi perm0 sigma epsilon)^1/2 sigma / epsilon
|
||||
density = mass/volume, where rho* = rho sigma^dim :ul
|
||||
|
||||
Note that for LJ units, the default mode of thermodyamic output via
|
||||
the "thermo_style"_thermo_style.html command is to normalize all
|
||||
extensive quantities by the number of atoms. E.g. potential energy is
|
||||
extensive because it is summed over atoms, so it is output as
|
||||
energy/atom. Temperature is intensive since it is already normalized
|
||||
by the number of atoms, so it is output as-is. This behavior can be
|
||||
changed via the "thermo_modify norm"_thermo_modify.html command.
|
||||
|
||||
For style {real}, these are the units:
|
||||
|
||||
mass = grams/mole
|
||||
distance = Angstroms
|
||||
time = femtoseconds
|
||||
energy = Kcal/mole
|
||||
velocity = Angstroms/femtosecond
|
||||
force = Kcal/mole-Angstrom
|
||||
torque = Kcal/mole
|
||||
temperature = Kelvin
|
||||
pressure = atmospheres
|
||||
dynamic viscosity = Poise
|
||||
charge = multiple of electron charge (1.0 is a proton)
|
||||
dipole = charge*Angstroms
|
||||
electric field = volts/Angstrom
|
||||
density = gram/cm^dim :ul
|
||||
|
||||
For style {metal}, these are the units:
|
||||
|
||||
mass = grams/mole
|
||||
distance = Angstroms
|
||||
time = picoseconds
|
||||
energy = eV
|
||||
velocity = Angstroms/picosecond
|
||||
force = eV/Angstrom
|
||||
torque = eV
|
||||
temperature = Kelvin
|
||||
pressure = bars
|
||||
dynamic viscosity = Poise
|
||||
charge = multiple of electron charge (1.0 is a proton)
|
||||
dipole = charge*Angstroms
|
||||
electric field = volts/Angstrom
|
||||
density = gram/cm^dim :ul
|
||||
|
||||
For style {si}, these are the units:
|
||||
|
||||
mass = kilograms
|
||||
distance = meters
|
||||
time = seconds
|
||||
energy = Joules
|
||||
velocity = meters/second
|
||||
force = Newtons
|
||||
torque = Newton-meters
|
||||
temperature = Kelvin
|
||||
pressure = Pascals
|
||||
dynamic viscosity = Pascal*second
|
||||
charge = Coulombs (1.6021765e-19 is a proton)
|
||||
dipole = Coulombs*meters
|
||||
electric field = volts/meter
|
||||
density = kilograms/meter^dim :ul
|
||||
|
||||
For style {cgs}, these are the units:
|
||||
|
||||
mass = grams
|
||||
distance = centimeters
|
||||
time = seconds
|
||||
energy = ergs
|
||||
velocity = centimeters/second
|
||||
force = dynes
|
||||
torque = dyne-centimeters
|
||||
temperature = Kelvin
|
||||
pressure = dyne/cm^2 or barye = 1.0e-6 bars
|
||||
dynamic viscosity = Poise
|
||||
charge = statcoulombs or esu (4.8032044e-10 is a proton)
|
||||
dipole = statcoul-cm = 10^18 debye
|
||||
electric field = statvolt/cm or dyne/esu
|
||||
density = grams/cm^dim :ul
|
||||
|
||||
For style {electron}, these are the units:
|
||||
|
||||
mass = atomic mass units
|
||||
distance = Bohr
|
||||
time = femtoseconds
|
||||
energy = Hartrees
|
||||
velocity = Bohr/atomic time units \[1.03275e-15 seconds\]
|
||||
force = Hartrees/Bohr
|
||||
temperature = Kelvin
|
||||
pressure = Pascals
|
||||
charge = multiple of electron charge (1.0 is a proton)
|
||||
dipole moment = Debye
|
||||
electric field = volts/cm :ul
|
||||
|
||||
For style {micro}, these are the units:
|
||||
|
||||
mass = picograms
|
||||
distance = micrometers
|
||||
time = microseconds
|
||||
energy = picogram-micrometer^2/microsecond^2
|
||||
velocity = micrometers/microsecond
|
||||
force = picogram-micrometer/microsecond^2
|
||||
torque = picogram-micrometer^2/microsecond^2
|
||||
temperature = Kelvin
|
||||
pressure = picogram/(micrometer-microsecond^2)
|
||||
dynamic viscosity = picogram/(micrometer-microsecond)
|
||||
charge = picocoulombs (1.6021765e-7 is a proton)
|
||||
dipole = picocoulomb-micrometer
|
||||
electric field = volt/micrometer
|
||||
density = picograms/micrometer^dim :ul
|
||||
|
||||
For style {nano}, these are the units:
|
||||
|
||||
mass = attograms
|
||||
distance = nanometers
|
||||
time = nanoseconds
|
||||
energy = attogram-nanometer^2/nanosecond^2
|
||||
velocity = nanometers/nanosecond
|
||||
force = attogram-nanometer/nanosecond^2
|
||||
torque = attogram-nanometer^2/nanosecond^2
|
||||
temperature = Kelvin
|
||||
pressure = attogram/(nanometer-nanosecond^2)
|
||||
dynamic viscosity = attogram/(nanometer-nanosecond)
|
||||
charge = multiple of electron charge (1.0 is a proton)
|
||||
dipole = charge-nanometer
|
||||
electric field = volt/nanometer
|
||||
density = attograms/nanometer^dim :ul
|
||||
|
||||
The units command also sets the timestep size and neighbor skin
|
||||
distance to default values for each style:
|
||||
|
||||
For style {lj} these are dt = 0.005 tau and skin = 0.3 sigma.
|
||||
For style {real} these are dt = 1.0 fmsec and skin = 2.0 Angstroms.
|
||||
For style {metal} these are dt = 0.001 psec and skin = 2.0 Angstroms.
|
||||
For style {si} these are dt = 1.0e-8 sec and skin = 0.001 meters.
|
||||
For style {cgs} these are dt = 1.0e-8 sec and skin = 0.1 cm.
|
||||
For style {electron} these are dt = 0.001 fmsec and skin = 2.0 Bohr.
|
||||
For style {micro} these are dt = 2.0 microsec and skin = 0.1 micrometers.
|
||||
For style {nano} these are dt = 0.00045 nanosec and skin = 0.1 nanometers. :ul
|
||||
|
||||
[Restrictions:]
|
||||
|
||||
This command cannot be used after the simulation box is defined by a
|
||||
"read_data"_read_data.html or "create_box"_create_box.html command.
|
||||
|
||||
[Related commands:] none
|
||||
|
||||
[Default:]
|
||||
|
||||
units lj :pre
|
Loading…
Reference in New Issue