convert remaining lj pair styles
Before Width: | Height: | Size: 4.4 KiB |
|
@ -1,11 +0,0 @@
|
|||
\documentstyle[12pt]{article}
|
||||
|
||||
\begin{document}
|
||||
|
||||
$$
|
||||
E = 4 \epsilon \left[ \left(\frac{\sigma}{r}\right)^{12} -
|
||||
\left(\frac{\sigma}{r}\right)^6 \right]
|
||||
\qquad r < r_c
|
||||
$$
|
||||
|
||||
\end{document}
|
Before Width: | Height: | Size: 4.7 KiB |
|
@ -1,11 +0,0 @@
|
|||
\documentstyle[12pt]{article}
|
||||
|
||||
\begin{document}
|
||||
|
||||
$$
|
||||
E = 4 \epsilon \left[ \left(\frac{\sigma}{r}\right)^{9} -
|
||||
\left(\frac{\sigma}{r}\right)^6 \right]
|
||||
\qquad r < r_c
|
||||
$$
|
||||
|
||||
\end{document}
|
Before Width: | Height: | Size: 9.1 KiB |
|
@ -1,12 +0,0 @@
|
|||
\documentstyle[12pt]{article}
|
||||
|
||||
\begin{document}
|
||||
|
||||
\begin{eqnarray*}
|
||||
E &=& u_{LJ}(r) \qquad r \leq r_s \\
|
||||
&=& u_{LJ}(r_s) + (r-r_s) u'_{LJ}(r_s) - \frac{1}{6} A_3 (r-r_s)^3 \qquad r_s < r \leq r_c \\
|
||||
&=& 0 \qquad r > r_c
|
||||
\end{eqnarray*}
|
||||
|
||||
|
||||
\end{document}
|
Before Width: | Height: | Size: 5.8 KiB |
|
@ -1,11 +0,0 @@
|
|||
\documentclass[12pt]{article}
|
||||
|
||||
\begin{document}
|
||||
|
||||
$$
|
||||
E = 4 \epsilon \left[ \left(\frac{\sigma}{r - \Delta}\right)^{12} -
|
||||
\left(\frac{\sigma}{r - \Delta}\right)^6 \right]
|
||||
\qquad r < r_c + \Delta
|
||||
$$
|
||||
|
||||
\end{document}
|
Before Width: | Height: | Size: 11 KiB |
|
@ -1,15 +0,0 @@
|
|||
\documentclass[12pt]{article}
|
||||
|
||||
\begin{document}
|
||||
|
||||
\begin{eqnarray*}
|
||||
E & = & 4 \epsilon \left[ \left(\frac{\sigma}{r}\right)^{12} -
|
||||
\left(\frac{\sigma}{r}\right)^6 \right]
|
||||
\qquad r < r_{in} \\
|
||||
F & = & C_1 + C_2 (r - r_{in}) + C_3 (r - r_{in})^2 + C_4 (r - r_{in})^3
|
||||
\qquad r_{in} < r < r_c
|
||||
\end{eqnarray*}
|
||||
|
||||
\end{document}
|
||||
|
||||
|
Before Width: | Height: | Size: 10 KiB |
|
@ -1,13 +0,0 @@
|
|||
\documentclass[12pt]{article}
|
||||
|
||||
\begin{document}
|
||||
|
||||
\begin{eqnarray*}
|
||||
\phi\left(r\right) & = & 4 \epsilon \left[ \left(\frac{\sigma}{r}\right)^{12} -
|
||||
\left(\frac{\sigma}{r}\right)^6 \right] \\
|
||||
E\left(r\right) & = & \phi\left(r\right) - \phi\left(R_c\right) - \left(r - R_c\right) \left.\frac{d\phi}{d r} \right|_{r=R_c} \qquad r < R_c
|
||||
\end{eqnarray*}
|
||||
|
||||
\end{document}
|
||||
|
||||
|
Before Width: | Height: | Size: 3.6 KiB |
|
@ -1,11 +0,0 @@
|
|||
\documentclass[12pt]{article}
|
||||
|
||||
\begin{document}
|
||||
\thispagestyle{empty}
|
||||
|
||||
\begin{eqnarray*}
|
||||
E = 4\epsilon \left[ \left(\frac{\sigma}{r}\right)^{12}-\left(\frac{\sigma}{r}\right)^{6} \right]
|
||||
% \qquad r < r_c \\
|
||||
\end{eqnarray*}
|
||||
|
||||
\end{document}
|
|
@ -211,39 +211,51 @@ Description
|
|||
The *lj/cut* styles compute the standard 12/6 Lennard-Jones potential,
|
||||
given by
|
||||
|
||||
.. image:: Eqs/pair_lj.jpg
|
||||
:align: center
|
||||
.. math::
|
||||
|
||||
E = 4 \epsilon \left[ \left(\frac{\sigma}{r}\right)^{12} -
|
||||
\left(\frac{\sigma}{r}\right)^6 \right]
|
||||
\qquad r < r_c
|
||||
|
||||
|
||||
Rc is the cutoff.
|
||||
|
||||
Style *lj/cut/coul/cut* adds a Coulombic pairwise interaction given by
|
||||
|
||||
.. image:: Eqs/pair_coulomb.jpg
|
||||
:align: center
|
||||
.. math::
|
||||
|
||||
where C is an energy-conversion constant, Qi and Qj are the charges on
|
||||
the 2 atoms, and epsilon is the dielectric constant which can be set
|
||||
by the :doc:`dielectric <dielectric>` command. If one cutoff is
|
||||
specified in the pair\_style command, it is used for both the LJ and
|
||||
Coulombic terms. If two cutoffs are specified, they are used as
|
||||
cutoffs for the LJ and Coulombic terms respectively.
|
||||
E = \frac{C q_i q_j}{\epsilon r} \qquad r < r_c
|
||||
|
||||
|
||||
where C is an energy-conversion constant, :math:`q_i` and :math:`q_j`
|
||||
are the charges on the 2 atoms, and :math:`\epsilon` is the dielectric
|
||||
constant which can be set by the :doc:`dielectric <dielectric>` command.
|
||||
If one cutoff is specified in the pair\_style command, it is used for
|
||||
both the LJ and Coulombic terms. If two cutoffs are specified, they are
|
||||
used as cutoffs for the LJ and Coulombic terms respectively.
|
||||
|
||||
Style *lj/cut/coul/debye* adds an additional exp() damping factor
|
||||
to the Coulombic term, given by
|
||||
|
||||
.. image:: Eqs/pair_debye.jpg
|
||||
:align: center
|
||||
.. math::
|
||||
|
||||
where kappa is the inverse of the Debye length. This potential is
|
||||
another way to mimic the screening effect of a polar solvent.
|
||||
E = \frac{C q_i q_j}{\epsilon r} \exp(- \kappa r) \qquad r < r_c
|
||||
|
||||
|
||||
where :math:`\kappa` is the inverse of the Debye length. This potential
|
||||
is another way to mimic the screening effect of a polar solvent.
|
||||
|
||||
Style *lj/cut/coul/dsf* computes the Coulombic term via the damped
|
||||
shifted force model described in :ref:`Fennell <Fennell2>`, given by:
|
||||
|
||||
.. image:: Eqs/pair_coul_dsf.jpg
|
||||
:align: center
|
||||
.. math::
|
||||
|
||||
where *alpha* is the damping parameter and erfc() is the complementary
|
||||
E =
|
||||
q_iq_j \left[ \frac{\mbox{erfc} (\alpha r)}{r} - \frac{\mbox{erfc} (\alpha r_c)}{r_c} +
|
||||
\left( \frac{\mbox{erfc} (\alpha r_c)}{r_c^2} + \frac{2\alpha}{\sqrt{\pi}}\frac{\exp (-\alpha^2 r^2_c)}{r_c} \right)(r-r_c) \right] \qquad r < r_c
|
||||
|
||||
|
||||
where :math:`\alpha` is the damping parameter and erfc() is the complementary
|
||||
error-function. This potential is essentially a short-range,
|
||||
spherically-truncated, charge-neutralized, shifted, pairwise *1/r*
|
||||
summation. The potential is based on Wolf summation, proposed as an
|
||||
|
@ -253,7 +265,7 @@ effectively short-ranged. In order for the electrostatic sum to be
|
|||
absolutely convergent, charge neutralization within the cutoff radius
|
||||
is enforced by shifting the potential through placement of image
|
||||
charges on the cutoff sphere. Convergence can often be improved by
|
||||
setting *alpha* to a small non-zero value.
|
||||
setting :math:`\alpha` to a small non-zero value.
|
||||
|
||||
Styles *lj/cut/coul/long* and *lj/cut/coul/msm* compute the same
|
||||
Coulombic interactions as style *lj/cut/coul/cut* except that an
|
||||
|
@ -267,21 +279,26 @@ computed in reciprocal space.
|
|||
Style *coul/wolf* adds a Coulombic pairwise interaction via the Wolf
|
||||
summation method, described in :ref:`Wolf <Wolf1>`, given by:
|
||||
|
||||
.. image:: Eqs/pair_coul_wolf.jpg
|
||||
:align: center
|
||||
.. math::
|
||||
|
||||
where *alpha* is the damping parameter, and erfc() is the
|
||||
complementary error-function terms. This potential
|
||||
is essentially a short-range, spherically-truncated,
|
||||
charge-neutralized, shifted, pairwise *1/r* summation. With a
|
||||
manipulation of adding and subtracting a self term (for i = j) to the
|
||||
first and second term on the right-hand-side, respectively, and a
|
||||
small enough *alpha* damping parameter, the second term shrinks and
|
||||
the potential becomes a rapidly-converging real-space summation. With
|
||||
a long enough cutoff and small enough alpha parameter, the energy and
|
||||
forces calculated by the Wolf summation method approach those of the
|
||||
Ewald sum. So it is a means of getting effective long-range
|
||||
interactions with a short-range potential.
|
||||
E_i = \frac{1}{2} \sum_{j \neq i}
|
||||
\frac{q_i q_j {\rm erfc}(\alpha r_{ij})}{r_{ij}} +
|
||||
\frac{1}{2} \sum_{j \neq i}
|
||||
\frac{q_i q_j {\rm erf}(\alpha r_{ij})}{r_{ij}} \qquad r < r_c
|
||||
|
||||
|
||||
where :math:`\alpha` is the damping parameter, and erfc() is the
|
||||
complementary error-function terms. This potential is essentially a
|
||||
short-range, spherically-truncated, charge-neutralized, shifted,
|
||||
pairwise *1/r* summation. With a manipulation of adding and subtracting
|
||||
a self term (for i = j) to the first and second term on the
|
||||
right-hand-side, respectively, and a small enough :math:`\alpha` damping
|
||||
parameter, the second term shrinks and the potential becomes a
|
||||
rapidly-converging real-space summation. With a long enough cutoff and
|
||||
small enough alpha parameter, the energy and forces calculated by the
|
||||
Wolf summation method approach those of the Ewald sum. So it is a means
|
||||
of getting effective long-range interactions with a short-range
|
||||
potential.
|
||||
|
||||
Styles *lj/cut/tip4p/cut* and *lj/cut/tip4p/long* implement the TIP4P
|
||||
water model of :ref:`(Jorgensen) <Jorgensen2>`, which introduces a massless
|
||||
|
@ -319,14 +336,13 @@ the data file or restart files read by the :doc:`read_data <read_data>`
|
|||
or :doc:`read_restart <read_restart>` commands, or by mixing as
|
||||
described below:
|
||||
|
||||
* epsilon (energy units)
|
||||
* sigma (distance units)
|
||||
* :math:`\epsilon` (energy units)
|
||||
* :math:`\sigma` (distance units)
|
||||
* cutoff1 (distance units)
|
||||
* cutoff2 (distance units)
|
||||
|
||||
Note that sigma is defined in the LJ formula as the zero-crossing
|
||||
distance for the potential, not as the energy minimum at 2\^(1/6)
|
||||
sigma.
|
||||
Note that :math:`\sigma` is defined in the LJ formula as the zero-crossing
|
||||
distance for the potential, not as the energy minimum at :math:`2^{\frac{1}{6}} \sigma`.
|
||||
|
||||
The latter 2 coefficients are optional. If not specified, the global
|
||||
LJ and Coulombic cutoffs specified in the pair\_style command are used.
|
||||
|
@ -346,10 +362,12 @@ pair\_style command.
|
|||
----------
|
||||
|
||||
|
||||
A version of these styles with a soft core, *lj/cut/soft*\ , suitable for use in
|
||||
free energy calculations, is part of the USER-FEP package and is documented with
|
||||
the :doc:`pair_style */soft <pair_fep_soft>` styles. The version with soft core is
|
||||
only available if LAMMPS was built with that package. See the :doc:`Build package <Build_package>` doc page for more info.
|
||||
A version of these styles with a soft core, *lj/cut/soft*\ , suitable
|
||||
for use in free energy calculations, is part of the USER-FEP package and
|
||||
is documented with the :doc:`pair_style */soft <pair_fep_soft>`
|
||||
styles. The version with soft core is only available if LAMMPS was built
|
||||
with that package. See the :doc:`Build package <Build_package>` doc page
|
||||
for more info.
|
||||
|
||||
|
||||
----------
|
||||
|
|
|
@ -35,10 +35,14 @@ Description
|
|||
The *lj96/cut* style compute a 9/6 Lennard-Jones potential, instead
|
||||
of the standard 12/6 potential, given by
|
||||
|
||||
.. image:: Eqs/pair_lj96.jpg
|
||||
:align: center
|
||||
.. math::
|
||||
|
||||
Rc is the cutoff.
|
||||
E = 4 \epsilon \left[ \left(\frac{\sigma}{r}\right)^{9} -
|
||||
\left(\frac{\sigma}{r}\right)^6 \right]
|
||||
\qquad r < r_c
|
||||
|
||||
|
||||
:math:`r_c` is the cutoff.
|
||||
|
||||
The following coefficients must be defined for each pair of atoms
|
||||
types via the :doc:`pair_coeff <pair_coeff>` command as in the examples
|
||||
|
@ -46,8 +50,8 @@ above, or in the data file or restart files read by the
|
|||
:doc:`read_data <read_data>` or :doc:`read_restart <read_restart>`
|
||||
commands, or by mixing as described below:
|
||||
|
||||
* epsilon (energy units)
|
||||
* sigma (distance units)
|
||||
* :math:`\epsilon` (energy units)
|
||||
* :math:`\sigma` (distance units)
|
||||
* cutoff (distance units)
|
||||
|
||||
The last coefficient is optional. If not specified, the global LJ
|
||||
|
|
|
@ -39,15 +39,19 @@ point. The cubic coefficient A3 is chosen so that both energy and
|
|||
force go to zero at the cutoff distance. Outside the cutoff distance
|
||||
the energy and force are zero.
|
||||
|
||||
.. image:: Eqs/pair_lj_cubic.jpg
|
||||
:align: center
|
||||
.. math::
|
||||
|
||||
The location of the inflection point rs is defined
|
||||
by the LJ diameter, rs/sigma = (26/7)\^1/6. The cutoff distance
|
||||
is defined by rc/rs = 67/48 or rc/sigma = 1.737....
|
||||
E & = u_{LJ}(r) \qquad r \leq r_s \\
|
||||
& = u_{LJ}(r_s) + (r-r_s) u'_{LJ}(r_s) - \frac{1}{6} A_3 (r-r_s)^3 \qquad r_s < r \leq r_c \\
|
||||
& = 0 \qquad r > r_c
|
||||
|
||||
|
||||
The location of the inflection point :math:`r_s` is defined
|
||||
by the LJ diameter, :math:`r_s/\sigma = (26/7)^{1/6}`. The cutoff distance
|
||||
is defined by :math:`r_c/r_s = 67/48` or :math:`r_c/\sigma = 1.737...`
|
||||
The analytic expression for the
|
||||
the cubic coefficient
|
||||
A3\*rmin\^3/epsilon = 27.93... is given in the paper by
|
||||
:math:`A_3 r_{min}^3/\epsilon = 27.93...` is given in the paper by
|
||||
Holian and Ravelo :ref:`(Holian) <Holian>`.
|
||||
|
||||
This potential is commonly used to study the shock mechanics of FCC
|
||||
|
@ -59,13 +63,13 @@ or in the data file or restart files read by the
|
|||
:doc:`read_data <read_data>` or :doc:`read_restart <read_restart>`
|
||||
commands, or by mixing as described below:
|
||||
|
||||
* epsilon (energy units)
|
||||
* sigma (distance units)
|
||||
* :math:`\epsilon` (energy units)
|
||||
* :math:`\sigma` (distance units)
|
||||
|
||||
Note that sigma is defined in the LJ formula as the zero-crossing
|
||||
distance for the potential, not as the energy minimum, which is
|
||||
located at rmin = 2\^(1/6)\*sigma. In the above example, sigma =
|
||||
0.8908987, so rmin = 1.
|
||||
Note that :math:`\sigma` is defined in the LJ formula as the
|
||||
zero-crossing distance for the potential, not as the energy minimum,
|
||||
which is located at :math:`r_{min} = 2^{\frac{1}{6}} \sigma`. In the
|
||||
above example, :math:`\sigma = 0.8908987`, so :math:`r_{min} = 1.0`.
|
||||
|
||||
|
||||
----------
|
||||
|
|
|
@ -51,36 +51,40 @@ delta which can be useful when particles are of different sizes, since
|
|||
it is different that using different sigma values in a standard LJ
|
||||
formula:
|
||||
|
||||
.. image:: Eqs/pair_lj_expand.jpg
|
||||
:align: center
|
||||
.. math::
|
||||
|
||||
Rc is the cutoff which does not include the delta distance. I.e. the
|
||||
actual force cutoff is the sum of cutoff + delta.
|
||||
E = 4 \epsilon \left[ \left(\frac{\sigma}{r - \Delta}\right)^{12} -
|
||||
\left(\frac{\sigma}{r - \Delta}\right)^6 \right]
|
||||
\qquad r < r_c + \Delta
|
||||
|
||||
|
||||
:math:`r_c` is the cutoff which does not include the :math:`\Delta`
|
||||
distance. I.e. the actual force cutoff is the sum of :math:`r_c +
|
||||
\Delta`.
|
||||
|
||||
For all of the *lj/expand* pair styles, the following coefficients must
|
||||
be defined for each pair of atoms types via the
|
||||
:doc:`pair_coeff <pair_coeff>` command as in the examples above, or in
|
||||
the data file or restart files read by the :doc:`read_data <read_data>`
|
||||
or :doc:`read_restart <read_restart>` commands, or by mixing as
|
||||
described below:
|
||||
be defined for each pair of atoms types via the :doc:`pair_coeff
|
||||
<pair_coeff>` command as in the examples above, or in the data file or
|
||||
restart files read by the :doc:`read_data <read_data>` or
|
||||
:doc:`read_restart <read_restart>` commands, or by mixing as described
|
||||
below:
|
||||
|
||||
* epsilon (energy units)
|
||||
* sigma (distance units)
|
||||
* delta (distance units)
|
||||
* :math:`\epsilon` (energy units)
|
||||
* :math:`\sigma` (distance units)
|
||||
* :math:`\Delta` (distance units)
|
||||
* cutoff (distance units)
|
||||
|
||||
The delta values can be positive or negative. The last coefficient is
|
||||
optional. If not specified, the global LJ cutoff is used.
|
||||
The :math:`\Delta` values can be positive or negative. The last
|
||||
coefficient is optional. If not specified, the global LJ cutoff is
|
||||
used.
|
||||
|
||||
For *lj/expand/coul/long* only the LJ cutoff can be specified since a
|
||||
Coulombic cutoff cannot be specified for an individual I,J type pair.
|
||||
All type pairs use the same global Coulombic cutoff specified in the
|
||||
pair\_style command.
|
||||
|
||||
|
||||
----------
|
||||
|
||||
|
||||
Styles with a *gpu*\ , *intel*\ , *kk*\ , *omp*\ , or *opt* suffix are
|
||||
functionally the same as the corresponding style without the suffix.
|
||||
They have been optimized to run faster, depending on your available
|
||||
|
|
|
@ -75,18 +75,25 @@ Examples
|
|||
Description
|
||||
"""""""""""
|
||||
|
||||
Style *lj/long/coul/long* computes the standard 12/6 Lennard-Jones and
|
||||
Coulombic potentials, given by
|
||||
Style *lj/long/coul/long* computes the standard 12/6 Lennard-Jones potential:
|
||||
|
||||
.. image:: Eqs/pair_lj.jpg
|
||||
:align: center
|
||||
.. math::
|
||||
|
||||
.. image:: Eqs/pair_coulomb.jpg
|
||||
:align: center
|
||||
E = 4 \epsilon \left[ \left(\frac{\sigma}{r}\right)^{12} -
|
||||
\left(\frac{\sigma}{r}\right)^6 \right]
|
||||
\qquad r < r_c \\
|
||||
|
||||
where C is an energy-conversion constant, Qi and Qj are the charges on
|
||||
the 2 atoms, epsilon is the dielectric constant which can be set by
|
||||
the :doc:`dielectric <dielectric>` command, and Rc is the cutoff. If
|
||||
with :math:`\epsilon` and :math:`\sigma` being the usual Lennard-Jones
|
||||
potential parameters, plus the Coulomb potential, given by:
|
||||
|
||||
.. math::
|
||||
|
||||
E = \frac{C q_i q_j}{\epsilon r} \qquad r < r_c
|
||||
|
||||
|
||||
where C is an energy-conversion constant, :math:`q_i` and :math:`q_j` are the charges on
|
||||
the 2 atoms, :math:`\epsilon` is the dielectric constant which can be set by
|
||||
the :doc:`dielectric <dielectric>` command, and :math:`r_c` is the cutoff. If
|
||||
one cutoff is specified in the pair\_style command, it is used for both
|
||||
the LJ and Coulombic terms. If two cutoffs are specified, they are
|
||||
used as cutoffs for the LJ and Coulombic terms respectively.
|
||||
|
@ -147,8 +154,8 @@ above, or in the data file or restart files read by the
|
|||
:doc:`read_data <read_data>` or :doc:`read_restart <read_restart>`
|
||||
commands, or by mixing as described below:
|
||||
|
||||
* epsilon (energy units)
|
||||
* sigma (distance units)
|
||||
* :math:`\epsilon` (energy units)
|
||||
* :math:`\sigma` (distance units)
|
||||
* cutoff1 (distance units)
|
||||
* cutoff2 (distance units)
|
||||
|
||||
|
|
|
@ -33,12 +33,18 @@ Description
|
|||
Style *lj/smooth* computes a LJ interaction with a force smoothing
|
||||
applied between the inner and outer cutoff.
|
||||
|
||||
.. image:: Eqs/pair_lj_smooth.jpg
|
||||
:align: center
|
||||
.. math::
|
||||
|
||||
E & = 4 \epsilon \left[ \left(\frac{\sigma}{r}\right)^{12} -
|
||||
\left(\frac{\sigma}{r}\right)^6 \right]
|
||||
\qquad r < r_{in} \\
|
||||
F & = C_1 + C_2 (r - r_{in}) + C_3 (r - r_{in})^2 + C_4 (r - r_{in})^3
|
||||
\qquad r_{in} < r < r_c
|
||||
|
||||
|
||||
The polynomial coefficients C1, C2, C3, C4 are computed by LAMMPS to
|
||||
cause the force to vary smoothly from the inner cutoff Rin to the
|
||||
outer cutoff Rc.
|
||||
cause the force to vary smoothly from the inner cutoff :math:`r_{in}` to the
|
||||
outer cutoff :math:`r_c`.
|
||||
|
||||
At the inner cutoff the force and its 1st derivative
|
||||
will match the non-smoothed LJ formula. At the outer cutoff the force
|
||||
|
@ -58,13 +64,13 @@ above, or in the data file or restart files read by the
|
|||
:doc:`read_data <read_data>` or :doc:`read_restart <read_restart>`
|
||||
commands, or by mixing as described below:
|
||||
|
||||
* epsilon (energy units)
|
||||
* sigma (distance units)
|
||||
* inner (distance units)
|
||||
* outer (distance units)
|
||||
* :math:`\epsilon` (energy units)
|
||||
* :math:`\sigma` (distance units)
|
||||
* :math:`r_{in}` (distance units)
|
||||
* :math:`r_c` (distance units)
|
||||
|
||||
The last 2 coefficients are optional inner and outer cutoffs. If not
|
||||
specified, the global values for Rin and Rc are used.
|
||||
specified, the global values for :math:`r_{in}` and :math:`r_c` are used.
|
||||
|
||||
|
||||
----------
|
||||
|
|
|
@ -35,8 +35,12 @@ standard 12/6 Lennard-Jones function and subtracts a linear term based
|
|||
on the cutoff distance, so that both, the potential and the force, go
|
||||
continuously to zero at the cutoff Rc :ref:`(Toxvaerd) <Toxvaerd>`:
|
||||
|
||||
.. image:: Eqs/pair_lj_smooth_linear.jpg
|
||||
:align: center
|
||||
.. math::
|
||||
|
||||
\phi\left(r\right) & = 4 \epsilon \left[ \left(\frac{\sigma}{r}\right)^{12} -
|
||||
\left(\frac{\sigma}{r}\right)^6 \right] \\
|
||||
E\left(r\right) & = \phi\left(r\right) - \phi\left(R_c\right) - \left(r - R_c\right) \left.\frac{d\phi}{d r} \right|_{r=R_c} \qquad r < R_c
|
||||
|
||||
|
||||
The following coefficients must be defined for each pair of atoms
|
||||
types via the :doc:`pair_coeff <pair_coeff>` command as in the examples
|
||||
|
@ -44,8 +48,8 @@ above, or in the data file or restart files read by the
|
|||
:doc:`read_data <read_data>` or :doc:`read_restart <read_restart>`
|
||||
commands, or by mixing as described below:
|
||||
|
||||
* epsilon (energy units)
|
||||
* sigma (distance units)
|
||||
* :math:`\epsilon` (energy units)
|
||||
* :math:`\sigma` (distance units)
|
||||
* cutoff (distance units)
|
||||
|
||||
The last coefficient is optional. If not specified, the global
|
||||
|
|