git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@13403 f3b2605a-c512-4ea7-a41b-209d697bcdaa

This commit is contained in:
sjplimp 2015-04-11 23:25:39 +00:00
parent 4ae6abbea5
commit 5be82e22ee
2 changed files with 14 additions and 8 deletions

View File

@ -79,10 +79,13 @@ velocity for each atom. Note that if there is only one atom in the
bin, its thermal velocity will thus be 0.0.
</P>
<P>After the spatially-averaged velocity field has been subtracted from
each atom, the temperature is calculated by the formula KE = dim/2 N k
T, where KE = total kinetic energy of the group of atoms (sum of 1/2 m
v^2), dim = 2 or 3 = dimensionality of the simulation, N = number of
atoms in the group, k = Boltzmann constant, and T = temperature.
each atom, the temperature is calculated by the formula KE = (dim/2 N
- dim*Nx*Ny*Nz) k T, where KE = total kinetic energy of the group of
atoms (sum of 1/2 m v^2), dim = 2 or 3 = dimensionality of the
simulation, N = number of atoms in the group, k = Boltzmann constant,
and T = temperature. The dim*Nx*Ny*Nz term are degrees of freedom
subtracted to adjust for the removal of the center-of-mass velocity in
each of Nx*Ny*Nz bins, as discussed in the <A HREF = "#Evans">(Evans)</A> paper.
</P>
<P>If the <I>out</I> keyword is used with a <I>tensor</I> value, which is the
default, a kinetic energy tensor, stored as a 6-element vector, is

View File

@ -69,10 +69,13 @@ velocity for each atom. Note that if there is only one atom in the
bin, its thermal velocity will thus be 0.0.
After the spatially-averaged velocity field has been subtracted from
each atom, the temperature is calculated by the formula KE = dim/2 N k
T, where KE = total kinetic energy of the group of atoms (sum of 1/2 m
v^2), dim = 2 or 3 = dimensionality of the simulation, N = number of
atoms in the group, k = Boltzmann constant, and T = temperature.
each atom, the temperature is calculated by the formula KE = (dim/2 N
- dim*Nx*Ny*Nz) k T, where KE = total kinetic energy of the group of
atoms (sum of 1/2 m v^2), dim = 2 or 3 = dimensionality of the
simulation, N = number of atoms in the group, k = Boltzmann constant,
and T = temperature. The dim*Nx*Ny*Nz term are degrees of freedom
subtracted to adjust for the removal of the center-of-mass velocity in
each of Nx*Ny*Nz bins, as discussed in the "(Evans)"_#Evans paper.
If the {out} keyword is used with a {tensor} value, which is the
default, a kinetic energy tensor, stored as a 6-element vector, is