Merge branch 'mliap' of github.com:athomps/lammps into mliap

This commit is contained in:
Axel Kohlmeyer 2020-06-22 12:01:34 -04:00
commit 5a1882e00d
No known key found for this signature in database
GPG Key ID: D9B44E93BF0C375A
2 changed files with 0 additions and 443 deletions

View File

@ -1,356 +0,0 @@
/* ----------------------------------------------------------------------
LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
http://lammps.sandia.gov, Sandia National Laboratories
Steve Plimpton, sjplimp@sandia.gov
Copyright (2003) Sandia Corporation. Under the terms of Contract
DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains
certain rights in this software. This software is distributed under
the GNU General Public License.
See the README file in the top-level LAMMPS directory.
------------------------------------------------------------------------- */
#include <cstring>
#include <cstdlib>
#include "mliap_model_linear.h"
#include "mliap_model_quadratic.h"
#include "mliap_descriptor_snap.h"
#include "compute_mliap.h"
#include "atom.h"
#include "update.h"
#include "modify.h"
#include "neighbor.h"
#include "neigh_list.h"
#include "neigh_request.h"
#include "force.h"
#include "pair.h"
#include "comm.h"
#include "memory.h"
#include "error.h"
using namespace LAMMPS_NS;
enum{SCALAR,VECTOR,ARRAY};
ComputeMLIAP::ComputeMLIAP(LAMMPS *lmp, int narg, char **arg) :
Compute(lmp, narg, arg), cutsq(NULL), list(NULL), mliap(NULL),
mliap_peratom(NULL), mliapall(NULL)
{
array_flag = 1;
extarray = 0;
int ntypes = atom->ntypes;
if (narg < 4)
error->all(FLERR,"Illegal compute mliap command");
// process keywords
int iarg = 0;
while (iarg < narg) {
if (strcmp(arg[iarg],"model") == 0) {
if (iarg+2 > narg) error->all(FLERR,"Illegal compute mliap command");
if (strcmp(arg[iarg+1],"linear") == 0) {
if (iarg+3 > narg) error->all(FLERR,"Illegal compute mliap command");
model = new MLIAPModelLinear(lmp,arg[iarg+2]);
iarg += 3;
} else if (strcmp(arg[iarg+1],"quadratic") == 0) {
if (iarg+3 > narg) error->all(FLERR,"Illegal compute mliap command");
model = new MLIAPModelQuadratic(lmp,arg[iarg+2]);
iarg += 3;
} else error->all(FLERR,"Illegal compute mliap command");
} else if (strcmp(arg[iarg],"descriptor") == 0) {
if (iarg+2 > narg) error->all(FLERR,"Illegal compute mliap command");
if (strcmp(arg[iarg+1],"sna") == 0) {
if (iarg+3 > narg) error->all(FLERR,"Illegal compute mliap command");
descriptor = new MLIAPDescriptorSNAP(lmp,arg[iarg+2]);
iarg += 3;
} else error->all(FLERR,"Illegal compute mliap command");
}
}
nparams = model->nparams;
nperdim = nparams;
ndims_force = 3;
ndims_virial = 6;
yoffset = nperdim;
zoffset = 2*nperdim;
natoms = atom->natoms;
size_array_rows = 1+ndims_force*natoms+ndims_virial;
size_array_cols = nperdim*atom->ntypes+1;
lastcol = size_array_cols-1;
ndims_peratom = ndims_force;
size_peratom = ndims_peratom*nperdim*atom->ntypes;
nmax = 0;
}
/* ---------------------------------------------------------------------- */
ComputeMLIAP::~ComputeMLIAP()
{
memory->destroy(mliap);
memory->destroy(mliapall);
memory->destroy(mliap_peratom);
memory->destroy(cutsq);
memory->destroy(map);
}
/* ---------------------------------------------------------------------- */
void ComputeMLIAP::init()
{
if (force->pair == NULL)
error->all(FLERR,"Compute mliap requires a pair style be defined");
if (descriptor->get_cutmax() > force->pair->cutforce)
error->all(FLERR,"Compute mliap cutoff is longer than pairwise cutoff");
// need an occasional full neighbor list
int irequest = neighbor->request(this,instance_me);
neighbor->requests[irequest]->pair = 0;
neighbor->requests[irequest]->compute = 1;
neighbor->requests[irequest]->half = 0;
neighbor->requests[irequest]->full = 1;
neighbor->requests[irequest]->occasional = 1;
int count = 0;
for (int i = 0; i < modify->ncompute; i++)
if (strcmp(modify->compute[i]->style,"mliap") == 0) count++;
if (count > 1 && comm->me == 0)
error->warning(FLERR,"More than one compute mliap");
// allocate memory for global array
memory->create(mliap,size_array_rows,size_array_cols,
"mliap:mliap");
memory->create(mliapall,size_array_rows,size_array_cols,
"mliap:mliapall");
array = mliapall;
// find compute for reference energy
char *id_pe = (char *) "thermo_pe";
int ipe = modify->find_compute(id_pe);
if (ipe == -1)
error->all(FLERR,"compute thermo_pe does not exist.");
c_pe = modify->compute[ipe];
// add compute for reference virial tensor
char *id_virial = (char *) "mliap_press";
char **newarg = new char*[5];
newarg[0] = id_virial;
newarg[1] = (char *) "all";
newarg[2] = (char *) "pressure";
newarg[3] = (char *) "NULL";
newarg[4] = (char *) "virial";
modify->add_compute(5,newarg);
delete [] newarg;
int ivirial = modify->find_compute(id_virial);
if (ivirial == -1)
error->all(FLERR,"compute mliap_press does not exist.");
c_virial = modify->compute[ivirial];
}
/* ---------------------------------------------------------------------- */
void ComputeMLIAP::init_list(int /*id*/, NeighList *ptr)
{
list = ptr;
}
/* ---------------------------------------------------------------------- */
void ComputeMLIAP::compute_array()
{
int ntotal = atom->nlocal + atom->nghost;
invoked_array = update->ntimestep;
// grow mliap_peratom array if necessary
if (atom->nmax > nmax) {
memory->destroy(mliap_peratom);
nmax = atom->nmax;
memory->create(mliap_peratom,nmax,size_peratom,
"mliap:mliap_peratom");
}
if (gamma_max < list->inum) {
memory->grow(descriptors,list->inum,ndescriptors,"PairMLIAP:descriptors");
memory->grow(gamma,nparams,list->inum,ndescriptors,"PairMLIAP:gamma");
gamma_max = list->inum;
}
// clear global array
for (int irow = 0; irow < size_array_rows; irow++)
for (int icoeff = 0; icoeff < size_array_cols; icoeff++)
mliap[irow][icoeff] = 0.0;
// clear local peratom array
for (int i = 0; i < ntotal; i++)
for (int icoeff = 0; icoeff < size_peratom; icoeff++) {
mliap_peratom[i][icoeff] = 0.0;
}
// invoke full neighbor list (will copy or build if necessary)
neighbor->build_one(list);
// compute descriptors, if needed
if (model->nonlinearflag)
descriptor->forward(map, list, descriptors);
// ***********THIS IS NOT RIGHT**********************
// This whole idea is flawed. The gamma matrix is too big to
// store. Instead, we should generate the A matrix,
// just as ComputeSNAP does, and then pass it to
// the model, which can evaluate gradients of E, F, sigma,
// w.r.t. model parameters.
// calculate descriptor contributions to parameter gradients
// and gamma = double gradient w.r.t. parameters and descriptors
// i.e. gamma = d2E/d\sigma.dB_i
// sigma is a parameter and B_i is a descriptor of atom i
// for SNAP, this is a sparse nparams*natoms*ndescriptors matrix,
// but in general it could be fully dense.
// *******Not implemented yet*****************
// This should populate the energy row and gamma
// For the linear model energy row will look just like the Bi accumulation
// in ComputeSNAP i.e. accumulating the intput descriptors vector,
// while gamma will be just 1's and 0's
// For the quadratic model, the energy row will be similar,
// while gamma will be 1's, 0's and Bi's
// model->param_gradient(list, descriptors, mliap[0], gamma);
// calculate descriptor gradient contributions to parameter gradients
// *******Not implemented yet*****************
// This will just take gamma and multiply it with
// descriptor gradient contributions i.e. dblist
// this will resemble snadi accumualation in ComputeSNAP
// descriptor->param_backward(list, gamma, snadi);
// accumulate descriptor gradient contributions to global array
for (int itype = 0; itype < atom->ntypes; itype++) {
const int typeoffset_local = ndims_peratom*nperdim*itype;
const int typeoffset_global = nperdim*itype;
for (int icoeff = 0; icoeff < nperdim; icoeff++) {
int irow = 1;
for (int i = 0; i < ntotal; i++) {
double *snadi = mliap_peratom[i]+typeoffset_local;
int iglobal = atom->tag[i];
int irow = 3*(iglobal-1)+1;
mliap[irow][icoeff+typeoffset_global] += snadi[icoeff];
mliap[irow+1][icoeff+typeoffset_global] += snadi[icoeff+yoffset];
mliap[irow+2][icoeff+typeoffset_global] += snadi[icoeff+zoffset];
}
}
}
// accumulate forces to global array
for (int i = 0; i < atom->nlocal; i++) {
int iglobal = atom->tag[i];
int irow = 3*(iglobal-1)+1;
mliap[irow][lastcol] = atom->f[i][0];
mliap[irow+1][lastcol] = atom->f[i][1];
mliap[irow+2][lastcol] = atom->f[i][2];
}
// accumulate bispectrum virial contributions to global array
dbdotr_compute();
// sum up over all processes
MPI_Allreduce(&mliap[0][0],&mliapall[0][0],size_array_rows*size_array_cols,MPI_DOUBLE,MPI_SUM,world);
// assign energy to last column
int irow = 0;
double reference_energy = c_pe->compute_scalar();
mliapall[irow++][lastcol] = reference_energy;
// assign virial stress to last column
// switch to Voigt notation
c_virial->compute_vector();
irow += 3*natoms;
mliapall[irow++][lastcol] = c_virial->vector[0];
mliapall[irow++][lastcol] = c_virial->vector[1];
mliapall[irow++][lastcol] = c_virial->vector[2];
mliapall[irow++][lastcol] = c_virial->vector[5];
mliapall[irow++][lastcol] = c_virial->vector[4];
mliapall[irow++][lastcol] = c_virial->vector[3];
}
/* ----------------------------------------------------------------------
compute global virial contributions via summing r_i.dB^j/dr_i over
own & ghost atoms
------------------------------------------------------------------------- */
void ComputeMLIAP::dbdotr_compute()
{
double **x = atom->x;
int irow0 = 1+ndims_force*natoms;
// sum over bispectrum contributions to forces
// on all particles including ghosts
int nall = atom->nlocal + atom->nghost;
for (int i = 0; i < nall; i++)
for (int itype = 0; itype < atom->ntypes; itype++) {
const int typeoffset_local = ndims_peratom*nperdim*itype;
const int typeoffset_global = nperdim*itype;
double *snadi = mliap_peratom[i]+typeoffset_local;
for (int icoeff = 0; icoeff < nperdim; icoeff++) {
double dbdx = snadi[icoeff];
double dbdy = snadi[icoeff+yoffset];
double dbdz = snadi[icoeff+zoffset];
int irow = irow0;
mliap[irow++][icoeff+typeoffset_global] += dbdx*x[i][0];
mliap[irow++][icoeff+typeoffset_global] += dbdy*x[i][1];
mliap[irow++][icoeff+typeoffset_global] += dbdz*x[i][2];
mliap[irow++][icoeff+typeoffset_global] += dbdz*x[i][1];
mliap[irow++][icoeff+typeoffset_global] += dbdz*x[i][0];
mliap[irow++][icoeff+typeoffset_global] += dbdy*x[i][0];
}
}
}
/* ----------------------------------------------------------------------
memory usage
------------------------------------------------------------------------- */
double ComputeMLIAP::memory_usage()
{
double bytes = size_array_rows*size_array_cols *
sizeof(double); // mliap
bytes += size_array_rows*size_array_cols *
sizeof(double); // mliapall
bytes += nmax*size_peratom * sizeof(double); // mliap_peratom
int n = atom->ntypes+1;
bytes += n*sizeof(int); // map
return bytes;
}

View File

@ -1,87 +0,0 @@
/* -*- c++ -*- ----------------------------------------------------------
LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
http://lammps.sandia.gov, Sandia National Laboratories
Steve Plimpton, sjplimp@sandia.gov
Copyright (2003) Sandia Corporation. Under the terms of Contract
DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains
certain rights in this software. This software is distributed under
the GNU General Public License.
See the README file in the top-level LAMMPS directory.
------------------------------------------------------------------------- */
#ifdef COMPUTE_CLASS
ComputeStyle(mliap,ComputeMLIAP)
#else
#ifndef LMP_COMPUTE_MLIAP_H
#define LMP_COMPUTE_MLIAP_H
#include "compute.h"
namespace LAMMPS_NS {
class ComputeMLIAP : public Compute {
public:
ComputeMLIAP(class LAMMPS *, int, char **);
~ComputeMLIAP();
void init();
void init_list(int, class NeighList *);
void compute_array();
double memory_usage();
private:
int natoms, nmax, size_peratom, lastcol;
int nperdim, yoffset, zoffset;
int ndims_peratom, ndims_force, ndims_virial;
double **cutsq;
class NeighList *list;
double **mliap, **mliapall;
double **mliap_peratom;
int *map; // map types to [0,nelements)
int nelements;
double*** gamma; // gammas for all atoms in list
double** descriptors; // descriptors for all atoms in list
int ndescriptors; // number of descriptors
int gamma_max; // number of atoms allocated for beta, descriptors
int nparams; // number of model paramters per element
class MLIAPModel* model;
class MLIAPDescriptor* descriptor;
Compute *c_pe;
Compute *c_virial;
void dbdotr_compute();
};
}
#endif
#endif
/* ERROR/WARNING messages:
E: Illegal ... command
Self-explanatory. Check the input script syntax and compare to the
documentation for the command. You can use -echo screen as a
command-line option when running LAMMPS to see the offending line.
E: Compute snap requires a pair style be defined
Self-explanatory.
E: Compute snap cutoff is longer than pairwise cutoff
UNDOCUMENTED
W: More than one compute snad/atom
Self-explanatory.
*/