Merge pull request #1120 from pmla/polyhedral-template-matching

Added compute for Polyhedral Template Matching
This commit is contained in:
Axel Kohlmeyer 2018-09-28 12:26:06 +02:00 committed by GitHub
commit 4fe23c3854
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
46 changed files with 7561 additions and 7 deletions

1
.github/CODEOWNERS vendored
View File

@ -30,6 +30,7 @@ src/USER-MOFFF/* @hheenen
src/USER-MOLFILE/* @akohlmey
src/USER-NETCDF/* @pastewka
src/USER-PHONON/* @lingtikong
src/USER-PTM/* @pmla
src/USER-OMP/* @akohlmey
src/USER-QMMM/* @akohlmey
src/USER-REAXC/* @hasanmetin

View File

@ -164,12 +164,13 @@ set(LAMMPS_DEPS)
set(LAMMPS_API_DEFINES)
set(DEFAULT_PACKAGES ASPHERE BODY CLASS2 COLLOID COMPRESS DIPOLE GRANULAR
KSPACE MANYBODY MC MEAM MESSAGE MISC MOLECULE PERI REAX REPLICA RIGID SHOCK SPIN SNAP
SRD KIM PYTHON MSCG MPIIO VORONOI POEMS LATTE USER-ATC USER-AWPMD USER-BOCS
USER-CGDNA USER-MESO USER-CGSDK USER-COLVARS USER-DIFFRACTION USER-DPD USER-DRUDE
USER-EFF USER-FEP USER-H5MD USER-LB USER-MANIFOLD USER-MEAMC USER-MGPT USER-MISC
USER-MOFFF USER-MOLFILE USER-NETCDF USER-PHONON USER-QTB USER-REAXC USER-SCAFACOS
USER-SMD USER-SMTBQ USER-SPH USER-TALLY USER-UEF USER-VTK USER-QUIP USER-QMMM)
KSPACE MANYBODY MC MEAM MESSAGE MISC MOLECULE PERI REAX REPLICA RIGID SHOCK
SPIN SNAP SRD KIM PYTHON MSCG MPIIO VORONOI POEMS LATTE USER-ATC USER-AWPMD
USER-BOCS USER-CGDNA USER-MESO USER-CGSDK USER-COLVARS USER-DIFFRACTION
USER-DPD USER-DRUDE USER-EFF USER-FEP USER-H5MD USER-LB USER-MANIFOLD
USER-MEAMC USER-MGPT USER-MISC USER-MOFFF USER-MOLFILE USER-NETCDF
USER-PHONON USER-PTM USER-QTB USER-REAXC USER-SCAFACOS USER-SMD USER-SMTBQ
USER-SPH USER-TALLY USER-UEF USER-VTK USER-QUIP USER-QMMM)
set(ACCEL_PACKAGES USER-OMP KOKKOS OPT USER-INTEL GPU)
set(OTHER_PACKAGES CORESHELL QEQ)
foreach(PKG ${DEFAULT_PACKAGES})

View File

@ -96,6 +96,7 @@ KOKKOS, o = USER-OMP, t = OPT.
"property/atom"_compute_property_atom.html,
"property/chunk"_compute_property_chunk.html,
"property/local"_compute_property_local.html,
"ptm/atom"_compute_ptm_atom.html
"rdf"_compute_rdf.html,
"reduce"_compute_reduce.html,
"reduce/chunk"_compute_reduce_chunk.html,

BIN
doc/src/Eqs/ptm_rmsd.jpg Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 6.7 KiB

21
doc/src/Eqs/ptm_rmsd.tex Normal file
View File

@ -0,0 +1,21 @@
\documentclass[12pt,article]{article}
\usepackage{indentfirst}
\usepackage{amsmath}
\newcommand{\set}[1]{\ensuremath{\mathbf{#1}}}
\newcommand{\mean}[1]{\ensuremath{\overline{#1}}}
\newcommand{\norm}[1]{\ensuremath{\left|\left|{#1}\right|\right|}}
\begin{document}
\begin{equation*}
\text{RMSD}(\set{u}, \set{v}) = \min_{s, \set{Q}} \sqrt{\frac{1}{N} \sum\limits_{i=1}^{N}
\norm{
s[\vec{u_i} - \mean{\set{u}}]
-
\set{Q} \vec{v_i}
}^2}
\end{equation*}
\end{document}

View File

@ -89,6 +89,7 @@ as contained in the file name.
"USER-NETCDF"_#PKG-USER-NETCDF,
"USER-OMP"_#PKG-USER-OMP,
"USER-PHONON"_#PKG-USER-PHONON,
"USER-PTM"_#PKG-USER-PTM,
"USER-QMMM"_#PKG-USER-QMMM,
"USER-QTB"_#PKG-USER-QTB,
"USER-QUIP"_#PKG-USER-QUIP,
@ -1744,6 +1745,25 @@ examples/USER/phonon :ul
:line
USER-PTM package :link(PKG-USER-PTM),h4
[Contents:]
A "compute ptm/atom"_compute_ptm.html command that calculates
local structure characterization using the Polyhedral Template
Matching methodology.
[Author:] Peter Mahler Larsen (MIT).
[Supporting info:]
src/USER-PHONON: filenames -> commands
src/USER-PHONON/README
"fix phonon"_fix_phonon.html
examples/USER/phonon :ul
:line
USER-QMMM package :link(PKG-USER-QMMM),h4
[Contents:]

View File

@ -62,6 +62,7 @@ Package, Description, Doc page, Example, Library
"USER-NETCDF"_Packages_details.html#PKG-USER-NETCDF, dump output via NetCDF,"dump netcdf"_dump_netcdf.html, n/a, ext
"USER-OMP"_Packages_details.html#PKG-USER-OMP, OpenMP-enabled styles,"Speed omp"_Speed_omp.html, "Benchmarks"_http://lammps.sandia.gov/bench.html, no
"USER-PHONON"_Packages_details.html#PKG-USER-PHONON, phonon dynamical matrix,"fix phonon"_fix_phonon.html, USER/phonon, no
"USER-PTM"_Packages_details.html#PKG-USER-PTM, Polyhedral Template Matching,"compute ptm/atom"_compute_ptm.html, n/a, no
"USER-QMMM"_Packages_details.html#PKG-USER-QMMM, QM/MM coupling,"fix qmmm"_fix_qmmm.html, USER/qmmm, ext
"USER-QTB"_Packages_details.html#PKG-USER-QTB, quantum nuclear effects,"fix qtb"_fix_qtb.html "fix qbmsst"_fix_qbmsst.html, qtb, no
"USER-QUIP"_Packages_details.html#PKG-USER-QUIP, QUIP/libatoms interface,"pair_style quip"_pair_quip.html, USER/quip, ext

View File

@ -0,0 +1,121 @@
"LAMMPS WWW Site"_lws - "LAMMPS Documentation"_ld - "LAMMPS Commands"_lc :c
:link(lws,http://lammps.sandia.gov)
:link(ld,Manual.html)
:link(lc,Section_commands.html#comm)
:line
compute ptm/atom command :h3
[Syntax:]
compute ID group-ID ptm/atom structures threshold :pre
ID, group-ID are documented in "compute"_compute.html command
ptm/atom = style name of this compute command
structures = structure types to search for
threshold = lattice distortion threshold (RMSD) :ul
[Examples:]
compute 1 all ptm/atom default 0.1
compute 1 all ptm/atom fcc-hcp-dcub-dhex 0.15
compute 1 all ptm/atom all 0 :pre
[Description:]
Define a computation that determines the local lattice structure
around an atom using the PTM (Polyhedral Template Matching) method.
The PTM method is described in "(Larsen)"_#Larsen.
Currently, there are seven lattice structures PTM recognizes:
fcc = 1
hcp = 2
bcc = 3
ico (icosahedral) = 4
sc (simple cubic) = 5
dcub (diamond cubic) = 6
dhex (diamond hexagonal) = 7
other = 8 :ul
The value of the PTM structure will be 0 for atoms not in the specified
compute group. The choice of structures to search for can be specified using the "structures"
argument, which is a hyphen-separated list of structure keywords.
Two convenient pre-set options are provided:
default: fcc-hcp-bcc-ico
all: fcc-hcp-bcc-ico-sc-dcub-dhex :ul
The 'default' setting detects the same structures as the Common Neighbor Analysis method.
The 'all' setting searches for all structure types. A small performance penalty is
incurred for the diamond structures, so it is not recommended to use this option if
it is known that the simulation does not contain diamond structures.
PTM identifies structures using two steps. First, a graph isomorphism test is used
to identify potential structure matches. Next, the deviation is computed between the
local structure (in the simulation) and a template of the ideal lattice structure.
The deviation is calculated as:
:c,image(Eqs/ptm_rmsd.jpg)
Here, u and v contain the coordinates of the local and ideal structures respectively,
s is a scale factor, and Q is a rotation. The best match is identified by the
lowest RMSD value, using the optimal scaling, rotation, and correspondence between the
points.
The 'threshold' keyword sets an upper limit on the maximum permitted deviation before
a local structure is identified as disordered. Typical values are in the range 0.1-0.15,
but larger values may be desirable at higher temperatures.
A value of 0 is equivalent to infinity and can be used if no threshold is desired.
The neighbor list needed to compute this quantity is constructed each
time the calculation is performed (e.g. each time a snapshot of atoms
is dumped). Thus it can be inefficient to compute/dump this quantity
too frequently or to have multiple compute/dump commands, each with a
{ptm/atom} style.
[Output info:]
This compute calculates a per-atom array, which can be accessed by
any command that uses per-atom values from a compute as input. See
"Section 6.15"_Section_howto.html#howto_15 for an overview of
LAMMPS output options.
Results are stored in the per-atom array in the following order:
type
rmsd
interatomic distance
qw
qx
qy
qw :ul
The type is a number from 0 to 8. The rmsd is a positive real number.
The interatomic distance is computed from the scale factor in the RMSD equation.
The (qw,qx,qy,qz) parameters represent the orientation of the local structure
in quaternion form. The reference coordinates for each template (from which the
orientation is determined) can be found in the {ptm_constants.h} file in the PTM source directory.
[Restrictions:]
This fix is part of the USER-PTM package. It is only enabled if
LAMMPS was built with that package. See the "Build
package"_Build_package.html doc page for more info.
[Related commands:]
"compute centro/atom"_compute_centro_atom.html
"compute cna/atom"_compute_cna_atom.html
[Default:] none
:line
:link(Larsen)
[(Larsen)] Larsen, Schmidt, Schiøtz, Modelling Simul Mater Sci Eng, 24, 055007 (2016).

View File

@ -71,6 +71,7 @@ Computes :h1
compute_property_atom
compute_property_chunk
compute_property_local
compute_ptm_atom
compute_rdf
compute_reduce
compute_reduce_chunk

View File

@ -468,6 +468,7 @@ compute_pressure_uef.html
compute_property_atom.html
compute_property_chunk.html
compute_property_local.html
compute_ptm_atom.html
compute_rdf.html
compute_reduce.html
compute_reduce_chunk.html

5
src/.gitignore vendored
View File

@ -41,6 +41,11 @@
/pair_meamc.cpp
/pair_meamc.h
/ptm_*.cpp
/ptm_*.h
/compute_ptm.cpp
/compute_ptm.h
/fix_qeq*.cpp
/fix_qeq*.h

View File

@ -61,7 +61,7 @@ PACKUSER = user-atc user-awpmd user-bocs user-cgdna user-cgsdk user-colvars \
user-diffraction user-dpd user-drude user-eff user-fep user-h5md \
user-intel user-lb user-manifold user-meamc user-meso \
user-mgpt user-misc user-mofff user-molfile \
user-netcdf user-omp user-phonon user-qmmm user-qtb \
user-netcdf user-omp user-phonon user-ptm user-qmmm user-qtb \
user-quip user-reaxc user-scafacos user-smd user-smtbq \
user-sph user-tally user-uef user-vtk

7
src/USER-PTM/LICENSE Normal file
View File

@ -0,0 +1,7 @@
Copyright (c) 2016 PM Larsen
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

View File

@ -0,0 +1,307 @@
/* ----------------------------------------------------------------------
LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
http://lammps.sandia.gov, Sandia National Laboratories
Steve Plimpton, sjplimp@sandia.gov
Copyright (2003) Sandia Corporation. Under the terms of Contract
DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains
certain rights in this software. This software is distributed
under
the GNU General Public License.
See the README file in the top-level LAMMPS directory.
------------------------------------------------------------------------- */
/* ----------------------------------------------------------------------
Contributing author: PM Larsen (MIT)
------------------------------------------------------------------------- */
#include <algorithm>
#include <cmath>
#include <cstdlib>
#include <cstring>
#include "atom.h"
#include "comm.h"
#include "compute_ptm_atom.h"
#include "error.h"
#include "force.h"
#include "memory.h"
#include "modify.h"
#include "neigh_list.h"
#include "neigh_request.h"
#include "neighbor.h"
#include "pair.h"
#include "update.h"
#include "ptm_functions.h"
#define MAX_NEIGHBORS 30
#define NUM_COLUMNS 7
#define UNKNOWN 0
#define OTHER 8
using namespace LAMMPS_NS;
static const char cite_user_ptm_package[] =
"USER-PTM package:\n\n"
"@Article{larsen2016ptm,\n"
" author={Larsen, Peter Mahler and Schmidt, S{\\o}ren and Schi{\\o}tz, "
"Jakob},\n"
" title={Robust structural identification via polyhedral template "
"matching},\n"
" journal={Modelling~Simul.~Mater.~Sci.~Eng.},\n"
" year={2016},\n"
" number={5},\n"
" volume={24},\n"
" pages={055007},\n"
" DOI = {10.1088/0965-0393/24/5/055007}"
"}\n\n";
/* ---------------------------------------------------------------------- */
ComputePTMAtom::ComputePTMAtom(LAMMPS *lmp, int narg, char **arg)
: Compute(lmp, narg, arg), list(NULL), output(NULL) {
if (narg != 5)
error->all(FLERR, "Illegal compute ptm/atom command");
char *structures = arg[3];
char *ptr = structures;
const char *strings[] = {"fcc", "hcp", "bcc", "ico", "sc",
"dcub", "dhex", "all", "default"};
int32_t flags[] = {
PTM_CHECK_FCC,
PTM_CHECK_HCP,
PTM_CHECK_BCC,
PTM_CHECK_ICO,
PTM_CHECK_SC,
PTM_CHECK_DCUB,
PTM_CHECK_DHEX,
PTM_CHECK_ALL,
PTM_CHECK_FCC | PTM_CHECK_HCP | PTM_CHECK_BCC | PTM_CHECK_ICO};
input_flags = 0;
while (*ptr != '\0') {
bool found = false;
for (int i = 0; i < 9; i++) {
int len = strlen(strings[i]);
if (strncmp(ptr, strings[i], len) == 0) {
input_flags |= flags[i];
ptr += len;
found = true;
break;
}
}
if (!found)
error->all(FLERR,
"Illegal compute ptm/atom command (invalid structure type)");
if (*ptr == '\0')
break;
if (*ptr != '-')
error->all(FLERR,
"Illegal compute ptm/atom command (invalid structure type)");
ptr++;
}
double threshold = force->numeric(FLERR, arg[4]);
if (threshold < 0.0)
error->all(FLERR,
"Illegal compute ptm/atom command (threshold is negative)");
rmsd_threshold = threshold;
if (rmsd_threshold == 0)
rmsd_threshold = INFINITY;
peratom_flag = 1;
size_peratom_cols = NUM_COLUMNS;
create_attribute = 1;
nmax = 0;
}
/* ---------------------------------------------------------------------- */
ComputePTMAtom::~ComputePTMAtom() { memory->destroy(output); }
/* ---------------------------------------------------------------------- */
void ComputePTMAtom::init() {
if (force->pair == NULL)
error->all(FLERR, "Compute ptm/atom requires a pair style be defined");
int count = 0;
for (int i = 0; i < modify->ncompute; i++)
if (strcmp(modify->compute[i]->style, "ptm/atom") == 0)
count++;
if (count > 1 && comm->me == 0)
error->warning(FLERR, "More than one compute ptm/atom defined");
// need an occasional full neighbor list
int irequest = neighbor->request(this, instance_me);
neighbor->requests[irequest]->pair = 0;
neighbor->requests[irequest]->compute = 1;
neighbor->requests[irequest]->half = 0;
neighbor->requests[irequest]->full = 1;
neighbor->requests[irequest]->occasional = 1;
}
/* ---------------------------------------------------------------------- */
void ComputePTMAtom::init_list(int id, NeighList *ptr) { list = ptr; }
/* ---------------------------------------------------------------------- */
typedef struct {
int index;
double d;
} ptmnbr_t;
static bool sorthelper_compare(ptmnbr_t const &a, ptmnbr_t const &b) {
return a.d < b.d;
}
static int get_neighbors(double *pos, int jnum, int *jlist, double **x,
double (*nbr)[3]) {
ptmnbr_t *nbr_order = new ptmnbr_t[jnum];
for (int jj = 0; jj < jnum; jj++) {
int j = jlist[jj];
j &= NEIGHMASK;
double dx = pos[0] - x[j][0];
double dy = pos[1] - x[j][1];
double dz = pos[2] - x[j][2];
double rsq = dx * dx + dy * dy + dz * dz;
nbr_order[jj].index = j;
nbr_order[jj].d = rsq;
}
std::sort(nbr_order, nbr_order + jnum, &sorthelper_compare);
int num_nbrs = std::min(MAX_NEIGHBORS, jnum);
nbr[0][0] = nbr[0][1] = nbr[0][2] = 0;
for (int jj = 0; jj < num_nbrs; jj++) {
int j = nbr_order[jj].index;
nbr[jj + 1][0] = x[j][0] - pos[0];
nbr[jj + 1][1] = x[j][1] - pos[1];
nbr[jj + 1][2] = x[j][2] - pos[2];
}
delete[] nbr_order;
return num_nbrs;
}
void ComputePTMAtom::compute_peratom() {
// PTM global initialization. If already initialized this function does
// nothing.
ptm_initialize_global();
// initialize PTM local storage
ptm_local_handle_t local_handle = ptm_initialize_local();
invoked_peratom = update->ntimestep;
// grow arrays if necessary
if (atom->nmax > nmax) {
memory->destroy(output);
nmax = atom->nmax;
memory->create(output, nmax, NUM_COLUMNS, "ptm:ptm_output");
array_atom = output;
}
// invoke full neighbor list (will copy or build if necessary)
neighbor->build_one(list);
int inum = list->inum;
int *ilist = list->ilist;
int *numneigh = list->numneigh;
int **firstneigh = list->firstneigh;
double **x = atom->x;
int *mask = atom->mask;
int nlocal = atom->nlocal;
for (int ii = 0; ii < inum; ii++) {
int i = ilist[ii];
output[i][0] = UNKNOWN;
if (!(mask[i] & groupbit))
continue;
double *pos = x[i];
int *jlist = firstneigh[i];
int jnum = numneigh[i];
if (jnum <= 0)
continue;
// get neighbours ordered by increasing distance
double nbr[MAX_NEIGHBORS + 1][3];
int num_nbrs = get_neighbors(pos, jnum, jlist, x, nbr);
// check that we have enough neighbours for the desired structure types
int32_t flags = 0;
if (num_nbrs >= PTM_NUM_NBRS_SC && (input_flags & PTM_CHECK_SC))
flags |= PTM_CHECK_SC;
if (num_nbrs >= PTM_NUM_NBRS_FCC && (input_flags & PTM_CHECK_FCC))
flags |= PTM_CHECK_FCC;
if (num_nbrs >= PTM_NUM_NBRS_HCP && (input_flags & PTM_CHECK_HCP))
flags |= PTM_CHECK_HCP;
if (num_nbrs >= PTM_NUM_NBRS_ICO && (input_flags & PTM_CHECK_ICO))
flags |= PTM_CHECK_ICO;
if (num_nbrs >= PTM_NUM_NBRS_BCC && (input_flags & PTM_CHECK_BCC))
flags |= PTM_CHECK_BCC;
if (num_nbrs >= PTM_NUM_NBRS_DCUB && (input_flags & PTM_CHECK_DCUB))
flags |= PTM_CHECK_DCUB;
if (num_nbrs >= PTM_NUM_NBRS_DHEX && (input_flags & PTM_CHECK_DHEX))
flags |= PTM_CHECK_DHEX;
// now run PTM
int8_t mapping[MAX_NEIGHBORS + 1];
int32_t type, alloy_type;
double scale, rmsd, interatomic_distance, lattice_constant;
double q[4], F[9], F_res[3], U[9], P[9];
ptm_index(local_handle, flags, num_nbrs + 1, nbr, NULL, true, &type,
&alloy_type, &scale, &rmsd, q, F, F_res, U, P, mapping,
&interatomic_distance, &lattice_constant);
if (rmsd > rmsd_threshold) {
type = PTM_MATCH_NONE;
}
// printf("%d type=%d rmsd=%f\n", i, type, rmsd);
if (type == PTM_MATCH_NONE)
type = OTHER;
output[i][0] = type;
output[i][1] = rmsd;
output[i][2] = interatomic_distance;
output[i][3] = q[0];
output[i][4] = q[1];
output[i][5] = q[2];
output[i][6] = q[3];
}
// printf("finished ptm analysis\n");
ptm_uninitialize_local(local_handle);
}
/* ----------------------------------------------------------------------
memory usage of local atom-based array
------------------------------------------------------------------------- */
double ComputePTMAtom::memory_usage() {
double bytes = nmax * NUM_COLUMNS * sizeof(double);
bytes += nmax * sizeof(double);
return bytes;
}

View File

@ -0,0 +1,48 @@
/* -*- c++ -*- ----------------------------------------------------------
LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
http://lammps.sandia.gov, Sandia National Laboratories
Steve Plimpton, sjplimp@sandia.gov
Copyright (2003) Sandia Corporation. Under the terms of Contract
DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains
certain rights in this software. This software is distributed under
the GNU General Public License.
See the README file in the top-level LAMMPS directory.
------------------------------------------------------------------------- */
#ifdef COMPUTE_CLASS
ComputeStyle(ptm/atom,ComputePTMAtom)
#else
#ifndef LMP_COMPUTE_PTM_ATOM_H
#define LMP_COMPUTE_PTM_ATOM_H
#include "compute.h"
namespace LAMMPS_NS {
class ComputePTMAtom : public Compute {
public:
ComputePTMAtom(class LAMMPS *, int, char **);
~ComputePTMAtom();
void init();
void init_list(int, class NeighList *);
void compute_peratom();
double memory_usage();
private:
int nmax;
int32_t input_flags;
double rmsd_threshold;
class NeighList *list;
double **output;
};
}
#endif
#endif

View File

@ -0,0 +1,104 @@
#include <algorithm>
#include "ptm_constants.h"
#include "ptm_initialize_data.h"
namespace ptm {
#define NUM_ALLOY_TYPES 3
static uint32_t typedata[NUM_ALLOY_TYPES][3] = {
{PTM_MATCH_FCC, PTM_ALLOY_L10, 0x000001fe},
{PTM_MATCH_FCC, PTM_ALLOY_L12_CU, 0x0000001e},
{PTM_MATCH_FCC, PTM_ALLOY_L12_AU, 0x00001ffe},
};
static bool test_pure(int num_nbrs, int32_t* numbers)
{
for (int i=1;i<num_nbrs + 1;i++)
if (numbers[i] != numbers[0])
return false;
return true;
}
static bool test_binary(int num_nbrs, int32_t* numbers)
{
int a = numbers[0], b = -1;
for (int i=1;i<num_nbrs + 1;i++)
{
if (numbers[i] != a)
{
if (b == -1)
b = numbers[i];
else if (numbers[i] != b)
return false;
}
}
return true;
}
static bool test_shell_structure(const refdata_t* ref, int8_t* mapping, int32_t* numbers, int num_inner)
{
int8_t binary[PTM_MAX_POINTS];
for (int i=0;i<ref->num_nbrs+1;i++)
binary[i] = numbers[mapping[i]] == numbers[0] ? 0 : 1;
for (int i=1;i<num_inner + 1;i++)
if (binary[i] == binary[0])
return false;
for (int i=num_inner+1;i<ref->num_nbrs+1;i++)
if (binary[i] != binary[0])
return false;
return true;
}
static int32_t canonical_alloy_representation(const refdata_t* ref, int8_t* mapping, int32_t* numbers)
{
int8_t binary[PTM_MAX_POINTS];
for (int i=0;i<ref->num_nbrs+1;i++)
binary[i] = numbers[mapping[i]] == numbers[0] ? 0 : 1;
int8_t temp[PTM_MAX_POINTS];
uint32_t best = 0xFFFFFFFF;
for (int j=0;j<ref->num_mappings;j++)
{
for (int i=0;i<ref->num_nbrs+1;i++)
temp[ref->mapping[j][i]] = binary[i];
uint32_t code = 0;
for (int i=0;i<ref->num_nbrs+1;i++)
code |= (temp[i] << i);
best = std::min(best, code);
}
return best;
}
int32_t find_alloy_type(const refdata_t* ref, int8_t* mapping, int32_t* numbers)
{
if (test_pure(ref->num_nbrs, numbers))
return PTM_ALLOY_PURE;
if (!test_binary(ref->num_nbrs, numbers))
return PTM_ALLOY_NONE;
uint32_t code = canonical_alloy_representation(ref, mapping, numbers);
for (int i=0;i<NUM_ALLOY_TYPES;i++)
if ((uint32_t)ref->type == typedata[i][0] && code == typedata[i][2])
return typedata[i][1];
if (ref->type == PTM_MATCH_BCC)
if (test_shell_structure(ref, mapping, numbers, 8))
return PTM_ALLOY_B2;
if (ref->type == PTM_MATCH_DCUB || ref->type == PTM_MATCH_DHEX)
if (test_shell_structure(ref, mapping, numbers, 4))
return PTM_ALLOY_SIC;
return PTM_ALLOY_NONE;
}
}

View File

@ -0,0 +1,13 @@
#ifndef PTM_ALLOY_TYPES_H
#define PTM_ALLOY_TYPES_H
#include "ptm_initialize_data.h"
namespace ptm {
int32_t find_alloy_type(const refdata_t* ref, int8_t* mapping, int32_t* numbers);
}
#endif

View File

@ -0,0 +1,170 @@
#include <string.h>
#include <climits>
#include <algorithm>
#include "ptm_graph_tools.h"
#include "ptm_constants.h"
namespace ptm {
static bool weinberg_coloured(int num_nodes, int num_edges, int8_t common[PTM_MAX_NBRS][PTM_MAX_NBRS], int8_t* colours, int8_t* best_code, int8_t* canonical_labelling, int a, int b)
{
bool m[PTM_MAX_NBRS][PTM_MAX_NBRS];
memset(m, 0, sizeof(bool) * PTM_MAX_NBRS * PTM_MAX_NBRS);
int8_t index[PTM_MAX_NBRS];
memset(index, -1, sizeof(int8_t) * PTM_MAX_NBRS);
int n = 0;
index[a] = colours[a] * num_nodes + n++;
if (index[a] > best_code[0])
return false;
bool winning = false;
if (index[a] < best_code[0])
{
best_code[0] = index[a];
winning = true;
}
int c = -1;
for (int it=1;it<2*num_edges;it++)
{
bool newvertex = index[b] == -1;
if (newvertex)
index[b] = colours[b] * num_nodes + n++;
if (!winning && index[b] > best_code[it])
return false;
if (winning || index[b] < best_code[it])
{
winning = true;
best_code[it] = index[b];
}
if (newvertex)
{
//When a new vertex is reached, take the right-most edge
//relative to the edge on which the vertex is reached.
c = common[a][b];
}
else if (m[b][a] == false)
{
//When an old vertex is reached on a new path, go back
//in the opposite direction.
c = a;
}
else
{
//When an old vertex is reached on an old path, leave the
//vertex on the right-most edge that has not previously
//been traversed in that direction.
c = common[a][b];
while (m[b][c] == true)
c = common[c][b];
}
m[a][b] = true;
a = b;
b = c;
}
if (winning)
{
memcpy(canonical_labelling, index, sizeof(int8_t) * num_nodes);
return true;
}
return false;
}
int canonical_form_coloured(int num_facets, int8_t facets[][3], int num_nodes, int8_t* degree, int8_t* colours, int8_t* canonical_labelling, int8_t* best_code, uint64_t* p_hash)
{
int8_t common[PTM_MAX_NBRS][PTM_MAX_NBRS] = {{0}};
int num_edges = 3 * num_facets / 2;
if (!build_facet_map(num_facets, facets, common))
return -1;
memset(best_code, SCHAR_MAX, sizeof(int8_t) * 2 * PTM_MAX_EDGES);
bool equal = true;
for (int i = 1;i<num_nodes;i++)
if (degree[i] != degree[0] || colours[i] != colours[0])
equal = false;
if (equal)
{
weinberg_coloured(num_nodes, num_edges, common, colours, best_code, canonical_labelling, facets[0][0], facets[0][1]);
}
else
{
uint32_t best_degree = 0;
for (int i = 0;i<num_facets;i++)
{
int a = facets[i][0];
int b = facets[i][1];
int c = facets[i][2];
//int da = colours[a] * num_nodes + degree[a];
//int db = colours[b] * num_nodes + degree[b];
//int dc = colours[c] * num_nodes + degree[c];
int da = degree[a];
int db = degree[b];
int dc = degree[c];
best_degree = std::max(best_degree, ((uint32_t)da << 16) | ((uint32_t)db << 8) | ((uint32_t)dc << 0));
best_degree = std::max(best_degree, ((uint32_t)da << 0) | ((uint32_t)db << 16) | ((uint32_t)dc << 8));
best_degree = std::max(best_degree, ((uint32_t)da << 8) | ((uint32_t)db << 0) | ((uint32_t)dc << 16));
}
for (int i = 0;i<num_facets;i++)
{
int a = facets[i][0];
int b = facets[i][1];
int c = facets[i][2];
//int da = colours[a] * num_nodes + degree[a];
//int db = colours[b] * num_nodes + degree[b];
//int dc = colours[c] * num_nodes + degree[c];
int da = degree[a];
int db = degree[b];
int dc = degree[c];
if (best_degree == (((uint32_t)da << 16) | ((uint32_t)db << 8) | ((uint32_t)dc << 0)))
weinberg_coloured(num_nodes, num_edges, common, colours, best_code, canonical_labelling, a, b);
if (best_degree == (((uint32_t)da << 0) | ((uint32_t)db << 16) | ((uint32_t)dc << 8)))
weinberg_coloured(num_nodes, num_edges, common, colours, best_code, canonical_labelling, b, c);
if (best_degree == (((uint32_t)da << 8) | ((uint32_t)db << 0) | ((uint32_t)dc << 16)))
weinberg_coloured(num_nodes, num_edges, common, colours, best_code, canonical_labelling, c, a);
}
}
for (int i = num_nodes-1;i>=0;i--)
canonical_labelling[i+1] = (canonical_labelling[i] % num_nodes) + 1;
canonical_labelling[0] = 0;
uint64_t hash = 0;
for (int i = 0;i<2 * num_edges;i++)
{
uint64_t e = best_code[i];
e += i % 8;
e &= 0xF;
e <<= (4 * i) % 64;
hash ^= e;
}
*p_hash = hash;
return PTM_NO_ERROR;
}
}

View File

@ -0,0 +1,12 @@
#ifndef PTM_CANONICAL_COLOURED_H
#define PTM_CANONICAL_COLOURED_H
#include <stdint.h>
namespace ptm {
int canonical_form_coloured(int num_facets, int8_t facets[][3], int num_nodes, int8_t* degree, int8_t* colours, int8_t* canonical_labelling, int8_t* best_code, uint64_t* p_hash);
}
#endif

View File

@ -0,0 +1,174 @@
#ifndef PTM_CONSTANTS_H
#define PTM_CONSTANTS_H
//------------------------------------
// definitions
//------------------------------------
#define PTM_NO_ERROR 0
#define PTM_CHECK_FCC (1 << 0)
#define PTM_CHECK_HCP (1 << 1)
#define PTM_CHECK_BCC (1 << 2)
#define PTM_CHECK_ICO (1 << 3)
#define PTM_CHECK_SC (1 << 4)
#define PTM_CHECK_DCUB (1 << 5)
#define PTM_CHECK_DHEX (1 << 6)
#define PTM_CHECK_NONDIAMOND (PTM_CHECK_SC | PTM_CHECK_FCC | PTM_CHECK_HCP | PTM_CHECK_ICO | PTM_CHECK_BCC)
#define PTM_CHECK_ALL (PTM_CHECK_SC | PTM_CHECK_FCC | PTM_CHECK_HCP | PTM_CHECK_ICO | PTM_CHECK_BCC | PTM_CHECK_DCUB | PTM_CHECK_DHEX)
#define PTM_MATCH_NONE 0
#define PTM_MATCH_FCC 1
#define PTM_MATCH_HCP 2
#define PTM_MATCH_BCC 3
#define PTM_MATCH_ICO 4
#define PTM_MATCH_SC 5
#define PTM_MATCH_DCUB 6
#define PTM_MATCH_DHEX 7
#define PTM_ALLOY_NONE 0
#define PTM_ALLOY_PURE 1
#define PTM_ALLOY_L10 2
#define PTM_ALLOY_L12_CU 3
#define PTM_ALLOY_L12_AU 4
#define PTM_ALLOY_B2 5
#define PTM_ALLOY_SIC 6
#define PTM_MAX_INPUT_POINTS 35
#define PTM_MAX_NBRS 16
#define PTM_MAX_POINTS (PTM_MAX_NBRS + 1)
#define PTM_MAX_FACETS 28 //2 * PTM_MAX_NBRS - 4
#define PTM_MAX_EDGES 42 //3 * PTM_MAX_NBRS - 6
//------------------------------------
// number of neighbours
//------------------------------------
#define PTM_NUM_NBRS_FCC 12
#define PTM_NUM_NBRS_HCP 12
#define PTM_NUM_NBRS_BCC 14
#define PTM_NUM_NBRS_ICO 12
#define PTM_NUM_NBRS_SC 6
#define PTM_NUM_NBRS_DCUB 16
#define PTM_NUM_NBRS_DHEX 16
#define PTM_NUM_POINTS_FCC (PTM_NUM_NBRS_FCC + 1)
#define PTM_NUM_POINTS_HCP (PTM_NUM_NBRS_HCP + 1)
#define PTM_NUM_POINTS_BCC (PTM_NUM_NBRS_BCC + 1)
#define PTM_NUM_POINTS_ICO (PTM_NUM_NBRS_ICO + 1)
#define PTM_NUM_POINTS_SC (PTM_NUM_NBRS_SC + 1)
#define PTM_NUM_POINTS_DCUB (PTM_NUM_NBRS_DCUB + 1)
#define PTM_NUM_POINTS_DHEX (PTM_NUM_NBRS_DHEX + 1)
const int ptm_num_nbrs[8] = {0, PTM_NUM_NBRS_FCC, PTM_NUM_NBRS_HCP, PTM_NUM_NBRS_BCC, PTM_NUM_NBRS_ICO, PTM_NUM_NBRS_SC, PTM_NUM_NBRS_DCUB, PTM_NUM_NBRS_DHEX};
//------------------------------------
// template structures
//------------------------------------
//these point sets have barycentre {0, 0, 0} and are scaled such that the mean neighbour distance is 1
const double ptm_template_fcc[PTM_NUM_POINTS_FCC][3] = { { 0. , 0. , 0. },
{ 0. , 0.707106781187, 0.707106781187 },
{ 0. , -0.707106781187, -0.707106781187 },
{ 0. , 0.707106781187, -0.707106781187 },
{ 0. , -0.707106781187, 0.707106781187 },
{ 0.707106781187, 0. , 0.707106781187 },
{ -0.707106781187, 0. , -0.707106781187 },
{ 0.707106781187, 0. , -0.707106781187 },
{ -0.707106781187, 0. , 0.707106781187 },
{ 0.707106781187, 0.707106781187, 0. },
{ -0.707106781187, -0.707106781187, 0. },
{ 0.707106781187, -0.707106781187, 0. },
{ -0.707106781187, 0.707106781187, 0. } };
const double ptm_template_hcp[PTM_NUM_POINTS_HCP][3] = { { 0. , 0. , 0. },
{ 0.707106781186, 0. , 0.707106781186 },
{ -0.235702260395, -0.942809041583, -0.235702260395 },
{ 0.707106781186, 0.707106781186, 0. },
{ -0.235702260395, -0.235702260395, -0.942809041583 },
{ 0. , 0.707106781186, 0.707106781186 },
{ -0.942809041583, -0.235702260395, -0.235702260395 },
{ -0.707106781186, 0.707106781186, 0. },
{ 0. , 0.707106781186, -0.707106781186 },
{ 0.707106781186, 0. , -0.707106781186 },
{ 0.707106781186, -0.707106781186, 0. },
{ -0.707106781186, 0. , 0.707106781186 },
{ 0. , -0.707106781186, 0.707106781186 } };
const double ptm_template_bcc[PTM_NUM_POINTS_BCC][3] = { { 0. , 0. , 0. },
{ -0.541451884327, -0.541451884327, -0.541451884327 },
{ 0.541451884327, 0.541451884327, 0.541451884327 },
{ 0.541451884327, -0.541451884327, -0.541451884327 },
{ -0.541451884327, 0.541451884327, 0.541451884327 },
{ -0.541451884327, 0.541451884327, -0.541451884327 },
{ 0.541451884327, -0.541451884327, 0.541451884327 },
{ -0.541451884327, -0.541451884327, 0.541451884327 },
{ 0.541451884327, 0.541451884327, -0.541451884327 },
{ 0. , 0. , -1.082903768655 },
{ 0. , 0. , 1.082903768655 },
{ 0. , -1.082903768655, 0. },
{ 0. , 1.082903768655, 0. },
{ -1.082903768655, 0. , 0. },
{ 1.082903768655, 0. , 0. } };
const double ptm_template_ico[PTM_NUM_POINTS_ICO][3] = { { 0. , 0. , 0. },
{ 0. , 0.525731112119, 0.850650808352 },
{ 0. , -0.525731112119, -0.850650808352 },
{ 0. , 0.525731112119, -0.850650808352 },
{ 0. , -0.525731112119, 0.850650808352 },
{ -0.525731112119, -0.850650808352, 0. },
{ 0.525731112119, 0.850650808352, 0. },
{ 0.525731112119, -0.850650808352, 0. },
{ -0.525731112119, 0.850650808352, 0. },
{ -0.850650808352, 0. , -0.525731112119 },
{ 0.850650808352, 0. , 0.525731112119 },
{ 0.850650808352, 0. , -0.525731112119 },
{ -0.850650808352, 0. , 0.525731112119 } };
const double ptm_template_sc[PTM_NUM_POINTS_SC][3] = { { 0. , 0. , 0. },
{ 0. , 0. , -1. },
{ 0. , 0. , 1. },
{ 0. , -1. , 0. },
{ 0. , 1. , 0. },
{ -1. , 0. , 0. },
{ 1. , 0. , 0. } };
const double ptm_template_dcub[PTM_NUM_POINTS_DCUB][3] = { { 0. , 0. , 0. },
{ -0.391491627053, 0.391491627053, 0.391491627053 },
{ -0.391491627053, -0.391491627053, -0.391491627053 },
{ 0.391491627053, -0.391491627053, 0.391491627053 },
{ 0.391491627053, 0.391491627053, -0.391491627053 },
{ -0.782983254107, 0. , 0.782983254107 },
{ -0.782983254107, 0.782983254107, 0. },
{ 0. , 0.782983254107, 0.782983254107 },
{ -0.782983254107, -0.782983254107, 0. },
{ -0.782983254107, 0. , -0.782983254107 },
{ 0. , -0.782983254107, -0.782983254107 },
{ 0. , -0.782983254107, 0.782983254107 },
{ 0.782983254107, -0.782983254107, 0. },
{ 0.782983254107, 0. , 0.782983254107 },
{ 0. , 0.782983254107, -0.782983254107 },
{ 0.782983254107, 0. , -0.782983254107 },
{ 0.782983254107, 0.782983254107, 0. } };
const double ptm_template_dhex[PTM_NUM_POINTS_DHEX][3] = { { 0. , 0. , 0. },
{ -0.391491627053, -0.391491627053, -0.391491627053 },
{ 0.391491627053, -0.391491627053, 0.391491627053 },
{ -0.391491627053, 0.391491627053, 0.391491627053 },
{ 0.391491627053, 0.391491627053, -0.391491627053 },
{ -0.260994418036, -1.043977672142, -0.260994418036 },
{ -1.043977672142, -0.260994418036, -0.260994418036 },
{ -0.260994418036, -0.260994418036, -1.043977672142 },
{ 0.782983254107, 0. , 0.782983254107 },
{ 0.782983254107, -0.782983254107, 0. },
{ 0. , -0.782983254107, 0.782983254107 },
{ 0. , 0.782983254107, 0.782983254107 },
{ -0.782983254107, 0.782983254107, 0. },
{ -0.782983254107, 0. , 0.782983254107 },
{ 0.782983254107, 0.782983254107, 0. },
{ 0. , 0.782983254107, -0.782983254107 },
{ 0.782983254107, 0. , -0.782983254107 } };
#endif

View File

@ -0,0 +1,366 @@
#include <cmath>
#include <cfloat>
#include <string.h>
#include <cassert>
#include <algorithm>
#include "ptm_convex_hull_incremental.h"
#include "ptm_constants.h"
namespace ptm {
#define VISIBLE 1
#define INVISIBLE 2
#define BOTH 3
#define TOLERANCE 1E-8
static double norm_squared(double* p)
{
double x = p[0];
double y = p[1];
double z = p[2];
return x*x + y*y + z*z;
}
static double dot_product(const double* a, const double* b)
{
return a[0]*b[0] + a[1]*b[1] + a[2]*b[2];
}
static void cross_product(double* a, double* b, double* c)
{
c[0] = a[1] * b[2] - a[2] * b[1];
c[1] = a[2] * b[0] - a[0] * b[2];
c[2] = a[0] * b[1] - a[1] * b[0];
}
static void calculate_plane_normal(const double (*points)[3], int a, int b, int c, double* plane_normal)
{
double u[3] = { points[b][0] - points[a][0],
points[b][1] - points[a][1],
points[b][2] - points[a][2] };
double v[3] = { points[c][0] - points[a][0],
points[c][1] - points[a][1],
points[c][2] - points[a][2] };
cross_product(u, v, plane_normal);
double norm = sqrt(norm_squared(plane_normal));
plane_normal[0] /= norm;
plane_normal[1] /= norm;
plane_normal[2] /= norm;
}
static double point_plane_distance(const double* w, const double* plane_point, const double* plane_cross)
{
return plane_cross[0] * (plane_point[0] - w[0])
+ plane_cross[1] * (plane_point[1] - w[1])
+ plane_cross[2] * (plane_point[2] - w[2]);
}
static bool calc_max_extent(int num_points, const double (*points)[3], int* min_index, int* max_index)
{
for (int j=0;j<3;j++)
{
double dmin = DBL_MAX, dmax = -DBL_MAX;
int imin = 0, imax = 0;
for (int i = 0;i<num_points;i++)
{
double d = points[i][j];
if (d < dmin)
{
dmin = d;
imin = i;
}
if (d > dmax)
{
dmax = d;
imax = i;
}
}
if (imin == imax)
return false; //degenerate point set
min_index[j] = imin;
max_index[j] = imax;
}
return true;
}
static bool find_third_point(int num_points, const double (*points)[3], int a, int b, int* p_c)
{
const double* x1 = points[a];
const double* x2 = points[b];
double x2x1[3] = {x2[0] - x1[0], x2[1] - x1[1], x2[2] - x1[2]};
double ns_x2x1 = norm_squared(x2x1);
int bi = -1;
double max_dist = 0.0;
for (int i = 0;i<num_points;i++)
{
if (i == a || i == b)
continue;
const double* x0 = points[i];
double x1x0[3] = {x1[0] - x0[0], x1[1] - x0[1], x1[2] - x0[2]};
double dot = dot_product(x1x0, x2x1);
double dist = (norm_squared(x1x0) * ns_x2x1 - dot*dot) / ns_x2x1;
if (dist > max_dist)
{
max_dist = dist;
bi = i;
}
}
*p_c = bi;
return max_dist > TOLERANCE;
}
static bool find_fourth_point(int num_points, const double (*points)[3], int a, int b, int c, int* p_d)
{
double plane_normal[3];
calculate_plane_normal(points, a, b, c, plane_normal);
int bi = -1;
double max_dist = 0.0;
for (int i = 0;i<num_points;i++)
{
if (i == a || i == b || i == c)
continue;
const double* x0 = points[i];
double dist = fabs(point_plane_distance(x0, points[a], plane_normal));
if (dist > max_dist)
{
max_dist = dist;
bi = i;
}
}
*p_d = bi;
return max_dist > TOLERANCE;
}
static int initial_simplex(int num_points, const double (*points)[3], int* initial_vertices)
{
int min_index[3] = {0};
int max_index[3] = {0};
if (!calc_max_extent(num_points, points, min_index, max_index))
return -1;
int bi = -1;
double max_dist = 0.0;
for (int i = 0;i<3;i++)
{
int a = min_index[i], b = max_index[i];
double delta[3] = { points[a][0] - points[b][0],
points[a][1] - points[b][1],
points[a][2] - points[b][2] };
double dist = norm_squared(delta);
if (dist > max_dist)
{
bi = i;
max_dist = dist;
}
}
//first two points are (a, b)
int a = min_index[bi], b = max_index[bi], c = -1, d = -1;
if (!find_third_point(num_points, points, a, b, &c))
return -2;
if (!find_fourth_point(num_points, points, a, b, c, &d))
return -3;
initial_vertices[0] = a;
initial_vertices[1] = b;
initial_vertices[2] = c;
initial_vertices[3] = d;
return 0;
}
static bool visible(const double* w, const double* plane_point, const double* plane_normal)
{
return point_plane_distance(w, plane_point, plane_normal) > 0;
}
void add_facet(const double (*points)[3], int a, int b, int c, int8_t* facet, double* plane_normal, double* barycentre)
{
calculate_plane_normal(points, a, b, c, plane_normal);
if (visible(barycentre, points[a], plane_normal))
{
plane_normal[0] = -plane_normal[0];
plane_normal[1] = -plane_normal[1];
plane_normal[2] = -plane_normal[2];
facet[0] = b;
facet[1] = a;
facet[2] = c;
}
else
{
facet[0] = a;
facet[1] = b;
facet[2] = c;
}
}
static int initialize_convex_hull(int num_points, const double (*points)[3], int8_t facets[][3], double plane_normal[][3], bool* processed, int* initial_vertices, double* barycentre)
{
memset(processed, 0, PTM_MAX_POINTS * sizeof(bool));
memset(barycentre, 0, 3 * sizeof(double));
int ret = initial_simplex(num_points, points, initial_vertices);
if (ret != 0)
return ret;
for (int i = 0;i<4;i++)
{
int a = initial_vertices[i];
processed[a] = true;
barycentre[0] += points[a][0];
barycentre[1] += points[a][1];
barycentre[2] += points[a][2];
}
barycentre[0] /= 4;
barycentre[1] /= 4;
barycentre[2] /= 4;
add_facet(points, initial_vertices[0], initial_vertices[1], initial_vertices[2], facets[0], plane_normal[0], barycentre);
add_facet(points, initial_vertices[0], initial_vertices[1], initial_vertices[3], facets[1], plane_normal[1], barycentre);
add_facet(points, initial_vertices[0], initial_vertices[2], initial_vertices[3], facets[2], plane_normal[2], barycentre);
add_facet(points, initial_vertices[1], initial_vertices[2], initial_vertices[3], facets[3], plane_normal[3], barycentre);
return 0;
}
int get_convex_hull(int num_points, const double (*points)[3], convexhull_t* ch, int8_t simplex[][3])
{
assert( num_points == PTM_NUM_POINTS_FCC
|| num_points == PTM_NUM_POINTS_HCP
|| num_points == PTM_NUM_POINTS_BCC
|| num_points == PTM_NUM_POINTS_ICO
|| num_points == PTM_NUM_POINTS_SC
|| num_points == PTM_NUM_POINTS_DCUB
|| num_points == PTM_NUM_POINTS_DHEX);
int ret = 0;
int num_prev = ch->num_prev;
ch->num_prev = num_points;
if (!ch->ok || 0)
{
ret = initialize_convex_hull(num_points, points, ch->facets, ch->plane_normal, ch->processed, ch->initial_vertices, ch->barycentre);
if (ret != 0)
return ret;
ch->num_facets = 4;
num_prev = 0;
}
for (int i = num_prev;i<num_points;i++)
{
if (ch->processed[i])
continue;
ch->processed[i] = true;
int num_to_add = 0;
int8_t to_add[PTM_MAX_FACETS][3];
int8_t edge_visible[PTM_MAX_POINTS][PTM_MAX_POINTS];
memset(edge_visible, 0, sizeof(int8_t) * PTM_MAX_POINTS * PTM_MAX_POINTS);
for (int j = 0;j<ch->num_facets;j++)
{
int a = ch->facets[j][0];
int b = ch->facets[j][1];
int c = ch->facets[j][2];
int u = 0, v = 0, w = 0;
double distance = point_plane_distance(points[i], points[a], ch->plane_normal[j]);
bool vis = distance > TOLERANCE;
if (vis)
{
u = edge_visible[a][b] |= VISIBLE;
edge_visible[b][a] |= VISIBLE;
v = edge_visible[b][c] |= VISIBLE;
edge_visible[c][b] |= VISIBLE;
w = edge_visible[c][a] |= VISIBLE;
edge_visible[a][c] |= VISIBLE;
memcpy(ch->facets[j], ch->facets[ch->num_facets-1], 3 * sizeof(int8_t));
memcpy(ch->plane_normal[j], ch->plane_normal[ch->num_facets-1], 3 * sizeof(double));
ch->num_facets--;
j--;
}
else
{
u = edge_visible[a][b] |= INVISIBLE;
edge_visible[b][a] |= INVISIBLE;
v = edge_visible[b][c] |= INVISIBLE;
edge_visible[c][b] |= INVISIBLE;
w = edge_visible[c][a] |= INVISIBLE;
edge_visible[a][c] |= INVISIBLE;
}
if (u == BOTH)
{
to_add[num_to_add][0] = i;
to_add[num_to_add][1] = a;
to_add[num_to_add][2] = b;
num_to_add++;
}
if (v == BOTH)
{
to_add[num_to_add][0] = i;
to_add[num_to_add][1] = b;
to_add[num_to_add][2] = c;
num_to_add++;
}
if (w == BOTH)
{
to_add[num_to_add][0] = i;
to_add[num_to_add][1] = c;
to_add[num_to_add][2] = a;
num_to_add++;
}
}
for (int j = 0;j<num_to_add;j++)
{
if (ch->num_facets >= PTM_MAX_FACETS)
return -4;
add_facet(points, to_add[j][0], to_add[j][1], to_add[j][2], ch->facets[ch->num_facets], ch->plane_normal[ch->num_facets], ch->barycentre); ch->num_facets++;
}
}
for (int i=0;i<ch->num_facets;i++)
{
int a = ch->facets[i][0];
int b = ch->facets[i][1];
int c = ch->facets[i][2];
if (a == 0 || b == 0 || c == 0)
return 1; //central atom contained in convex hull
simplex[i][0] = a - 1;
simplex[i][1] = b - 1;
simplex[i][2] = c - 1;
}
return ret;
}
}

View File

@ -0,0 +1,30 @@
#ifndef PTM_CONVEX_HULL_INCREMENTAL_H
#define PTM_CONVEX_HULL_INCREMENTAL_H
#include <stdint.h>
#include <stdbool.h>
#include "ptm_constants.h"
namespace ptm {
typedef struct
{
int8_t facets[PTM_MAX_FACETS][3];
double plane_normal[PTM_MAX_FACETS][3];
bool processed[PTM_MAX_POINTS];
int initial_vertices[4];
double barycentre[3];
int num_facets;
int num_prev;
bool ok;
} convexhull_t;
void add_facet(const double (*points)[3], int a, int b, int c, int8_t* facet, double* plane_normal, double* barycentre);
int get_convex_hull(int num_points, const double (*points)[3], convexhull_t* ch, int8_t simplex[][3]);
}
#endif

View File

@ -0,0 +1,40 @@
#include "ptm_deformation_gradient.h"
namespace ptm {
void calculate_deformation_gradient(int num_points, const double (*ideal_points)[3], int8_t* mapping, double (*normalized)[3], const double (*penrose)[3], double* F, double* res)
{
for (int i = 0;i<3;i++)
{
for (int j = 0;j<3;j++)
{
double acc = 0.0;
for (int k = 0;k<num_points;k++)
acc += penrose[k][j] * normalized[mapping[k]][i];
F[i*3 + j] = acc;
}
}
res[0] = 0;
res[1] = 0;
res[2] = 0;
for (int k = 0;k<num_points;k++)
{
for (int i = 0;i<3;i++)
{
double acc = 0.0;
for (int j = 0;j<3;j++)
{
acc += F[i*3 + j] * ideal_points[k][j];
}
double delta = acc - normalized[mapping[k]][i];
res[i] += delta * delta;
}
}
}
}

View File

@ -0,0 +1,146 @@
#ifndef PTM_DEFORMATION_GRADIENT_H
#define PTM_DEFORMATION_GRADIENT_H
#include <stdint.h>
#include "ptm_constants.h"
namespace ptm {
void calculate_deformation_gradient(int num_points, const double (*ideal_points)[3], int8_t* mapping, double (*normalized)[3], const double (*penrose)[3], double* F, double* res);
//sc
#define k_sc 0.5
const double penrose_sc[PTM_NUM_POINTS_SC][3] = {
{0, 0, 0},
{0, 0, -k_sc},
{0, 0, k_sc},
{0, -k_sc, 0},
{0, k_sc, 0},
{-k_sc, 0, 0},
{k_sc, 0, 0},
};
//fcc
#define k_fcc 0.17677669529663678216
const double penrose_fcc[PTM_NUM_POINTS_FCC][3] = {
{0, 0, 0},
{0, k_fcc, k_fcc},
{0, -k_fcc, -k_fcc},
{0, k_fcc, -k_fcc},
{0, -k_fcc, k_fcc},
{k_fcc, 0, k_fcc},
{-k_fcc, 0, -k_fcc},
{k_fcc, 0, -k_fcc},
{-k_fcc, 0, k_fcc},
{k_fcc, k_fcc, -0},
{-k_fcc, -k_fcc, 0},
{k_fcc, -k_fcc, 0},
{-k_fcc, k_fcc, -0},
};
//hcp
#define k_hcp 0.17677669529663678216
const double penrose_hcp[PTM_NUM_POINTS_HCP][3] = {
{0, 0, 0},
{k_hcp, 0, k_hcp},
{-k_hcp/3, -4*k_hcp/3, -k_hcp/3},
{k_hcp, k_hcp, 0},
{-k_hcp/3, -k_hcp/3, -4*k_hcp/3},
{0, k_hcp, k_hcp},
{-4*k_hcp/3, -k_hcp/3, -k_hcp/3},
{-k_hcp, k_hcp, -0},
{0, k_hcp, -k_hcp},
{k_hcp, 0, -k_hcp},
{k_hcp, -k_hcp, 0},
{-k_hcp, 0, k_hcp},
{0, -k_hcp, k_hcp},
};
//ico
#define k_ico 0.13143277802974323576
#define phi 1.61803398874989490253
//((1.0 + sqrt(5)) / 2)
const double penrose_ico[PTM_NUM_POINTS_ICO][3] = {
{0, 0, 0},
{0, k_ico, phi*k_ico},
{0, -k_ico, -phi*k_ico},
{0, k_ico, -phi*k_ico},
{0, -k_ico, phi*k_ico},
{-k_ico, -phi*k_ico, -0},
{k_ico, phi*k_ico, 0},
{k_ico, -phi*k_ico, 0},
{-k_ico, phi*k_ico, -0},
{-phi*k_ico, 0, -k_ico},
{phi*k_ico, 0, k_ico},
{phi*k_ico, 0, -k_ico},
{-phi*k_ico, 0, k_ico},
};
//bcc
#define k_bcc 0.11543038598460284017
const double penrose_bcc[PTM_NUM_POINTS_BCC][3] = {
{0, 0, 0},
{-k_bcc, -k_bcc, -k_bcc},
{k_bcc, k_bcc, k_bcc},
{k_bcc, -k_bcc, -k_bcc},
{-k_bcc, k_bcc, k_bcc},
{-k_bcc, k_bcc, -k_bcc},
{k_bcc, -k_bcc, k_bcc},
{-k_bcc, -k_bcc, k_bcc},
{k_bcc, k_bcc, -k_bcc},
{0, 0, -2*k_bcc},
{0, 0, 2*k_bcc},
{0, -2*k_bcc, 0},
{0, 2*k_bcc, 0},
{-2*k_bcc, 0, 0},
{2*k_bcc, 0, -0},
};
//dcub
#define kdcub 0.07095369570691034689
const double penrose_dcub[PTM_NUM_POINTS_DCUB][3] = {
{ 0, 0, 0 },
{ -kdcub, kdcub, kdcub },
{ -kdcub, -kdcub, -kdcub },
{ kdcub, -kdcub, kdcub },
{ kdcub, kdcub, -kdcub },
{ -2 * kdcub, 0, 2 * kdcub },
{ -2 * kdcub, 2 * kdcub, 0 },
{ 0, 2 * kdcub, 2 * kdcub },
{ -2 * kdcub, -2 * kdcub, 0 },
{ -2 * kdcub, 0, -2 * kdcub },
{ 0, -2 * kdcub, -2 * kdcub },
{ 0, -2 * kdcub, 2 * kdcub },
{ 2 * kdcub, -2 * kdcub, 0 },
{ 2 * kdcub, 0, 2 * kdcub },
{ 0, 2 * kdcub, -2 * kdcub },
{ 2 * kdcub, 0, -2 * kdcub },
{ 2 * kdcub, 2 * kdcub, 0 },
};
#define kdhex 0.04730246380471011397
const double penrose_dhex[PTM_NUM_POINTS_DHEX][3] = {
{ 0, 0, 0 },
{ -kdcub, -kdcub, -kdcub },
{ kdcub, -kdcub, kdcub },
{ -kdcub, kdcub, kdcub },
{ kdcub, kdcub, -kdcub },
{ -kdhex, -4 * kdhex, -kdhex },
{ -4 * kdhex, -kdhex, -kdhex },
{ -kdhex, -kdhex, -4 * kdhex },
{ 2 * kdcub, 0, 2 * kdcub },
{ 2 * kdcub, -2 * kdcub, 0 },
{ 0, -2 * kdcub, 2 * kdcub },
{ 0, 2 * kdcub, 2 * kdcub },
{ -2 * kdcub, 2 * kdcub, 0 },
{ -2 * kdcub, 0, 2 * kdcub },
{ 2 * kdcub, 2 * kdcub, 0 },
{ 0, 2 * kdcub, -2 * kdcub },
{ 2 * kdcub, 0, -2 * kdcub },
};
}
#endif

View File

@ -0,0 +1,27 @@
#ifndef PTM_FUNCTIONS_H
#define PTM_FUNCTIONS_H
#include <stdint.h>
#include <stdbool.h>
#include "ptm_initialize_data.h"
#include "ptm_constants.h"
//------------------------------------
// function declarations
//------------------------------------
#ifdef __cplusplus
extern "C" {
#endif
int ptm_index( ptm_local_handle_t local_handle, int32_t flags, int num_points, double (*atomic_positions)[3], int32_t* atomic_numbers, bool topological_ordering, //inputs
int32_t* p_type, int32_t* p_alloy_type, double* p_scale, double* p_rmsd, double* q, double* F, double* F_res, double* U, double* P, int8_t* mapping, double* p_interatomic_distance, double* p_lattice_constant); //outputs
#ifdef __cplusplus
}
#endif
#endif

View File

@ -0,0 +1,183 @@
#ifndef PTM_FUNDAMENTAL_MAPPINGS_H
#define PTM_FUNDAMENTAL_MAPPINGS_H
#include <stdint.h>
namespace ptm {
#define NUM_CUBIC_MAPPINGS 24
#define NUM_ICO_MAPPINGS 60
#define NUM_HEX_MAPPINGS 6
#define NUM_DCUB_MAPPINGS 12
#define NUM_DHEX_MAPPINGS 3
const int8_t mapping_sc[NUM_CUBIC_MAPPINGS][PTM_MAX_POINTS] = {
{0, 1, 2, 3, 4, 5, 6},
{0, 2, 1, 4, 3, 5, 6},
{0, 2, 1, 3, 4, 6, 5},
{0, 1, 2, 4, 3, 6, 5},
{0, 3, 4, 5, 6, 1, 2},
{0, 5, 6, 2, 1, 4, 3},
{0, 6, 5, 1, 2, 4, 3},
{0, 4, 3, 5, 6, 2, 1},
{0, 5, 6, 1, 2, 3, 4},
{0, 4, 3, 6, 5, 1, 2},
{0, 3, 4, 6, 5, 2, 1},
{0, 6, 5, 2, 1, 3, 4},
{0, 3, 4, 2, 1, 5, 6},
{0, 6, 5, 3, 4, 1, 2},
{0, 1, 2, 5, 6, 4, 3},
{0, 4, 3, 1, 2, 5, 6},
{0, 5, 6, 3, 4, 2, 1},
{0, 1, 2, 6, 5, 3, 4},
{0, 2, 1, 5, 6, 3, 4},
{0, 5, 6, 4, 3, 1, 2},
{0, 3, 4, 1, 2, 6, 5},
{0, 2, 1, 6, 5, 4, 3},
{0, 6, 5, 4, 3, 2, 1},
{0, 4, 3, 2, 1, 6, 5} };
const int8_t mapping_fcc[NUM_CUBIC_MAPPINGS][PTM_MAX_POINTS] = {
{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12},
{0, 2, 1, 4, 3, 7, 8, 5, 6, 11, 12, 9, 10},
{0, 3, 4, 1, 2, 6, 5, 8, 7, 12, 11, 10, 9},
{0, 4, 3, 2, 1, 8, 7, 6, 5, 10, 9, 12, 11},
{0, 9, 10, 11, 12, 1, 2, 4, 3, 5, 6, 8, 7},
{0, 7, 8, 6, 5, 11, 12, 10, 9, 2, 1, 4, 3},
{0, 8, 7, 5, 6, 10, 9, 11, 12, 4, 3, 2, 1},
{0, 11, 12, 9, 10, 2, 1, 3, 4, 7, 8, 6, 5},
{0, 5, 6, 8, 7, 9, 10, 12, 11, 1, 2, 3, 4},
{0, 10, 9, 12, 11, 4, 3, 1, 2, 8, 7, 5, 6},
{0, 12, 11, 10, 9, 3, 4, 2, 1, 6, 5, 7, 8},
{0, 6, 5, 7, 8, 12, 11, 9, 10, 3, 4, 1, 2},
{0, 3, 4, 2, 1, 9, 10, 11, 12, 7, 8, 5, 6},
{0, 12, 11, 9, 10, 8, 7, 5, 6, 1, 2, 4, 3},
{0, 5, 6, 7, 8, 4, 3, 2, 1, 11, 12, 10, 9},
{0, 4, 3, 1, 2, 11, 12, 9, 10, 5, 6, 7, 8},
{0, 9, 10, 12, 11, 7, 8, 6, 5, 3, 4, 2, 1},
{0, 8, 7, 6, 5, 1, 2, 3, 4, 12, 11, 9, 10},
{0, 7, 8, 5, 6, 3, 4, 1, 2, 9, 10, 12, 11},
{0, 11, 12, 10, 9, 5, 6, 8, 7, 4, 3, 1, 2},
{0, 1, 2, 4, 3, 12, 11, 10, 9, 8, 7, 6, 5},
{0, 6, 5, 8, 7, 2, 1, 4, 3, 10, 9, 11, 12},
{0, 10, 9, 11, 12, 6, 5, 7, 8, 2, 1, 3, 4},
{0, 2, 1, 3, 4, 10, 9, 12, 11, 6, 5, 8, 7} };
const int8_t mapping_bcc[NUM_CUBIC_MAPPINGS][PTM_MAX_POINTS] = {
{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14},
{0, 4, 3, 2, 1, 7, 8, 5, 6, 10, 9, 12, 11, 13, 14},
{0, 6, 5, 7, 8, 2, 1, 3, 4, 10, 9, 11, 12, 14, 13},
{0, 8, 7, 5, 6, 3, 4, 2, 1, 9, 10, 12, 11, 14, 13},
{0, 1, 2, 7, 8, 3, 4, 5, 6, 11, 12, 13, 14, 9, 10},
{0, 4, 3, 7, 8, 5, 6, 2, 1, 13, 14, 10, 9, 12, 11},
{0, 8, 7, 3, 4, 2, 1, 5, 6, 14, 13, 9, 10, 12, 11},
{0, 4, 3, 5, 6, 2, 1, 7, 8, 12, 11, 13, 14, 10, 9},
{0, 1, 2, 5, 6, 7, 8, 3, 4, 13, 14, 9, 10, 11, 12},
{0, 8, 7, 2, 1, 5, 6, 3, 4, 12, 11, 14, 13, 9, 10},
{0, 6, 5, 3, 4, 7, 8, 2, 1, 11, 12, 14, 13, 10, 9},
{0, 6, 5, 2, 1, 3, 4, 7, 8, 14, 13, 10, 9, 11, 12},
{0, 7, 8, 6, 5, 1, 2, 4, 3, 11, 12, 10, 9, 13, 14},
{0, 3, 4, 6, 5, 8, 7, 1, 2, 14, 13, 11, 12, 9, 10},
{0, 5, 6, 1, 2, 8, 7, 4, 3, 9, 10, 13, 14, 12, 11},
{0, 5, 6, 8, 7, 4, 3, 1, 2, 12, 11, 9, 10, 13, 14},
{0, 7, 8, 1, 2, 4, 3, 6, 5, 13, 14, 11, 12, 10, 9},
{0, 3, 4, 8, 7, 1, 2, 6, 5, 9, 10, 14, 13, 11, 12},
{0, 7, 8, 4, 3, 6, 5, 1, 2, 10, 9, 13, 14, 11, 12},
{0, 5, 6, 4, 3, 1, 2, 8, 7, 13, 14, 12, 11, 9, 10},
{0, 3, 4, 1, 2, 6, 5, 8, 7, 11, 12, 9, 10, 14, 13},
{0, 2, 1, 6, 5, 4, 3, 8, 7, 10, 9, 14, 13, 12, 11},
{0, 2, 1, 8, 7, 6, 5, 4, 3, 14, 13, 12, 11, 10, 9},
{0, 2, 1, 4, 3, 8, 7, 6, 5, 12, 11, 10, 9, 14, 13} };
const int8_t mapping_ico[NUM_ICO_MAPPINGS][PTM_MAX_POINTS] = {
{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12},
{0, 10, 9, 8, 7, 5, 6, 2, 1, 12, 11, 3, 4},
{0, 1, 2, 9, 10, 7, 8, 11, 12, 5, 6, 3, 4},
{0, 4, 3, 8, 7, 2, 1, 11, 12, 9, 10, 6, 5},
{0, 6, 5, 9, 10, 4, 3, 7, 8, 12, 11, 2, 1},
{0, 12, 11, 3, 4, 7, 8, 10, 9, 2, 1, 6, 5},
{0, 4, 3, 6, 5, 9, 10, 2, 1, 8, 7, 11, 12},
{0, 8, 7, 2, 1, 4, 3, 10, 9, 5, 6, 11, 12},
{0, 10, 9, 3, 4, 12, 11, 5, 6, 8, 7, 2, 1},
{0, 12, 11, 6, 5, 2, 1, 7, 8, 3, 4, 10, 9},
{0, 1, 2, 11, 12, 9, 10, 5, 6, 3, 4, 7, 8},
{0, 8, 7, 11, 12, 5, 6, 4, 3, 2, 1, 10, 9},
{0, 6, 5, 2, 1, 12, 11, 4, 3, 9, 10, 7, 8},
{0, 3, 4, 5, 6, 1, 2, 10, 9, 12, 11, 7, 8},
{0, 3, 4, 7, 8, 12, 11, 1, 2, 5, 6, 10, 9},
{0, 6, 5, 7, 8, 9, 10, 12, 11, 2, 1, 4, 3},
{0, 9, 10, 11, 12, 4, 3, 1, 2, 7, 8, 6, 5},
{0, 11, 12, 9, 10, 1, 2, 4, 3, 8, 7, 5, 6},
{0, 8, 7, 5, 6, 10, 9, 11, 12, 4, 3, 2, 1},
{0, 10, 9, 2, 1, 8, 7, 12, 11, 3, 4, 5, 6},
{0, 12, 11, 2, 1, 10, 9, 6, 5, 7, 8, 3, 4},
{0, 9, 10, 6, 5, 7, 8, 4, 3, 11, 12, 1, 2},
{0, 8, 7, 10, 9, 2, 1, 5, 6, 11, 12, 4, 3},
{0, 6, 5, 12, 11, 7, 8, 2, 1, 4, 3, 9, 10},
{0, 11, 12, 8, 7, 4, 3, 5, 6, 1, 2, 9, 10},
{0, 4, 3, 11, 12, 8, 7, 9, 10, 6, 5, 2, 1},
{0, 4, 3, 9, 10, 11, 12, 6, 5, 2, 1, 8, 7},
{0, 12, 11, 10, 9, 3, 4, 2, 1, 6, 5, 7, 8},
{0, 5, 6, 8, 7, 11, 12, 10, 9, 3, 4, 1, 2},
{0, 7, 8, 6, 5, 12, 11, 9, 10, 1, 2, 3, 4},
{0, 10, 9, 12, 11, 2, 1, 3, 4, 5, 6, 8, 7},
{0, 7, 8, 1, 2, 9, 10, 3, 4, 12, 11, 6, 5},
{0, 5, 6, 1, 2, 3, 4, 11, 12, 8, 7, 10, 9},
{0, 7, 8, 12, 11, 3, 4, 6, 5, 9, 10, 1, 2},
{0, 1, 2, 5, 6, 11, 12, 3, 4, 7, 8, 9, 10},
{0, 11, 12, 1, 2, 5, 6, 9, 10, 4, 3, 8, 7},
{0, 5, 6, 3, 4, 10, 9, 1, 2, 11, 12, 8, 7},
{0, 5, 6, 10, 9, 8, 7, 3, 4, 1, 2, 11, 12},
{0, 3, 4, 12, 11, 10, 9, 7, 8, 1, 2, 5, 6},
{0, 9, 10, 7, 8, 1, 2, 6, 5, 4, 3, 11, 12},
{0, 9, 10, 1, 2, 11, 12, 7, 8, 6, 5, 4, 3},
{0, 7, 8, 3, 4, 1, 2, 12, 11, 6, 5, 9, 10},
{0, 11, 12, 5, 6, 8, 7, 1, 2, 9, 10, 4, 3},
{0, 1, 2, 7, 8, 3, 4, 9, 10, 11, 12, 5, 6},
{0, 3, 4, 10, 9, 5, 6, 12, 11, 7, 8, 1, 2},
{0, 2, 1, 4, 3, 8, 7, 6, 5, 12, 11, 10, 9},
{0, 2, 1, 12, 11, 6, 5, 10, 9, 8, 7, 4, 3},
{0, 9, 10, 4, 3, 6, 5, 11, 12, 1, 2, 7, 8},
{0, 11, 12, 4, 3, 9, 10, 8, 7, 5, 6, 1, 2},
{0, 2, 1, 10, 9, 12, 11, 8, 7, 4, 3, 6, 5},
{0, 5, 6, 11, 12, 1, 2, 8, 7, 10, 9, 3, 4},
{0, 10, 9, 5, 6, 3, 4, 8, 7, 2, 1, 12, 11},
{0, 12, 11, 7, 8, 6, 5, 3, 4, 10, 9, 2, 1},
{0, 7, 8, 9, 10, 6, 5, 1, 2, 3, 4, 12, 11},
{0, 2, 1, 8, 7, 10, 9, 4, 3, 6, 5, 12, 11},
{0, 8, 7, 4, 3, 11, 12, 2, 1, 10, 9, 5, 6},
{0, 6, 5, 4, 3, 2, 1, 9, 10, 7, 8, 12, 11},
{0, 2, 1, 6, 5, 4, 3, 12, 11, 10, 9, 8, 7},
{0, 3, 4, 1, 2, 7, 8, 5, 6, 10, 9, 12, 11},
{0, 4, 3, 2, 1, 6, 5, 8, 7, 11, 12, 9, 10} };
const int8_t mapping_hcp[NUM_HEX_MAPPINGS][PTM_MAX_POINTS] = {
{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12},
{0, 5, 6, 1, 2, 3, 4, 9, 10, 12, 11, 8, 7},
{0, 3, 4, 5, 6, 1, 2, 12, 11, 7, 8, 10, 9},
{0, 4, 3, 2, 1, 6, 5, 11, 12, 10, 9, 7, 8},
{0, 2, 1, 6, 5, 4, 3, 8, 7, 11, 12, 9, 10},
{0, 6, 5, 4, 3, 2, 1, 10, 9, 8, 7, 12, 11} };
const int8_t mapping_dcub[NUM_DCUB_MAPPINGS][PTM_MAX_POINTS] = {
{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16},
{0, 2, 1, 4, 3, 9, 8, 10, 6, 5, 7, 14, 16, 15, 11, 13, 12},
{0, 4, 3, 2, 1, 15, 16, 14, 12, 13, 11, 10, 8, 9, 7, 5, 6},
{0, 3, 4, 1, 2, 13, 12, 11, 16, 15, 14, 7, 6, 5, 10, 9, 8},
{0, 4, 2, 1, 3, 14, 15, 16, 9, 10, 8, 6, 5, 7, 12, 11, 13},
{0, 4, 1, 3, 2, 16, 14, 15, 7, 6, 5, 13, 11, 12, 9, 8, 10},
{0, 1, 4, 2, 3, 6, 7, 5, 14, 16, 15, 9, 10, 8, 13, 12, 11},
{0, 3, 1, 2, 4, 11, 13, 12, 5, 7, 6, 8, 9, 10, 16, 14, 15},
{0, 3, 2, 4, 1, 12, 11, 13, 10, 8, 9, 15, 14, 16, 5, 6, 7},
{0, 2, 4, 3, 1, 10, 9, 8, 15, 14, 16, 12, 13, 11, 6, 7, 5},
{0, 1, 3, 4, 2, 7, 5, 6, 13, 11, 12, 16, 15, 14, 8, 10, 9},
{0, 2, 3, 1, 4, 8, 10, 9, 11, 12, 13, 5, 7, 6, 15, 16, 14} };
const int8_t mapping_dhex[NUM_DHEX_MAPPINGS][PTM_MAX_POINTS] = {
{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16},
{0, 1, 3, 4, 2, 6, 7, 5, 11, 13, 12, 14, 16, 15, 8, 9, 10},
{0, 1, 4, 2, 3, 7, 5, 6, 14, 15, 16, 8, 10, 9, 11, 13, 12} };
}
#endif

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,40 @@
#ifndef PTM_GRAPH_DATA_H
#define PTM_GRAPH_DATA_H
#include <stdint.h>
#include "ptm_constants.h"
namespace ptm {
typedef struct
{
int id;
uint64_t hash;
int automorphism_index;
int num_automorphisms;
int8_t canonical_labelling[PTM_MAX_POINTS];
int8_t facets[PTM_MAX_FACETS][3];
} graph_t;
#define NUM_SC_GRAPHS 1
#define NUM_ICO_GRAPHS 1
#define NUM_FCC_GRAPHS 8
#define NUM_HCP_GRAPHS 16
#define NUM_BCC_GRAPHS 218
#define NUM_DCUB_GRAPHS 12
#define NUM_DHEX_GRAPHS 24
extern int8_t automorphisms[][PTM_MAX_POINTS];
extern graph_t graphs_sc[NUM_SC_GRAPHS];
extern graph_t graphs_fcc[NUM_FCC_GRAPHS];
extern graph_t graphs_hcp[NUM_HCP_GRAPHS];
extern graph_t graphs_ico[NUM_ICO_GRAPHS];
extern graph_t graphs_bcc[NUM_BCC_GRAPHS];
extern graph_t graphs_dcub[NUM_DCUB_GRAPHS];
extern graph_t graphs_dhex[NUM_DHEX_GRAPHS];
}
#endif

View File

@ -0,0 +1,56 @@
#include <string.h>
#include <algorithm>
#include "ptm_graph_tools.h"
#include "ptm_constants.h"
namespace ptm {
bool build_facet_map(int num_facets, int8_t facets[][3], int8_t common[PTM_MAX_NBRS][PTM_MAX_NBRS])
{
memset(common, -1, sizeof(int8_t) * PTM_MAX_NBRS * PTM_MAX_NBRS);
for (int i = 0;i<num_facets;i++)
{
int a = facets[i][0];
int b = facets[i][1];
int c = facets[i][2];
//assert(common[a][b] == -1);
//assert(common[b][c] == -1);
//assert(common[c][a] == -1);
if (common[a][b] != -1 || common[b][c] != -1 || common[c][a] != -1)
return false;
common[a][b] = c;
common[b][c] = a;
common[c][a] = b;
}
return true;
}
int graph_degree(int num_facets, int8_t facets[][3], int num_nodes, int8_t* degree)
{
memset(degree, 0, sizeof(int8_t) * num_nodes);
for (int i = 0;i<num_facets;i++)
{
int a = facets[i][0];
int b = facets[i][1];
int c = facets[i][2];
degree[a]++;
degree[b]++;
degree[c]++;
}
int8_t max_degree = 0;
for (int i = 0;i<num_nodes;i++)
max_degree = std::max(max_degree, degree[i]);
return max_degree;
}
}

View File

@ -0,0 +1,15 @@
#ifndef PTM_GRAPH_TOOLS_H
#define PTM_GRAPH_TOOLS_H
#include <stdint.h>
#include "ptm_constants.h"
namespace ptm {
bool build_facet_map(int num_facets, int8_t facets[][3], int8_t common[PTM_MAX_NBRS][PTM_MAX_NBRS]);
int graph_degree(int num_facets, int8_t facets[][3], int num_nodes, int8_t* degree);
}
#endif

218
src/USER-PTM/ptm_index.cpp Normal file
View File

@ -0,0 +1,218 @@
#include <cstdio>
#include <cstdlib>
#include <string.h>
#include <cmath>
#include <cfloat>
#include <cassert>
#include <algorithm>
#include "ptm_convex_hull_incremental.h"
#include "ptm_graph_data.h"
#include "ptm_deformation_gradient.h"
#include "ptm_alloy_types.h"
#include "ptm_neighbour_ordering.h"
#include "ptm_normalize_vertices.h"
#include "ptm_quat.h"
#include "ptm_polar.h"
#include "ptm_initialize_data.h"
#include "ptm_structure_matcher.h"
#include "ptm_functions.h"
#include "ptm_constants.h"
//todo: verify that c == norm(template[1])
static double calculate_interatomic_distance(int type, double scale)
{
assert(type >= 1 && type <= 7);
double c[8] = {0, 1, 1, (7. - 3.5 * sqrt(3)), 1, 1, sqrt(3) * 4. / (6 * sqrt(2) + sqrt(3)), sqrt(3) * 4. / (6 * sqrt(2) + sqrt(3))};
return c[type] / scale;
}
static double calculate_lattice_constant(int type, double interatomic_distance)
{
assert(type >= 1 && type <= 7);
double c[8] = {0, 2 / sqrt(2), 2 / sqrt(2), 2. / sqrt(3), 2 / sqrt(2), 1, 4 / sqrt(3), 4 / sqrt(3)};
return c[type] * interatomic_distance;
}
static int rotate_into_fundamental_zone(int type, double* q)
{
if (type == PTM_MATCH_SC) return ptm::rotate_quaternion_into_cubic_fundamental_zone(q);
if (type == PTM_MATCH_FCC) return ptm::rotate_quaternion_into_cubic_fundamental_zone(q);
if (type == PTM_MATCH_BCC) return ptm::rotate_quaternion_into_cubic_fundamental_zone(q);
if (type == PTM_MATCH_ICO) return ptm::rotate_quaternion_into_icosahedral_fundamental_zone(q);
if (type == PTM_MATCH_HCP) return ptm::rotate_quaternion_into_hcp_fundamental_zone(q);
if (type == PTM_MATCH_DCUB) return ptm::rotate_quaternion_into_diamond_cubic_fundamental_zone(q);
if (type == PTM_MATCH_DHEX) return ptm::rotate_quaternion_into_diamond_hexagonal_fundamental_zone(q);
return -1;
}
static void order_points(ptm_local_handle_t local_handle, int num_points, double (*unpermuted_points)[3], int32_t* unpermuted_numbers, bool topological_ordering,
int8_t* ordering, double (*points)[3], int32_t* numbers)
{
if (topological_ordering)
{
double normalized_points[PTM_MAX_INPUT_POINTS][3];
ptm::normalize_vertices(num_points, unpermuted_points, normalized_points);
int ret = ptm::calculate_neighbour_ordering((void*)local_handle, num_points, (const double (*)[3])normalized_points, ordering);
if (ret != 0)
topological_ordering = false;
}
if (!topological_ordering)
for (int i=0;i<num_points;i++)
ordering[i] = i;
for (int i=0;i<num_points;i++)
{
memcpy(points[i], &unpermuted_points[ordering[i]], 3 * sizeof(double));
if (unpermuted_numbers != NULL)
numbers[i] = unpermuted_numbers[ordering[i]];
}
}
static void output_data(ptm::result_t* res, int num_points, int32_t* unpermuted_numbers, double (*points)[3], int32_t* numbers, int8_t* ordering,
int32_t* p_type, int32_t* p_alloy_type, double* p_scale, double* p_rmsd, double* q, double* F, double* F_res,
double* U, double* P, int8_t* mapping, double* p_interatomic_distance, double* p_lattice_constant)
{
*p_type = PTM_MATCH_NONE;
if (p_alloy_type != NULL)
*p_alloy_type = PTM_ALLOY_NONE;
if (mapping != NULL)
memset(mapping, -1, num_points * sizeof(int8_t));
const ptm::refdata_t* ref = res->ref_struct;
if (ref == NULL)
return;
*p_type = ref->type;
if (p_alloy_type != NULL && unpermuted_numbers != NULL)
*p_alloy_type = ptm::find_alloy_type(ref, res->mapping, numbers);
int bi = rotate_into_fundamental_zone(ref->type, res->q);
int8_t temp[PTM_MAX_POINTS];
for (int i=0;i<ref->num_nbrs+1;i++)
temp[ref->mapping[bi][i]] = res->mapping[i];
memcpy(res->mapping, temp, (ref->num_nbrs+1) * sizeof(int8_t));
if (F != NULL && F_res != NULL)
{
double scaled_points[PTM_MAX_INPUT_POINTS][3];
ptm::subtract_barycentre(ref->num_nbrs + 1, points, scaled_points);
for (int i = 0;i<ref->num_nbrs + 1;i++)
{
scaled_points[i][0] *= res->scale;
scaled_points[i][1] *= res->scale;
scaled_points[i][2] *= res->scale;
}
ptm::calculate_deformation_gradient(ref->num_nbrs + 1, ref->points, res->mapping, scaled_points, ref->penrose, F, F_res);
if (P != NULL && U != NULL)
ptm::polar_decomposition_3x3(F, false, U, P);
}
if (mapping != NULL)
for (int i=0;i<ref->num_nbrs + 1;i++)
mapping[i] = ordering[res->mapping[i]];
double interatomic_distance = calculate_interatomic_distance(ref->type, res->scale);
double lattice_constant = calculate_lattice_constant(ref->type, interatomic_distance);
if (p_interatomic_distance != NULL)
*p_interatomic_distance = interatomic_distance;
if (p_lattice_constant != NULL)
*p_lattice_constant = lattice_constant;
*p_rmsd = res->rmsd;
*p_scale = res->scale;
memcpy(q, res->q, 4 * sizeof(double));
}
extern bool ptm_initialized;
int ptm_index( ptm_local_handle_t local_handle, int32_t flags,
int num_points, double (*unpermuted_points)[3], int32_t* unpermuted_numbers, bool topological_ordering,
int32_t* p_type, int32_t* p_alloy_type, double* p_scale, double* p_rmsd, double* q, double* F, double* F_res,
double* U, double* P, int8_t* mapping, double* p_interatomic_distance, double* p_lattice_constant)
{
assert(ptm_initialized);
assert(num_points <= PTM_MAX_INPUT_POINTS);
if (flags & PTM_CHECK_SC)
assert(num_points >= PTM_NUM_POINTS_SC);
if (flags & PTM_CHECK_BCC)
assert(num_points >= PTM_NUM_POINTS_BCC);
if (flags & (PTM_CHECK_FCC | PTM_CHECK_HCP | PTM_CHECK_ICO))
assert(num_points >= PTM_NUM_POINTS_FCC);
if (flags & (PTM_CHECK_DCUB | PTM_CHECK_DHEX))
assert(num_points >= PTM_NUM_POINTS_DCUB);
int ret = 0;
ptm::result_t res;
res.ref_struct = NULL;
res.rmsd = INFINITY;
int8_t ordering[PTM_MAX_INPUT_POINTS];
double points[PTM_MAX_POINTS][3];
int32_t numbers[PTM_MAX_POINTS];
int8_t dordering[PTM_MAX_INPUT_POINTS];
double dpoints[PTM_MAX_POINTS][3];
int32_t dnumbers[PTM_MAX_POINTS];
ptm::convexhull_t ch;
double ch_points[PTM_MAX_INPUT_POINTS][3];
if (flags & (PTM_CHECK_SC | PTM_CHECK_FCC | PTM_CHECK_HCP | PTM_CHECK_ICO | PTM_CHECK_BCC))
{
int num_lpoints = std::min(std::min(PTM_MAX_POINTS, 20), num_points);
order_points(local_handle, num_lpoints, unpermuted_points, unpermuted_numbers, topological_ordering, ordering, points, numbers);
ptm::normalize_vertices(num_lpoints, points, ch_points);
ch.ok = false;
if (flags & PTM_CHECK_SC)
ret = match_general(&ptm::structure_sc, ch_points, points, &ch, &res);
if (flags & (PTM_CHECK_FCC | PTM_CHECK_HCP | PTM_CHECK_ICO))
ret = match_fcc_hcp_ico(ch_points, points, flags, &ch, &res);
if (flags & PTM_CHECK_BCC)
ret = match_general(&ptm::structure_bcc, ch_points, points, &ch, &res);
}
if (flags & (PTM_CHECK_DCUB | PTM_CHECK_DHEX))
{
ret = ptm::calculate_diamond_neighbour_ordering(num_points, unpermuted_points, unpermuted_numbers, dordering, dpoints, dnumbers);
if (ret == 0)
{
ptm::normalize_vertices(PTM_NUM_NBRS_DCUB + 1, dpoints, ch_points);
ch.ok = false;
ret = match_dcub_dhex(ch_points, dpoints, flags, &ch, &res);
}
}
if (res.ref_struct != NULL && (res.ref_struct->type == PTM_MATCH_DCUB || res.ref_struct->type == PTM_MATCH_DHEX))
{
output_data( &res, num_points, unpermuted_numbers, dpoints, dnumbers, dordering,
p_type, p_alloy_type, p_scale, p_rmsd, q, F, F_res,
U, P, mapping, p_interatomic_distance, p_lattice_constant);
}
else
{
output_data( &res, num_points, unpermuted_numbers, points, numbers, ordering,
p_type, p_alloy_type, p_scale, p_rmsd, q, F, F_res,
U, P, mapping, p_interatomic_distance, p_lattice_constant);
}
return PTM_NO_ERROR;
}

View File

@ -0,0 +1,71 @@
#include <cstdio>
#include <cstdlib>
#include <string.h>
#include <cmath>
#include <cfloat>
#include <cassert>
#include <algorithm>
#include "ptm_initialize_data.h"
static void make_facets_clockwise(int num_facets, int8_t (*facets)[3], const double (*points)[3])
{
double plane_normal[3];
double origin[3] = {0, 0, 0};
for (int i = 0;i<num_facets;i++)
ptm::add_facet(points, facets[i][0], facets[i][1], facets[i][2], facets[i], plane_normal, origin);
}
static int initialize_graphs(const ptm::refdata_t* s, int8_t* colours)
{
for (int i = 0;i<s->num_graphs;i++)
{
int8_t code[2 * PTM_MAX_EDGES];
int8_t degree[PTM_MAX_NBRS];
int _max_degree = ptm::graph_degree(s->num_facets, s->graphs[i].facets, s->num_nbrs, degree);
assert(_max_degree <= s->max_degree);
make_facets_clockwise(s->num_facets, s->graphs[i].facets, &s->points[1]);
int ret = ptm::canonical_form_coloured(s->num_facets, s->graphs[i].facets, s->num_nbrs, degree, colours, s->graphs[i].canonical_labelling, (int8_t*)&code[0], &s->graphs[i].hash);
if (ret != 0)
return ret;
}
return PTM_NO_ERROR;
}
bool ptm_initialized = false;
int ptm_initialize_global()
{
if (ptm_initialized)
return PTM_NO_ERROR;
int8_t colours[PTM_MAX_POINTS] = {0};
int8_t dcolours[PTM_MAX_POINTS] = {1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
int ret = initialize_graphs(&ptm::structure_sc, colours);
ret |= initialize_graphs(&ptm::structure_fcc, colours);
ret |= initialize_graphs(&ptm::structure_hcp, colours);
ret |= initialize_graphs(&ptm::structure_ico, colours);
ret |= initialize_graphs(&ptm::structure_bcc, colours);
ret |= initialize_graphs(&ptm::structure_dcub, dcolours);
ret |= initialize_graphs(&ptm::structure_dhex, dcolours);
if (ret == PTM_NO_ERROR)
ptm_initialized = true;
return ret;
}
ptm_local_handle_t ptm_initialize_local()
{
assert(ptm_initialized);
return (ptm_local_handle_t)ptm::voronoi_initialize_local();
}
void ptm_uninitialize_local(ptm_local_handle_t ptr)
{
ptm::voronoi_uninitialize_local(ptr);
}

View File

@ -0,0 +1,64 @@
#ifndef PTM_INITIALIZE_DATA_H
#define PTM_INITIALIZE_DATA_H
#include "ptm_graph_data.h"
#include "ptm_graph_tools.h"
#include "ptm_deformation_gradient.h"
#include "ptm_fundamental_mappings.h"
#include "ptm_neighbour_ordering.h"
#include "ptm_canonical_coloured.h"
#include "ptm_convex_hull_incremental.h"
namespace ptm {
typedef struct
{
int type;
int num_nbrs;
int num_facets;
int max_degree;
int num_graphs;
int num_mappings;
graph_t* graphs;
const double (*points)[3];
const double (*penrose)[3];
const int8_t (*mapping)[PTM_MAX_POINTS];
} refdata_t;
//refdata_t structure_sc = { .type = PTM_MATCH_SC, .num_nbrs = 6, .num_facets = 8, .max_degree = 4, .num_graphs = NUM_SC_GRAPHS, .graphs = graphs_sc, .points = ptm_template_sc, .penrose = penrose_sc , .mapping = mapping_sc };
const refdata_t structure_sc = { PTM_MATCH_SC, 6, 8, 4, NUM_SC_GRAPHS, NUM_CUBIC_MAPPINGS, graphs_sc, ptm_template_sc, penrose_sc, mapping_sc };
const refdata_t structure_fcc = { PTM_MATCH_FCC, 12, 20, 6, NUM_FCC_GRAPHS, NUM_CUBIC_MAPPINGS, graphs_fcc, ptm_template_fcc, penrose_fcc, mapping_fcc };
const refdata_t structure_hcp = { PTM_MATCH_HCP, 12, 20, 6, NUM_HCP_GRAPHS, NUM_HEX_MAPPINGS, graphs_hcp, ptm_template_hcp, penrose_hcp, mapping_hcp };
const refdata_t structure_ico = { PTM_MATCH_ICO, 12, 20, 6, NUM_ICO_GRAPHS, NUM_ICO_MAPPINGS, graphs_ico, ptm_template_ico, penrose_ico, mapping_ico };
const refdata_t structure_bcc = { PTM_MATCH_BCC, 14, 24, 8, NUM_BCC_GRAPHS, NUM_CUBIC_MAPPINGS, graphs_bcc, ptm_template_bcc, penrose_bcc, mapping_bcc };
const refdata_t structure_dcub = { PTM_MATCH_DCUB, 16, 28, 8, NUM_DCUB_GRAPHS, NUM_DCUB_MAPPINGS, graphs_dcub, ptm_template_dcub, penrose_dcub, mapping_dcub };
const refdata_t structure_dhex = { PTM_MATCH_DHEX, 16, 28, 8, NUM_DHEX_GRAPHS, NUM_DHEX_MAPPINGS, graphs_dhex, ptm_template_dhex, penrose_dhex, mapping_dhex };
}
#ifdef __cplusplus
extern "C" {
#endif
typedef struct ptm_local_handle* ptm_local_handle_t;
ptm_local_handle_t ptm_initialize_local();
void ptm_uninitialize_local(ptm_local_handle_t ptr);
int ptm_initialize_global();
//------------------------------------
// global initialization switch
//------------------------------------
extern bool ptm_initialized;
#ifdef __cplusplus
}
#endif
#endif

View File

@ -0,0 +1,205 @@
#include <cstdlib>
#include <cmath>
#include <cstring>
#include <cassert>
#include <algorithm>
#include "ptm_constants.h"
#include "ptm_voronoi_cell.h"
namespace ptm {
typedef struct
{
double area;
double dist;
int index;
} sorthelper_t;
static bool sorthelper_compare(sorthelper_t const& a, sorthelper_t const& b)
{
if (a.area > b.area)
return true;
if (a.area < b.area)
return false;
if (a.dist < b.dist)
return true;
return false;
}
//todo: change voronoi code to return errors rather than exiting
static int calculate_voronoi_face_areas(int num_points, const double (*_points)[3], double* normsq, double max_norm, ptm_voro::voronoicell_neighbor* v, std::vector<int>& nbr_indices, std::vector<double>& face_areas)
{
const double k = 1000 * max_norm; //todo: reduce this constant
v->init(-k,k,-k,k,-k,k);
for (int i=1;i<num_points;i++)
{
double x = _points[i][0] - _points[0][0];
double y = _points[i][1] - _points[0][1];
double z = _points[i][2] - _points[0][2];
v->nplane(x,y,z,normsq[i],i);
}
v->neighbors(nbr_indices);
v->face_areas(face_areas);
return 0;
}
int calculate_neighbour_ordering(void* _voronoi_handle, int num_points, const double (*_points)[3], int8_t* ordering)
{
assert(num_points <= PTM_MAX_INPUT_POINTS);
ptm_voro::voronoicell_neighbor* voronoi_handle = (ptm_voro::voronoicell_neighbor*)_voronoi_handle;
double max_norm = 0;
double points[PTM_MAX_INPUT_POINTS][3];
double normsq[PTM_MAX_INPUT_POINTS];
for (int i = 0;i<num_points;i++)
{
double x = _points[i][0] - _points[0][0];
double y = _points[i][1] - _points[0][1];
double z = _points[i][2] - _points[0][2];
points[i][0] = x;
points[i][1] = y;
points[i][2] = z;
normsq[i] = x*x + y*y + z*z;
max_norm = std::max(max_norm, normsq[i]);
#ifdef DEBUG
printf("point %d: %f\t%f\t%f\t%f\n", i, x, y, z, x*x + y*y + z*z);
#endif
}
max_norm = sqrt(max_norm);
std::vector<int> nbr_indices(num_points + 6);
std::vector<double> face_areas(num_points + 6);
int ret = calculate_voronoi_face_areas(num_points, points, normsq, max_norm, voronoi_handle, nbr_indices, face_areas);
if (ret != 0)
return ret;
double areas[PTM_MAX_INPUT_POINTS];
memset(areas, 0, num_points * sizeof(double));
areas[0] = INFINITY;
for (size_t i=0;i<nbr_indices.size();i++)
{
int index = nbr_indices[i];
if (index > 0)
areas[index] = face_areas[i];
}
sorthelper_t data[PTM_MAX_INPUT_POINTS];
for (int i=0;i<num_points;i++)
{
assert(areas[i] == areas[i]);
data[i].area = areas[i];
data[i].dist = normsq[i];
data[i].index = i;
}
std::sort(data, data + num_points, &sorthelper_compare);
#ifdef DEBUG
for (int i=0;i<num_points;i++)
printf("%d %f\n", data[i].index, data[i].area);
#endif
for (int i=0;i<num_points;i++)
ordering[i] = data[i].index;
return ret;
}
void* voronoi_initialize_local()
{
ptm_voro::voronoicell_neighbor* ptr = new ptm_voro::voronoicell_neighbor;
return (void*)ptr;
}
void voronoi_uninitialize_local(void* _ptr)
{
ptm_voro::voronoicell_neighbor* ptr = (ptm_voro::voronoicell_neighbor*)_ptr;
delete ptr;
}
typedef struct
{
double dist;
int p;
int index;
} diamond_t;
static bool diamond_compare(diamond_t const& a, diamond_t const& b)
{
return a.dist < b.dist;
}
int calculate_diamond_neighbour_ordering( int num_points, double (*unpermuted_points)[3], int32_t* unpermuted_numbers,
int8_t* ordering, double (*points)[3], int32_t* numbers)
{
assert(num_points <= PTM_MAX_INPUT_POINTS);
diamond_t data[4 * (PTM_MAX_INPUT_POINTS - 5)];
int index = 0;
for (int i=5;i<num_points;i++)
{
for (int j=1;j<5;j++)
{
double dx = unpermuted_points[i][0] - unpermuted_points[j][0];
double dy = unpermuted_points[i][1] - unpermuted_points[j][1];
double dz = unpermuted_points[i][2] - unpermuted_points[j][2];
double d = dx*dx + dy*dy + dz*dz;
data[index].p = j - 1;
data[index].index = i;
data[index].dist = d;
index++;
}
}
int n = index;
std::sort(data, data + n, &diamond_compare);
for (index=0;index<5;index++)
ordering[index] = index;
int num_found = 0;
bool hit[PTM_MAX_INPUT_POINTS] = {0};
int counts[4] = {0};
for (int i=0;i<n;i++)
{
int p = data[i].p;
int q = data[i].index;
if (hit[q] || counts[p] >= 3)
continue;
ordering[1 + 4 + 3 * p + counts[p]] = q;
counts[p]++;
index++;
num_found++;
if (num_found >= 12)
break;
}
if (num_found != 12)
return -1;
for (int i=0;i<PTM_NUM_NBRS_DCUB+1;i++)
{
memcpy(points[i], &unpermuted_points[ordering[i]], 3 * sizeof(double));
if (unpermuted_numbers != NULL)
numbers[i] = unpermuted_numbers[ordering[i]];
}
return 0;
}
}

View File

@ -0,0 +1,17 @@
#ifndef PTM_NEIGHBOUR_ORDERING_H
#define PTM_NEIGHBOUR_ORDERING_H
namespace ptm {
int calculate_neighbour_ordering(void* voronoi_handle, int num_points, const double (*_points)[3], int8_t* ordering);
int calculate_diamond_neighbour_ordering( int num_points, double (*unpermuted_points)[3], int32_t* unpermuted_numbers,
int8_t* ordering, double (*points)[3], int32_t* numbers);
void* voronoi_initialize_local();
void voronoi_uninitialize_local(void* ptr);
}
#endif

View File

@ -0,0 +1,58 @@
#include <cmath>
namespace ptm {
void subtract_barycentre(int num, double (*points)[3], double (*normalized)[3])
{
//calculate barycentre
double sum[3] = {0, 0, 0};
for (int i=0;i<num;i++)
{
sum[0] += points[i][0];
sum[1] += points[i][1];
sum[2] += points[i][2];
}
sum[0] /= num;
sum[1] /= num;
sum[2] /= num;
//subtract barycentre
for (int i=0;i<num;i++)
{
normalized[i][0] = points[i][0] - sum[0];
normalized[i][1] = points[i][1] - sum[1];
normalized[i][2] = points[i][2] - sum[2];
}
}
double normalize_vertices(int num, double (*points)[3], double (*normalized)[3])
{
subtract_barycentre(num, points, normalized);
//calculate mean length
double scale = 0.0;
for (int i=1;i<num;i++)
{
double x = normalized[i][0];
double y = normalized[i][1];
double z = normalized[i][2];
double norm = sqrt(x*x + y*y + z*z);
scale += norm;
}
scale /= num;
//scale vertices such that mean length is 1
for (int i=0;i<num;i++)
{
normalized[i][0] /= scale;
normalized[i][1] /= scale;
normalized[i][2] /= scale;
}
return scale;
}
}

View File

@ -0,0 +1,12 @@
#ifndef PTM_NORMALIZE_VERTICES_H
#define PTM_NORMALIZE_VERTICES_H
namespace ptm {
void subtract_barycentre(int num, double (*points)[3], double (*normalized)[3]);
double normalize_vertices(int num, double (*points)[3], double (*normalized)[3]);
}
#endif

341
src/USER-PTM/ptm_polar.cpp Normal file
View File

@ -0,0 +1,341 @@
/*******************************************************************************
* -/_|:|_|_\-
*
* This code is a modification of D.L. Theobald's QCP rotation code.
* It has been adapted to calculate the polar decomposition of a 3x3 matrix
* Adaption by P.M. Larsen
*
* Original Author(s): Douglas L. Theobald
* Department of Biochemistry
* MS 009
* Brandeis University
* 415 South St
* Waltham, MA 02453
* USA
*
* dtheobald@brandeis.edu
*
* Pu Liu
* Johnson & Johnson Pharmaceutical Research and Development, L.L.C.
* 665 Stockton Drive
* Exton, PA 19341
* USA
*
* pliu24@its.jnj.com
*
*
* If you use this QCP rotation calculation method in a publication, please
* reference:
*
* Douglas L. Theobald (2005)
* "Rapid calculation of RMSD using a quaternion-based characteristic
* polynomial."
* Acta Crystallographica A 61(4):478-480.
*
* Pu Liu, Dmitris K. Agrafiotis, and Douglas L. Theobald (2009)
* "Fast determination of the optimal rotational matrix for macromolecular
* superpositions."
* Journal of Computational Chemistry 31(7):1561-1563.
*
*
* Copyright (c) 2009-2013 Pu Liu and Douglas L. Theobald
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification, are permitted
* provided that the following conditions are met:
*
* * Redistributions of source code must retain the above copyright notice, this list of
* conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright notice, this list
* of conditions and the following disclaimer in the documentation and/or other materials
* provided with the distribution.
* * Neither the name of the <ORGANIZATION> nor the names of its contributors may be used to
* endorse or promote products derived from this software without specific prior written
* permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
* PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* Source: started anew.
*
* Change History:
* 2009/04/13 Started source
* 2010/03/28 Modified FastCalcRMSDAndRotation() to handle tiny qsqr
* If trying all rows of the adjoint still gives too small
* qsqr, then just return identity matrix. (DLT)
* 2010/06/30 Fixed prob in assigning A[9] = 0 in InnerProduct()
* invalid mem access
* 2011/02/21 Made CenterCoords use weights
* 2011/05/02 Finally changed CenterCoords declaration in qcprot.h
* Also changed some functions to static
* 2011/07/08 put in fabs() to fix taking sqrt of small neg numbers, fp error
* 2012/07/26 minor changes to comments and main.c, more info (v.1.4)
*
* 2016/05/29 QCP method adapted for polar decomposition of a 3x3 matrix,
* for use in Polyhedral Template Matching.
*
******************************************************************************/
#include <cmath>
#include <algorithm>
#include <string.h>
#include "ptm_quat.h"
namespace ptm {
static void matmul_3x3(double* A, double* x, double* b)
{
b[0] = A[0] * x[0] + A[1] * x[3] + A[2] * x[6];
b[3] = A[3] * x[0] + A[4] * x[3] + A[5] * x[6];
b[6] = A[6] * x[0] + A[7] * x[3] + A[8] * x[6];
b[1] = A[0] * x[1] + A[1] * x[4] + A[2] * x[7];
b[4] = A[3] * x[1] + A[4] * x[4] + A[5] * x[7];
b[7] = A[6] * x[1] + A[7] * x[4] + A[8] * x[7];
b[2] = A[0] * x[2] + A[1] * x[5] + A[2] * x[8];
b[5] = A[3] * x[2] + A[4] * x[5] + A[5] * x[8];
b[8] = A[6] * x[2] + A[7] * x[5] + A[8] * x[8];
}
static double matrix_determinant_3x3(double* A)
{
return A[0] * (A[4]*A[8] - A[5]*A[7])
- A[1] * (A[3]*A[8] - A[5]*A[6])
+ A[2] * (A[3]*A[7] - A[4]*A[6]);
}
static void flip_matrix(double* A)
{
for (int i=0;i<9;i++)
A[i] = -A[i];
}
static bool optimal_quaternion(double* A, bool polar, double E0, double* p_nrmsdsq, double* qopt)
{
const double evecprec = 1e-6;
const double evalprec = 1e-11;
double Sxx = A[0], Sxy = A[1], Sxz = A[2],
Syx = A[3], Syy = A[4], Syz = A[5],
Szx = A[6], Szy = A[7], Szz = A[8];
double Sxx2 = Sxx * Sxx, Syy2 = Syy * Syy, Szz2 = Szz * Szz,
Sxy2 = Sxy * Sxy, Syz2 = Syz * Syz, Sxz2 = Sxz * Sxz,
Syx2 = Syx * Syx, Szy2 = Szy * Szy, Szx2 = Szx * Szx;
double fnorm_squared = Sxx2 + Syy2 + Szz2 + Sxy2 + Syz2 + Sxz2 + Syx2 + Szy2 + Szx2;
double SyzSzymSyySzz2 = 2.0 * (Syz * Szy - Syy * Szz);
double Sxx2Syy2Szz2Syz2Szy2 = Syy2 + Szz2 - Sxx2 + Syz2 + Szy2;
double SxzpSzx = Sxz + Szx;
double SyzpSzy = Syz + Szy;
double SxypSyx = Sxy + Syx;
double SyzmSzy = Syz - Szy;
double SxzmSzx = Sxz - Szx;
double SxymSyx = Sxy - Syx;
double SxxpSyy = Sxx + Syy;
double SxxmSyy = Sxx - Syy;
double Sxy2Sxz2Syx2Szx2 = Sxy2 + Sxz2 - Syx2 - Szx2;
double C[3];
C[0] = Sxy2Sxz2Syx2Szx2 * Sxy2Sxz2Syx2Szx2
+ (Sxx2Syy2Szz2Syz2Szy2 + SyzSzymSyySzz2) * (Sxx2Syy2Szz2Syz2Szy2 - SyzSzymSyySzz2)
+ (-(SxzpSzx)*(SyzmSzy)+(SxymSyx)*(SxxmSyy-Szz)) * (-(SxzmSzx)*(SyzpSzy)+(SxymSyx)*(SxxmSyy+Szz))
+ (-(SxzpSzx)*(SyzpSzy)-(SxypSyx)*(SxxpSyy-Szz)) * (-(SxzmSzx)*(SyzmSzy)-(SxypSyx)*(SxxpSyy+Szz))
+ (+(SxypSyx)*(SyzpSzy)+(SxzpSzx)*(SxxmSyy+Szz)) * (-(SxymSyx)*(SyzmSzy)+(SxzpSzx)*(SxxpSyy+Szz))
+ (+(SxypSyx)*(SyzmSzy)+(SxzmSzx)*(SxxmSyy-Szz)) * (-(SxymSyx)*(SyzpSzy)+(SxzmSzx)*(SxxpSyy-Szz));
C[1] = 8.0 * (Sxx*Syz*Szy + Syy*Szx*Sxz + Szz*Sxy*Syx - Sxx*Syy*Szz - Syz*Szx*Sxy - Szy*Syx*Sxz);
C[2] = -2.0 * fnorm_squared;
//Newton-Raphson
double mxEigenV = polar ? sqrt(3 * fnorm_squared) : E0;
if (mxEigenV > evalprec)
{
for (int i=0;i<50;i++)
{
double oldg = mxEigenV;
double x2 = mxEigenV*mxEigenV;
double b = (x2 + C[2])*mxEigenV;
double a = b + C[1];
double delta = ((a * mxEigenV + C[0]) / (2 * x2 * mxEigenV + b + a));
mxEigenV -= delta;
if (fabs(mxEigenV - oldg) < fabs(evalprec * mxEigenV))
break;
}
}
else
{
mxEigenV = 0.0;
}
(*p_nrmsdsq) = std::max(0.0, 2.0 * (E0 - mxEigenV));
double a11 = SxxpSyy + Szz - mxEigenV;
double a12 = SyzmSzy;
double a13 = -SxzmSzx;
double a14 = SxymSyx;
double a21 = SyzmSzy;
double a22 = SxxmSyy - Szz -mxEigenV;
double a23 = SxypSyx;
double a24 = SxzpSzx;
double a31 = a13;
double a32 = a23;
double a33 = Syy - Sxx - Szz - mxEigenV;
double a34 = SyzpSzy;
double a41 = a14;
double a42 = a24;
double a43 = a34;
double a44 = Szz - SxxpSyy - mxEigenV;
double a3344_4334 = a33 * a44 - a43 * a34;
double a3244_4234 = a32 * a44 - a42 * a34;
double a3243_4233 = a32 * a43 - a42 * a33;
double a3143_4133 = a31 * a43 - a41 * a33;
double a3144_4134 = a31 * a44 - a41 * a34;
double a3142_4132 = a31 * a42 - a41 * a32;
double a1324_1423 = a13 * a24 - a14 * a23;
double a1224_1422 = a12 * a24 - a14 * a22;
double a1223_1322 = a12 * a23 - a13 * a22;
double a1124_1421 = a11 * a24 - a14 * a21;
double a1123_1321 = a11 * a23 - a13 * a21;
double a1122_1221 = a11 * a22 - a12 * a21;
double q[4][4];
q[0][0] = a12 * a3344_4334 - a13 * a3244_4234 + a14 * a3243_4233;
q[0][1] = -a11 * a3344_4334 + a13 * a3144_4134 - a14 * a3143_4133;
q[0][2] = a11 * a3244_4234 - a12 * a3144_4134 + a14 * a3142_4132;
q[0][3] = -a11 * a3243_4233 + a12 * a3143_4133 - a13 * a3142_4132;
q[1][0] = a22 * a3344_4334 - a23 * a3244_4234 + a24 * a3243_4233;
q[1][1] = -a21 * a3344_4334 + a23 * a3144_4134 - a24 * a3143_4133;
q[1][2] = a21 * a3244_4234 - a22 * a3144_4134 + a24 * a3142_4132;
q[1][3] = -a21 * a3243_4233 + a22 * a3143_4133 - a23 * a3142_4132;
q[2][0] = a32 * a1324_1423 - a33 * a1224_1422 + a34 * a1223_1322;
q[2][1] = -a31 * a1324_1423 + a33 * a1124_1421 - a34 * a1123_1321;
q[2][2] = a31 * a1224_1422 - a32 * a1124_1421 + a34 * a1122_1221;
q[2][3] = -a31 * a1223_1322 + a32 * a1123_1321 - a33 * a1122_1221;
q[3][0] = a42 * a1324_1423 - a43 * a1224_1422 + a44 * a1223_1322;
q[3][1] = -a41 * a1324_1423 + a43 * a1124_1421 - a44 * a1123_1321;
q[3][2] = a41 * a1224_1422 - a42 * a1124_1421 + a44 * a1122_1221;
q[3][3] = -a41 * a1223_1322 + a42 * a1123_1321 - a43 * a1122_1221;
double qsqr[4];
for (int i=0;i<4;i++)
qsqr[i] = q[i][0]*q[i][0] + q[i][1]*q[i][1] + q[i][2]*q[i][2] + q[i][3]*q[i][3];
int bi = 0;
double max = 0;
for (int i=0;i<4;i++)
{
if (qsqr[i] > max)
{
bi = i;
max = qsqr[i];
}
}
bool too_small = false;
if (qsqr[bi] < evecprec)
{
//if qsqr is still too small, return the identity rotation.
q[bi][0] = 1;
q[bi][1] = 0;
q[bi][2] = 0;
q[bi][3] = 0;
too_small = true;
}
else
{
double normq = sqrt(qsqr[bi]);
q[bi][0] /= normq;
q[bi][1] /= normq;
q[bi][2] /= normq;
q[bi][3] /= normq;
}
memcpy(qopt, q[bi], 4 * sizeof(double));
return !too_small;
}
int polar_decomposition_3x3(double* _A, bool right_sided, double* U, double* P)
{
double A[9];
memcpy(A, _A, 9 * sizeof(double));
double det = matrix_determinant_3x3(A);
if (det < 0)
flip_matrix(A);
double q[4];
double nrmsdsq = 0;
optimal_quaternion(A, true, -1, &nrmsdsq, q);
q[0] = -q[0];
quaternion_to_rotation_matrix(q, U);
if (det < 0)
flip_matrix(U);
double UT[9] = {U[0], U[3], U[6], U[1], U[4], U[7], U[2], U[5], U[8]};
if (right_sided)
matmul_3x3(UT, _A, P);
else
matmul_3x3(_A, UT, P);
return 0;
}
void InnerProduct(double *A, int num, const double (*coords1)[3], double (*coords2)[3], int8_t* permutation)
{
A[0] = A[1] = A[2] = A[3] = A[4] = A[5] = A[6] = A[7] = A[8] = 0.0;
for (int i = 0; i < num; ++i)
{
double x1 = coords1[i][0];
double y1 = coords1[i][1];
double z1 = coords1[i][2];
double x2 = coords2[permutation[i]][0];
double y2 = coords2[permutation[i]][1];
double z2 = coords2[permutation[i]][2];
A[0] += x1 * x2;
A[1] += x1 * y2;
A[2] += x1 * z2;
A[3] += y1 * x2;
A[4] += y1 * y2;
A[5] += y1 * z2;
A[6] += z1 * x2;
A[7] += z1 * y2;
A[8] += z1 * z2;
}
}
int FastCalcRMSDAndRotation(double *A, double E0, double *p_nrmsdsq, double *q, double* U)
{
optimal_quaternion(A, false, E0, p_nrmsdsq, q);
quaternion_to_rotation_matrix(q, U);
return 0;
}
}

16
src/USER-PTM/ptm_polar.h Normal file
View File

@ -0,0 +1,16 @@
#ifndef PTM_POLAR_H
#define PTM_POLAR_H
#include <stdint.h>
#include <stdbool.h>
namespace ptm {
int polar_decomposition_3x3(double* _A, bool right_sided, double* U, double* P);
void InnerProduct(double *A, int num, const double (*coords1)[3], double (*coords2)[3], int8_t* permutation);
int FastCalcRMSDAndRotation(double *A, double E0, double *p_nrmsdsq, double *q, double* U);
}
#endif

400
src/USER-PTM/ptm_quat.cpp Normal file
View File

@ -0,0 +1,400 @@
#include <string.h>
#include <cmath>
#include <cfloat>
namespace ptm {
#define SIGN(x) (x >= 0 ? 1 : -1)
#define MIN(X, Y) (((X) < (Y)) ? (X) : (Y))
#define MAX(X, Y) (((X) > (Y)) ? (X) : (Y))
#define SQRT_2 1.4142135623730951454746218587388284504414
#define HALF_SQRT_2 0.7071067811865474617150084668537601828575
#define PHI 1.6180339887498949025257388711906969547272
#define HALF_PHI 0.8090169943749474512628694355953484773636
#define INV_PHI 0.6180339887498947915034364086750429123640
#define HALF_INV_PHI 0.3090169943749473957517182043375214561820
#define SQRT_5_ 2.23606797749978969640917366873127623544061835961152572427089
#define SQRT_2_3 0.8164965809277260344600790631375275552273
#define SQRT_1_6 0.4082482904638630172300395315687637776136
double generator_cubic[24][4] = { {1, 0, 0, 0 },
{0, 1, 0, 0 },
{0, 0, 1, 0 },
{0, 0, 0, 1 },
{0.5, 0.5, 0.5, 0.5 },
{0.5, 0.5, -0.5, 0.5 },
{0.5, -0.5, 0.5, 0.5 },
{0.5, -0.5, -0.5, 0.5 },
{-0.5, 0.5, 0.5, 0.5 },
{-0.5, 0.5, -0.5, 0.5 },
{-0.5, -0.5, 0.5, 0.5 },
{-0.5, -0.5, -0.5, 0.5 },
{HALF_SQRT_2, HALF_SQRT_2, 0, 0 },
{HALF_SQRT_2, 0, HALF_SQRT_2, 0 },
{HALF_SQRT_2, 0, 0, HALF_SQRT_2 },
{-HALF_SQRT_2, HALF_SQRT_2, 0, 0 },
{-HALF_SQRT_2, 0, HALF_SQRT_2, 0 },
{-HALF_SQRT_2, 0, 0, HALF_SQRT_2 },
{0, HALF_SQRT_2, HALF_SQRT_2, 0 },
{0, HALF_SQRT_2, 0, HALF_SQRT_2 },
{0, 0, HALF_SQRT_2, HALF_SQRT_2 },
{0, -HALF_SQRT_2, HALF_SQRT_2, 0 },
{0, -HALF_SQRT_2, 0, HALF_SQRT_2 },
{0, 0, -HALF_SQRT_2, HALF_SQRT_2 } };
double generator_diamond_cubic[12][4] = { {1, 0, 0, 0 },
{0, 1, 0, 0 },
{0, 0, 1, 0 },
{0, 0, 0, 1 },
{0.5, 0.5, 0.5, 0.5 },
{0.5, 0.5, -0.5, 0.5 },
{0.5, -0.5, 0.5, 0.5 },
{0.5, -0.5, -0.5, 0.5 },
{-0.5, 0.5, 0.5, 0.5 },
{-0.5, 0.5, -0.5, 0.5 },
{-0.5, -0.5, 0.5, 0.5 },
{-0.5, -0.5, -0.5, 0.5 } };
double generator_hcp[6][4] = { {1, 0, 0, 0},
{0.5, 0.5, 0.5, 0.5},
{0.5, -0.5, -0.5, -0.5},
{0, SQRT_2_3, -SQRT_1_6, -SQRT_1_6},
{0, SQRT_1_6, -SQRT_2_3, SQRT_1_6},
{0, SQRT_1_6, SQRT_1_6, -SQRT_2_3} };
double generator_diamond_hexagonal[3][4] = { {1, 0, 0, 0},
{0.5, 0.5, 0.5, 0.5},
{0.5, -0.5, -0.5, -0.5} };
double generator_icosahedral[60][4] = { {1, 0, 0, 0},
{HALF_PHI, -HALF_INV_PHI, -0.5, 0},
{HALF_PHI, 0, -HALF_INV_PHI, -0.5},
{HALF_PHI, -0.5, 0, -HALF_INV_PHI},
{HALF_PHI, HALF_INV_PHI, -0.5, 0},
{HALF_PHI, 0, HALF_INV_PHI, -0.5},
{HALF_PHI, -0.5, 0, HALF_INV_PHI},
{HALF_PHI, 0.5, 0, -HALF_INV_PHI},
{HALF_PHI, 0, -HALF_INV_PHI, 0.5},
{HALF_PHI, -HALF_INV_PHI, 0.5, 0},
{HALF_PHI, 0, HALF_INV_PHI, 0.5},
{HALF_PHI, HALF_INV_PHI, 0.5, 0},
{HALF_PHI, 0.5, 0, HALF_INV_PHI},
{0.5, HALF_PHI, -HALF_INV_PHI, 0},
{0.5, HALF_PHI, HALF_INV_PHI, 0},
{0.5, 0.5, 0.5, 0.5},
{0.5, 0.5, 0.5, -0.5},
{0.5, 0.5, -0.5, 0.5},
{0.5, 0.5, -0.5, -0.5},
{0.5, HALF_INV_PHI, 0, HALF_PHI},
{0.5, HALF_INV_PHI, 0, -HALF_PHI},
{0.5, 0, HALF_PHI, -HALF_INV_PHI},
{0.5, 0, HALF_PHI, HALF_INV_PHI},
{0.5, 0, -HALF_PHI, -HALF_INV_PHI},
{0.5, 0, -HALF_PHI, HALF_INV_PHI},
{0.5, -HALF_INV_PHI, 0, HALF_PHI},
{0.5, -HALF_INV_PHI, 0, -HALF_PHI},
{0.5, -0.5, 0.5, 0.5},
{0.5, -0.5, 0.5, -0.5},
{0.5, -0.5, -0.5, 0.5},
{0.5, -0.5, -0.5, -0.5},
{0.5, -HALF_PHI, -HALF_INV_PHI, 0},
{0.5, -HALF_PHI, HALF_INV_PHI, 0},
{HALF_INV_PHI, -HALF_PHI, 0, -0.5},
{HALF_INV_PHI, 0, -0.5, -HALF_PHI},
{HALF_INV_PHI, -0.5, -HALF_PHI, 0},
{HALF_INV_PHI, 0, 0.5, -HALF_PHI},
{HALF_INV_PHI, -HALF_PHI, 0, 0.5},
{HALF_INV_PHI, 0.5, -HALF_PHI, 0},
{HALF_INV_PHI, HALF_PHI, 0, -0.5},
{HALF_INV_PHI, -0.5, HALF_PHI, 0},
{HALF_INV_PHI, 0, -0.5, HALF_PHI},
{HALF_INV_PHI, HALF_PHI, 0, 0.5},
{HALF_INV_PHI, 0, 0.5, HALF_PHI},
{HALF_INV_PHI, 0.5, HALF_PHI, 0},
{0, 1, 0, 0},
{0, HALF_PHI, -0.5, HALF_INV_PHI},
{0, HALF_PHI, -0.5, -HALF_INV_PHI},
{0, HALF_PHI, 0.5, HALF_INV_PHI},
{0, HALF_PHI, 0.5, -HALF_INV_PHI},
{0, 0.5, HALF_INV_PHI, -HALF_PHI},
{0, 0.5, HALF_INV_PHI, HALF_PHI},
{0, 0.5, -HALF_INV_PHI, -HALF_PHI},
{0, 0.5, -HALF_INV_PHI, HALF_PHI},
{0, HALF_INV_PHI, -HALF_PHI, 0.5},
{0, HALF_INV_PHI, -HALF_PHI, -0.5},
{0, HALF_INV_PHI, HALF_PHI, 0.5},
{0, HALF_INV_PHI, HALF_PHI, -0.5},
{0, 0, 1, 0},
{0, 0, 0, 1} };
static void quat_rot(double* r, double* a, double* b)
{
b[0] = (r[0] * a[0] - r[1] * a[1] - r[2] * a[2] - r[3] * a[3]);
b[1] = (r[0] * a[1] + r[1] * a[0] + r[2] * a[3] - r[3] * a[2]);
b[2] = (r[0] * a[2] - r[1] * a[3] + r[2] * a[0] + r[3] * a[1]);
b[3] = (r[0] * a[3] + r[1] * a[2] - r[2] * a[1] + r[3] * a[0]);
}
static int rotate_quaternion_into_fundamental_zone(int num_generators, double (*generator)[4], double* q)
{
double max = 0.0;
int i = 0, bi = -1;
for (i=0;i<num_generators;i++)
{
double* g = generator[i];
double t = fabs(q[0] * g[0] - q[1] * g[1] - q[2] * g[2] - q[3] * g[3]);
if (t > max)
{
max = t;
bi = i;
}
}
double f[4];
quat_rot(q, generator[bi], f);
memcpy(q, &f, 4 * sizeof(double));
if (q[0] < 0)
{
q[0] = -q[0];
q[1] = -q[1];
q[2] = -q[2];
q[3] = -q[3];
}
return bi;
}
int rotate_quaternion_into_cubic_fundamental_zone(double* q)
{
return rotate_quaternion_into_fundamental_zone(24, generator_cubic, q);
}
int rotate_quaternion_into_diamond_cubic_fundamental_zone(double* q)
{
return rotate_quaternion_into_fundamental_zone(12, generator_diamond_cubic, q);
}
int rotate_quaternion_into_icosahedral_fundamental_zone(double* q)
{
return rotate_quaternion_into_fundamental_zone(60, generator_icosahedral, q);
}
int rotate_quaternion_into_hcp_fundamental_zone(double* q)
{
return rotate_quaternion_into_fundamental_zone(6, generator_hcp, q);
}
int rotate_quaternion_into_diamond_hexagonal_fundamental_zone(double* q)
{
return rotate_quaternion_into_fundamental_zone(3, generator_diamond_hexagonal, q);
}
double quat_dot(double* a, double* b)
{
return a[0] * b[0]
+ a[1] * b[1]
+ a[2] * b[2]
+ a[3] * b[3];
}
double quat_size(double* q)
{
return sqrt(quat_dot(q, q));
}
void normalize_quaternion(double* q)
{
double size = quat_size(q);
q[0] /= size;
q[1] /= size;
q[2] /= size;
q[3] /= size;
}
void rotation_matrix_to_quaternion(double* u, double* q)
{
double r11 = u[0];
double r12 = u[1];
double r13 = u[2];
double r21 = u[3];
double r22 = u[4];
double r23 = u[5];
double r31 = u[6];
double r32 = u[7];
double r33 = u[8];
q[0] = (1.0 + r11 + r22 + r33) / 4.0;
q[1] = (1.0 + r11 - r22 - r33) / 4.0;
q[2] = (1.0 - r11 + r22 - r33) / 4.0;
q[3] = (1.0 - r11 - r22 + r33) / 4.0;
q[0] = sqrt(MAX(0, q[0]));
q[1] = sqrt(MAX(0, q[1]));
q[2] = sqrt(MAX(0, q[2]));
q[3] = sqrt(MAX(0, q[3]));
double m0 = MAX(q[0], q[1]);
double m1 = MAX(q[2], q[3]);
double max = MAX(m0, m1);
int i = 0;
for (i=0;i<4;i++)
if (q[i] == max)
break;
if (i == 0)
{
q[1] *= SIGN(r32 - r23);
q[2] *= SIGN(r13 - r31);
q[3] *= SIGN(r21 - r12);
}
else if (i == 1)
{
q[0] *= SIGN(r32 - r23);
q[2] *= SIGN(r21 + r12);
q[3] *= SIGN(r13 + r31);
}
else if (i == 2)
{
q[0] *= SIGN(r13 - r31);
q[1] *= SIGN(r21 + r12);
q[3] *= SIGN(r32 + r23);
}
else if (i == 3)
{
q[0] *= SIGN(r21 - r12);
q[1] *= SIGN(r31 + r13);
q[2] *= SIGN(r32 + r23);
}
normalize_quaternion(q);
}
void quaternion_to_rotation_matrix(double* q, double* u)
{
double a = q[0];
double b = q[1];
double c = q[2];
double d = q[3];
u[0] = a*a + b*b - c*c - d*d;
u[1] = 2*b*c - 2*a*d;
u[2] = 2*b*d + 2*a*c;
u[3] = 2*b*c + 2*a*d;
u[4] = a*a - b*b + c*c - d*d;
u[5] = 2*c*d - 2*a*b;
u[6] = 2*b*d - 2*a*c;
u[7] = 2*c*d + 2*a*b;
u[8] = a*a - b*b - c*c + d*d;
}
double quat_quick_misorientation(double* q1, double* q2)
{
double t = quat_dot(q1, q2);
t = MIN(1, MAX(-1, t));
return 2 * t * t - 1;
}
double quat_misorientation(double* q1, double* q2)
{
return acos(quat_quick_misorientation(q1, q2));
}
double quat_quick_disorientation_cubic(double* q0, double* q1)
{
double qrot[4];
double qinv[4] = {q0[0], -q0[1], -q0[2], -q0[3]};
quat_rot(qinv, q1, qrot);
rotate_quaternion_into_cubic_fundamental_zone(qrot);
double t = qrot[0];
t = MIN(1, MAX(-1, t));
return 2 * t * t - 1;
}
double quat_disorientation_cubic(double* q0, double* q1)
{
return acos(quat_quick_disorientation_cubic(q0, q1));
}
double quat_quick_disorientation_diamond_cubic(double* q0, double* q1)
{
double qrot[4];
double qinv[4] = {q0[0], -q0[1], -q0[2], -q0[3]};
quat_rot(qinv, q1, qrot);
rotate_quaternion_into_diamond_cubic_fundamental_zone(qrot);
double t = qrot[0];
t = MIN(1, MAX(-1, t));
return 2 * t * t - 1;
}
double quat_disorientation_diamond_cubic(double* q0, double* q1)
{
return acos(quat_quick_disorientation_diamond_cubic(q0, q1));
}
double quat_quick_disorientation_hcp(double* q0, double* q1)
{
double qrot[4];
double qinv[4] = {q0[0], -q0[1], -q0[2], -q0[3]};
quat_rot(qinv, q1, qrot);
rotate_quaternion_into_hcp_fundamental_zone(qrot);
double t = qrot[0];
t = MIN(1, MAX(-1, t));
return 2 * t * t - 1;
}
double quat_disorientation_hcp(double* q0, double* q1)
{
return acos(quat_quick_disorientation_hcp(q0, q1));
}
double quat_quick_disorientation_diamond_hexagonal(double* q0, double* q1)
{
double qrot[4];
double qinv[4] = {q0[0], -q0[1], -q0[2], -q0[3]};
quat_rot(qinv, q1, qrot);
rotate_quaternion_into_diamond_hexagonal_fundamental_zone(qrot);
double t = qrot[0];
t = MIN(1, MAX(-1, t));
return 2 * t * t - 1;
}
double quat_disorientation_diamond_hexagonal(double* q0, double* q1)
{
return acos(quat_quick_disorientation_diamond_hexagonal(q0, q1));
}
double quat_quick_disorientation_icosahedral(double* q0, double* q1)
{
double qrot[4];
double qinv[4] = {q0[0], -q0[1], -q0[2], -q0[3]};
quat_rot(qinv, q1, qrot);
rotate_quaternion_into_icosahedral_fundamental_zone(qrot);
double t = qrot[0];
t = MIN(1, MAX(-1, t));
return 2 * t * t - 1;
}
double quat_disorientation_icosahedral(double* q0, double* q1)
{
return acos(quat_quick_disorientation_icosahedral(q0, q1));
}
}

33
src/USER-PTM/ptm_quat.h Normal file
View File

@ -0,0 +1,33 @@
#ifndef PTM_QUAT_H
#define PTM_QUAT_H
namespace ptm {
int rotate_quaternion_into_cubic_fundamental_zone(double* q);
int rotate_quaternion_into_diamond_cubic_fundamental_zone(double* q);
int rotate_quaternion_into_icosahedral_fundamental_zone(double* q);
int rotate_quaternion_into_hcp_fundamental_zone(double* q);
int rotate_quaternion_into_diamond_hexagonal_fundamental_zone(double* q);
void normalize_quaternion(double* q);
void quaternion_to_rotation_matrix(double* q, double* U);
void rotation_matrix_to_quaternion(double* u, double* q);
double quat_dot(double* a, double* b);
double quat_quick_misorientation(double* q1, double* q2);
double quat_misorientation(double* q1, double* q2);
double quat_quick_disorientation_cubic(double* q0, double* q1);
double quat_disorientation_cubic(double* q0, double* q1);
double quat_quick_disorientation_diamond_cubic(double* q0, double* q1);
double quat_disorientation_diamond_cubic(double* q0, double* q1);
double quat_quick_disorientation_hcp(double* q0, double* q1);
double quat_disorientation_hcp(double* q0, double* q1);
double quat_quick_disorientation_diamond_hexagonal(double* q0, double* q1);
double quat_disorientation_diamond_hexagonal(double* q0, double* q1);
double quat_quick_disorientation_icosahedral(double* q0, double* q1);
double quat_disorientation_icosahedral(double* q0, double* q1);
}
#endif

View File

@ -0,0 +1,298 @@
#include <cstdio>
#include <cstdlib>
#include <string.h>
#include <cmath>
#include <cfloat>
#include <cassert>
#include <algorithm>
#include "ptm_convex_hull_incremental.h"
#include "ptm_canonical_coloured.h"
#include "ptm_graph_data.h"
#include "ptm_graph_tools.h"
#include "ptm_normalize_vertices.h"
#include "ptm_polar.h"
#include "ptm_structure_matcher.h"
#include "ptm_constants.h"
namespace ptm {
static double calc_rmsd(int num_points, const double (*ideal_points)[3], double (*normalized)[3], int8_t* mapping,
double G1, double G2, double E0, double* q, double* p_scale)
{
double A0[9];
InnerProduct(A0, num_points, ideal_points, normalized, mapping);
double nrmsdsq, rot[9];
FastCalcRMSDAndRotation(A0, E0, &nrmsdsq, q, rot);
double k0 = 0;
for (int i=0;i<num_points;i++)
{
for (int j=0;j<3;j++)
{
double v = 0.0;
for (int k=0;k<3;k++)
v += rot[j*3+k] * ideal_points[i][k];
k0 += v * normalized[mapping[i]][j];
}
}
double scale = k0 / G2;
*p_scale = scale;
return sqrt(fabs(G1 - scale*k0) / num_points);
}
static void check_graphs( const refdata_t* s,
uint64_t hash,
int8_t* canonical_labelling,
double (*normalized)[3],
result_t* res)
{
int num_points = s->num_nbrs + 1;
const double (*ideal_points)[3] = s->points;
int8_t inverse_labelling[PTM_MAX_POINTS];
int8_t mapping[PTM_MAX_POINTS];
for (int i=0; i<num_points; i++)
inverse_labelling[ canonical_labelling[i] ] = i;
double G1 = 0, G2 = 0;
for (int i=0;i<num_points;i++)
{
double x1 = ideal_points[i][0];
double y1 = ideal_points[i][1];
double z1 = ideal_points[i][2];
double x2 = normalized[i][0];
double y2 = normalized[i][1];
double z2 = normalized[i][2];
G1 += x1 * x1 + y1 * y1 + z1 * z1;
G2 += x2 * x2 + y2 * y2 + z2 * z2;
}
double E0 = (G1 + G2) / 2;
for (int i = 0;i<s->num_graphs;i++)
{
if (hash != s->graphs[i].hash)
continue;
graph_t* gref = &s->graphs[i];
for (int j = 0;j<gref->num_automorphisms;j++)
{
for (int k=0;k<num_points;k++)
mapping[automorphisms[gref->automorphism_index + j][k]] = inverse_labelling[ gref->canonical_labelling[k] ];
double q[4], scale = 0;
double rmsd = calc_rmsd(num_points, ideal_points, normalized, mapping, G1, G2, E0, q, &scale);
if (rmsd < res->rmsd)
{
res->rmsd = rmsd;
res->scale = scale;
res->ref_struct = s;
memcpy(res->q, q, 4 * sizeof(double));
memcpy(res->mapping, mapping, sizeof(int8_t) * num_points);
}
}
}
}
int match_general(const refdata_t* s, double (*ch_points)[3], double (*points)[3], convexhull_t* ch, result_t* res)
{
int8_t degree[PTM_MAX_NBRS];
int8_t facets[PTM_MAX_FACETS][3];
int ret = get_convex_hull(s->num_nbrs + 1, (const double (*)[3])ch_points, ch, facets);
ch->ok = ret >= 0;
if (ret != 0)
return PTM_NO_ERROR;
if (ch->num_facets != s->num_facets)
return PTM_NO_ERROR; //incorrect number of facets in convex hull
int max_degree = graph_degree(s->num_facets, facets, s->num_nbrs, degree);
if (max_degree > s->max_degree)
return PTM_NO_ERROR;
if (s->type == PTM_MATCH_SC)
for (int i = 0;i<s->num_nbrs;i++)
if (degree[i] != 4)
return PTM_NO_ERROR;
double normalized[PTM_MAX_POINTS][3];
subtract_barycentre(s->num_nbrs + 1, points, normalized);
int8_t code[2 * PTM_MAX_EDGES];
int8_t colours[PTM_MAX_POINTS] = {0};
int8_t canonical_labelling[PTM_MAX_POINTS];
uint64_t hash = 0;
ret = canonical_form_coloured(s->num_facets, facets, s->num_nbrs, degree, colours, canonical_labelling, &code[0], &hash);
if (ret != PTM_NO_ERROR)
return ret;
check_graphs(s, hash, canonical_labelling, normalized, res);
return PTM_NO_ERROR;
}
int match_fcc_hcp_ico(double (*ch_points)[3], double (*points)[3], int32_t flags, convexhull_t* ch, result_t* res)
{
int num_nbrs = structure_fcc.num_nbrs;
int num_facets = structure_fcc.num_facets;
int max_degree = structure_fcc.max_degree;
int8_t degree[PTM_MAX_NBRS];
int8_t facets[PTM_MAX_FACETS][3];
int ret = get_convex_hull(num_nbrs + 1, (const double (*)[3])ch_points, ch, facets);
ch->ok = ret >= 0;
if (ret != 0)
return PTM_NO_ERROR;
if (ch->num_facets != num_facets)
return PTM_NO_ERROR; //incorrect number of facets in convex hull
int _max_degree = graph_degree(num_facets, facets, num_nbrs, degree);
if (_max_degree > max_degree)
return PTM_NO_ERROR;
double normalized[PTM_MAX_POINTS][3];
subtract_barycentre(num_nbrs + 1, points, normalized);
int8_t code[2 * PTM_MAX_EDGES];
int8_t colours[PTM_MAX_POINTS] = {0};
int8_t canonical_labelling[PTM_MAX_POINTS];
uint64_t hash = 0;
ret = canonical_form_coloured(num_facets, facets, num_nbrs, degree, colours, canonical_labelling, &code[0], &hash);
if (ret != PTM_NO_ERROR)
return ret;
if (flags & PTM_CHECK_FCC) check_graphs(&structure_fcc, hash, canonical_labelling, normalized, res);
if (flags & PTM_CHECK_HCP) check_graphs(&structure_hcp, hash, canonical_labelling, normalized, res);
if (flags & PTM_CHECK_ICO) check_graphs(&structure_ico, hash, canonical_labelling, normalized, res);
return PTM_NO_ERROR;
}
int match_dcub_dhex(double (*ch_points)[3], double (*points)[3], int32_t flags, convexhull_t* ch, result_t* res)
{
int num_nbrs = structure_dcub.num_nbrs;
int num_facets = structure_fcc.num_facets;
int max_degree = structure_dcub.max_degree;
int8_t facets[PTM_MAX_FACETS][3];
int ret = get_convex_hull(num_nbrs + 1, (const double (*)[3])ch_points, ch, facets);
ch->ok = ret >= 0;
if (ret != 0)
return PTM_NO_ERROR;
//check for facets with multiple inner atoms
bool inverted[4] = {false, false, false, false};
for (int i=0;i<ch->num_facets;i++)
{
int n = 0;
for (int j=0;j<3;j++)
{
if (facets[i][j] <= 3)
{
inverted[facets[i][j]] = true;
n++;
}
}
if (n > 1)
return PTM_NO_ERROR;
}
int num_inverted = 0;
for (int i=0;i<4;i++)
num_inverted += inverted[i] ? 1 : 0;
if (ch->num_facets != num_facets + 2 * num_inverted)
return PTM_NO_ERROR; //incorrect number of facets in convex hull
int8_t degree[PTM_MAX_NBRS];
int _max_degree = graph_degree(num_facets, facets, num_nbrs, degree);
if (_max_degree > max_degree)
return PTM_NO_ERROR;
int num_found = 0;
int8_t toadd[4][3];
for (int i=0;i<ch->num_facets;i++)
{
int a = facets[i][0];
int b = facets[i][1];
int c = facets[i][2];
if (a <= 3 || b <= 3 || c <= 3)
continue;
int i0 = (a - 4) / 3;
int i1 = (b - 4) / 3;
int i2 = (c - 4) / 3;
if (i0 == i1 && i0 == i2)
{
if (num_found + num_inverted >= 4)
return PTM_NO_ERROR;
toadd[num_found][0] = a;
toadd[num_found][1] = b;
toadd[num_found][2] = c;
num_found++;
memcpy(&facets[i], &facets[ch->num_facets - 1], 3 * sizeof(int8_t));
ch->num_facets--;
i--;
}
}
if (num_found + num_inverted != 4)
return PTM_NO_ERROR;
for (int i=0;i<num_found;i++)
{
int a = toadd[i][0];
int b = toadd[i][1];
int c = toadd[i][2];
int i0 = (a - 4) / 3;
facets[ch->num_facets][0] = i0;
facets[ch->num_facets][1] = b;
facets[ch->num_facets][2] = c;
ch->num_facets++;
facets[ch->num_facets][0] = a;
facets[ch->num_facets][1] = i0;
facets[ch->num_facets][2] = c;
ch->num_facets++;
facets[ch->num_facets][0] = a;
facets[ch->num_facets][1] = b;
facets[ch->num_facets][2] = i0;
ch->num_facets++;
}
_max_degree = graph_degree(ch->num_facets, facets, num_nbrs, degree);
if (_max_degree > max_degree)
return PTM_NO_ERROR;
double normalized[PTM_MAX_POINTS][3];
subtract_barycentre(num_nbrs + 1, points, normalized);
int8_t code[2 * PTM_MAX_EDGES];
int8_t colours[PTM_MAX_POINTS] = {1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
int8_t canonical_labelling[PTM_MAX_POINTS];
uint64_t hash = 0;
ret = canonical_form_coloured(ch->num_facets, facets, num_nbrs, degree, colours, canonical_labelling, &code[0], &hash);
if (ret != PTM_NO_ERROR)
return ret;
if (flags & PTM_CHECK_DCUB) check_graphs(&structure_dcub, hash, canonical_labelling, normalized, res);
if (flags & PTM_CHECK_DHEX) check_graphs(&structure_dhex, hash, canonical_labelling, normalized, res);
return PTM_NO_ERROR;
}
}

View File

@ -0,0 +1,26 @@
#ifndef PTM_STRUCTURE_MATCHER_H
#define PTM_STRUCTURE_MATCHER_H
#include "ptm_initialize_data.h"
#include "ptm_constants.h"
namespace ptm {
typedef struct
{
double rmsd;
double scale;
double q[4]; //rotation in quaternion form (rigid body transformation)
int8_t mapping[PTM_MAX_POINTS];
const refdata_t* ref_struct;
} result_t;
int match_general(const refdata_t* s, double (*ch_points)[3], double (*points)[3], convexhull_t* ch, result_t* res);
int match_fcc_hcp_ico(double (*ch_points)[3], double (*points)[3], int32_t flags, convexhull_t* ch, result_t* res);
int match_dcub_dhex(double (*ch_points)[3], double (*points)[3], int32_t flags, convexhull_t* ch, result_t* res);
}
#endif

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,324 @@
// Voro++, a 3D cell-based Voronoi library
//
// Author : Chris H. Rycroft (LBL / UC Berkeley)
// Email : chr@alum.mit.edu
// Date : August 30th 2011
//
// Modified by PM Larsen for use in Polyhedral Template Matching
/** \file cell.hh
* \brief Header file for the voronoicell and related classes. */
#ifndef PTM_VOROPP_CELL_HH
#define PTM_VOROPP_CELL_HH
#include <vector>
#include <cstdio>
#include "ptm_voronoi_config.h"
namespace ptm_voro {
/** \brief A class representing a single Voronoi cell.
*
* This class represents a single Voronoi cell, as a collection of vertices
* that are connected by edges. The class contains routines for initializing
* the Voronoi cell to be simple shapes such as a box, tetrahedron, or octahedron.
* It the contains routines for recomputing the cell based on cutting it
* by a plane, which forms the key routine for the Voronoi cell computation.
* It contains numerous routine for computing statistics about the Voronoi cell,
* and it can output the cell in several formats.
*
* This class is not intended for direct use, but forms the base of the
* voronoicell and voronoicell_neighbor classes, which extend it based on
* whether neighboring particle ID information needs to be tracked. */
class voronoicell_base {
public:
/** This holds the current size of the arrays ed and nu, which
* hold the vertex information. If more vertices are created
* than can fit in this array, then it is dynamically extended
* using the add_memory_vertices routine. */
int current_vertices;
/** This holds the current maximum allowed order of a vertex,
* which sets the size of the mem, mep, and mec arrays. If a
* vertex is created with more vertices than this, the arrays
* are dynamically extended using the add_memory_vorder routine.
*/
int current_vertex_order;
/** This sets the size of the main delete stack. */
int current_delete_size;
/** This sets the size of the auxiliary delete stack. */
int current_delete2_size;
/** This sets the total number of vertices in the current cell.
*/
int p;
/** This is the index of particular point in the cell, which is
* used to start the tracing routines for plane intersection
* and cutting. These routines will work starting from any
* point, but it's often most efficient to start from the last
* point considered, since in many cases, the cell construction
* algorithm may consider many planes with similar vectors
* concurrently. */
int up;
/** This is a two dimensional array that holds information
* about the edge connections of the vertices that make up the
* cell. The two dimensional array is not allocated in the
* usual method. To account for the fact the different vertices
* have different orders, and thus require different amounts of
* storage, the elements of ed[i] point to one-dimensional
* arrays in the mep[] array of different sizes.
*
* More specifically, if vertex i has order m, then ed[i]
* points to a one-dimensional array in mep[m] that has 2*m+1
* entries. The first m elements hold the neighboring edges, so
* that the jth edge of vertex i is held in ed[i][j]. The next
* m elements hold a table of relations which is redundant but
* helps speed up the computation. It satisfies the relation
* ed[ed[i][j]][ed[i][m+j]]=i. The final entry holds a back
* pointer, so that ed[i+2*m]=i. The back pointers are used
* when rearranging the memory. */
int **ed;
/** This array holds the order of the vertices in the Voronoi
* cell. This array is dynamically allocated, with its current
* size held by current_vertices. */
int *nu;
/** This in an array with size 3*current_vertices for holding
* the positions of the vertices. */
double *pts;
voronoicell_base();
virtual ~voronoicell_base();
void init_base(double xmin,double xmax,double ymin,double ymax,double zmin,double zmax);
void init_octahedron_base(double l);
void init_tetrahedron_base(double x0,double y0,double z0,double x1,double y1,double z1,double x2,double y2,double z2,double x3,double y3,double z3);
void translate(double x,double y,double z);
double volume();
double max_radius_squared();
double total_edge_distance();
double surface_area();
void centroid(double &cx,double &cy,double &cz);
int number_of_faces();
int number_of_edges();
void vertex_orders(std::vector<int> &v);
void vertices(std::vector<double> &v);
void vertices(double x,double y,double z,std::vector<double> &v);
void face_areas(std::vector<double> &v);
void face_orders(std::vector<int> &v);
void face_freq_table(std::vector<int> &v);
void face_vertices(std::vector<int> &v);
void face_perimeters(std::vector<double> &v);
void normals(std::vector<double> &v);
template<class vc_class>
bool nplane(vc_class &vc,double x,double y,double z,double rsq,int p_id);
bool plane_intersects(double x,double y,double z,double rsq);
bool plane_intersects_guess(double x,double y,double z,double rsq);
void construct_relations();
void check_relations();
void check_duplicates();
/** Returns a list of IDs of neighboring particles
* corresponding to each face.
* \param[out] v a reference to a vector in which to return the
* results. If no neighbor information is
* available, a blank vector is returned. */
virtual void neighbors(std::vector<int> &v) {v.clear();}
/** This a virtual function that is overridden by a routine to
* print the neighboring particle IDs for a given vertex. By
* default, when no neighbor information is available, the
* routine does nothing.
* \param[in] i the vertex to consider. */
/** This is a simple inline function for picking out the index
* of the next edge counterclockwise at the current vertex.
* \param[in] a the index of an edge of the current vertex.
* \param[in] p the number of the vertex.
* \return 0 if a=nu[p]-1, or a+1 otherwise. */
inline int cycle_up(int a,int p) {return a==nu[p]-1?0:a+1;}
/** This is a simple inline function for picking out the index
* of the next edge clockwise from the current vertex.
* \param[in] a the index of an edge of the current vertex.
* \param[in] p the number of the vertex.
* \return nu[p]-1 if a=0, or a-1 otherwise. */
inline int cycle_down(int a,int p) {return a==0?nu[p]-1:a-1;}
protected:
/** This a one dimensional array that holds the current sizes
* of the memory allocations for them mep array.*/
int *mem;
/** This is a one dimensional array that holds the current
* number of vertices of order p that are stored in the mep[p]
* array. */
int *mec;
/** This is a two dimensional array for holding the information
* about the edges of the Voronoi cell. mep[p] is a
* one-dimensional array for holding the edge information about
* all vertices of order p, with each vertex holding 2*p+1
* integers of information. The total number of vertices held
* on mep[p] is stored in mem[p]. If the space runs out, the
* code allocates more using the add_memory() routine. */
int **mep;
inline void reset_edges();
template<class vc_class>
void check_memory_for_copy(vc_class &vc,voronoicell_base* vb);
void copy(voronoicell_base* vb);
private:
/** This is the delete stack, used to store the vertices which
* are going to be deleted during the plane cutting procedure.
*/
int *ds,*stacke;
/** This is the auxiliary delete stack, which has size set by
* current_delete2_size. */
int *ds2,*stacke2;
/** This stores the current memory allocation for the marginal
* cases. */
int current_marginal;
/** This stores the total number of marginal points which are
* currently in the buffer. */
int n_marg;
/** This array contains a list of the marginal points, and also
* the outcomes of the marginal tests. */
int *marg;
/** The x coordinate of the normal vector to the test plane. */
double px;
/** The y coordinate of the normal vector to the test plane. */
double py;
/** The z coordinate of the normal vector to the test plane. */
double pz;
/** The magnitude of the normal vector to the test plane. */
double prsq;
template<class vc_class>
void add_memory(vc_class &vc,int i,int *stackp2);
template<class vc_class>
void add_memory_vertices(vc_class &vc);
template<class vc_class>
void add_memory_vorder(vc_class &vc);
void add_memory_ds(int *&stackp);
void add_memory_ds2(int *&stackp2);
template<class vc_class>
inline bool collapse_order1(vc_class &vc);
template<class vc_class>
inline bool collapse_order2(vc_class &vc);
template<class vc_class>
inline bool delete_connection(vc_class &vc,int j,int k,bool hand);
template<class vc_class>
inline bool search_for_outside_edge(vc_class &vc,int &up);
template<class vc_class>
inline void add_to_stack(vc_class &vc,int lp,int *&stackp2);
inline bool plane_intersects_track(double x,double y,double z,double rs,double g);
inline void normals_search(std::vector<double> &v,int i,int j,int k);
inline bool search_edge(int l,int &m,int &k);
inline int m_test(int n,double &ans);
int check_marginal(int n,double &ans);
friend class voronoicell;
friend class voronoicell_neighbor;
};
/** \brief Extension of the voronoicell_base class to represent a Voronoi cell
* with neighbor information.
*
* This class is an extension of the voronoicell_base class, in cases when the
* IDs of neighboring particles associated with each face of the Voronoi cell.
* It contains additional data structures mne and ne for storing this
* information. */
class voronoicell_neighbor : public voronoicell_base {
public:
using voronoicell_base::nplane;
/** This two dimensional array holds the neighbor information
* associated with each vertex. mne[p] is a one dimensional
* array which holds all of the neighbor information for
* vertices of order p. */
int **mne;
/** This is a two dimensional array that holds the neighbor
* information associated with each vertex. ne[i] points to a
* one-dimensional array in mne[nu[i]]. ne[i][j] holds the
* neighbor information associated with the jth edge of vertex
* i. It is set to the ID number of the plane that made the
* face that is clockwise from the jth edge. */
int **ne;
voronoicell_neighbor();
~voronoicell_neighbor();
void operator=(voronoicell_neighbor &c);
/** Cuts the Voronoi cell by a particle whose center is at a
* separation of (x,y,z) from the cell center. The value of rsq
* should be initially set to \f$x^2+y^2+z^2\f$.
* \param[in] (x,y,z) the normal vector to the plane.
* \param[in] rsq the distance along this vector of the plane.
* \param[in] p_id the plane ID (for neighbor tracking only).
* \return False if the plane cut deleted the cell entirely,
* true otherwise. */
inline bool nplane(double x,double y,double z,double rsq,int p_id) {
return nplane(*this,x,y,z,rsq,p_id);
}
/** This routine calculates the modulus squared of the vector
* before passing it to the main nplane() routine with full
* arguments.
* \param[in] (x,y,z) the vector to cut the cell by.
* \param[in] p_id the plane ID (for neighbor tracking only).
* \return False if the plane cut deleted the cell entirely,
* true otherwise. */
inline bool nplane(double x,double y,double z,int p_id) {
double rsq=x*x+y*y+z*z;
return nplane(*this,x,y,z,rsq,p_id);
}
/** This version of the plane routine just makes up the plane
* ID to be zero. It will only be referenced if neighbor
* tracking is enabled.
* \param[in] (x,y,z) the vector to cut the cell by.
* \param[in] rsq the modulus squared of the vector.
* \return False if the plane cut deleted the cell entirely,
* true otherwise. */
inline bool plane(double x,double y,double z,double rsq) {
return nplane(*this,x,y,z,rsq,0);
}
/** Cuts a Voronoi cell using the influence of a particle at
* (x,y,z), first calculating the modulus squared of this
* vector before passing it to the main nplane() routine. Zero
* is supplied as the plane ID, which will be ignored unless
* neighbor tracking is enabled.
* \param[in] (x,y,z) the vector to cut the cell by.
* \return False if the plane cut deleted the cell entirely,
* true otherwise. */
inline bool plane(double x,double y,double z) {
double rsq=x*x+y*y+z*z;
return nplane(*this,x,y,z,rsq,0);
}
void init(double xmin,double xmax,double ymin,double ymax,double zmin,double zmax);
void check_facets();
virtual void neighbors(std::vector<int> &v);
private:
int *paux1;
int *paux2;
inline void n_allocate(int i,int m) {mne[i]=new int[m*i];}
inline void n_add_memory_vertices(int i) {
int **pp=new int*[i];
for(int j=0;j<current_vertices;j++) pp[j]=ne[j];
delete [] ne;ne=pp;
}
inline void n_add_memory_vorder(int i) {
int **p2=new int*[i];
for(int j=0;j<current_vertex_order;j++) p2[j]=mne[j];
delete [] mne;mne=p2;
}
inline void n_set_pointer(int p,int n) {
ne[p]=mne[n]+n*mec[n];
}
inline void n_copy(int a,int b,int c,int d) {ne[a][b]=ne[c][d];}
inline void n_set(int a,int b,int c) {ne[a][b]=c;}
inline void n_set_aux1(int k) {paux1=mne[k]+k*mec[k];}
inline void n_copy_aux1(int a,int b) {paux1[b]=ne[a][b];}
inline void n_copy_aux1_shift(int a,int b) {paux1[b]=ne[a][b+1];}
inline void n_set_aux2_copy(int a,int b) {
paux2=mne[b]+b*mec[b];
for(int i=0;i<b;i++) ne[a][i]=paux2[i];
}
inline void n_copy_pointer(int a,int b) {ne[a]=ne[b];}
inline void n_set_to_aux1(int j) {ne[j]=paux1;}
inline void n_set_to_aux2(int j) {ne[j]=paux2;}
inline void n_allocate_aux1(int i) {paux1=new int[i*mem[i]];}
inline void n_switch_to_aux1(int i) {delete [] mne[i];mne[i]=paux1;}
inline void n_copy_to_aux1(int i,int m) {paux1[m]=mne[i][m];}
inline void n_set_to_aux1_offset(int k,int m) {ne[k]=paux1+m;}
friend class voronoicell_base;
};
}
#endif

View File

@ -0,0 +1,129 @@
// Voro++, a 3D cell-based Voronoi library
//
// Author : Chris H. Rycroft (LBL / UC Berkeley)
// Email : chr@alum.mit.edu
// Date : August 30th 2011
//
// Modified by PM Larsen for use in Polyhedral Template Matching
/** \file config.hh
* \brief Master configuration file for setting various compile-time options. */
#ifndef PTM_VOROPP_CONFIG_HH
#define PTM_VOROPP_CONFIG_HH
namespace ptm_voro {
// These constants set the initial memory allocation for the Voronoi cell
/** The initial memory allocation for the number of vertices. */
const int init_vertices=256;
/** The initial memory allocation for the maximum vertex order. */
const int init_vertex_order=64;
/** The initial memory allocation for the number of regular vertices of order
* 3. */
const int init_3_vertices=256;
/** The initial memory allocation for the number of vertices of higher order.
*/
const int init_n_vertices=8;
/** The initial buffer size for marginal cases used by the suretest class. */
const int init_marginal=64;
/** The initial size for the delete stack. */
const int init_delete_size=256;
/** The initial size for the auxiliary delete stack. */
const int init_delete2_size=256;
/** The initial size for the wall pointer array. */
const int init_wall_size=32;
/** The default initial size for the ordering class. */
const int init_ordering_size=4096;
/** The initial size of the pre_container chunk index. */
const int init_chunk_size=256;
// If the initial memory is too small, the program dynamically allocates more.
// However, if the limits below are reached, then the program bails out.
/** The maximum memory allocation for the number of vertices. */
const int max_vertices=16777216;
/** The maximum memory allocation for the maximum vertex order. */
const int max_vertex_order=2048;
/** The maximum memory allocation for the any particular order of vertex. */
const int max_n_vertices=16777216;
/** The maximum buffer size for marginal cases used by the suretest class. */
const int max_marginal=16777216;
/** The maximum size for the delete stack. */
const int max_delete_size=16777216;
/** The maximum size for the auxiliary delete stack. */
const int max_delete2_size=16777216;
/** The maximum amount of particle memory allocated for a single region. */
const int max_particle_memory=16777216;
/** The maximum size for the wall pointer array. */
const int max_wall_size=2048;
/** The maximum size for the ordering class. */
const int max_ordering_size=67108864;
/** The maximum size for the pre_container chunk index. */
const int max_chunk_size=65536;
/** The chunk size in the pre_container classes. */
const int pre_container_chunk_size=1024;
#ifndef VOROPP_VERBOSE
/** Voro++ can print a number of different status and debugging messages to
* notify the user of special behavior, and this macro sets the amount which
* are displayed. At level 0, no messages are printed. At level 1, messages
* about unusual cases during cell construction are printed, such as when the
* plane routine bails out due to floating point problems. At level 2, general
* messages about memory expansion are printed. At level 3, technical details
* about memory management are printed. */
#define VOROPP_VERBOSE 0
#endif
/** If a point is within this distance of a cutting plane, then the code
* assumes that point exactly lies on the plane. */
const double tolerance=1e-11;
/** If a point is within this distance of a cutting plane, then the code stores
* whether this point is inside, outside, or exactly on the cutting plane in
* the marginal cases buffer, to prevent the test giving a different result on
* a subsequent evaluation due to floating point rounding errors. */
const double tolerance2=2e-11;
/** The square of the tolerance, used when deciding whether some squared
* quantities are large enough to be used. */
const double tolerance_sq=tolerance*tolerance;
/** A large number that is used in the computation. */
const double large_number=1e30;
/** A radius to use as a placeholder when no other information is available. */
const double default_radius=0.5;
/** The maximum number of shells of periodic images to test over. */
const int max_unit_voro_shells=10;
/** A guess for the optimal number of particles per block, used to set up the
* container grid. */
const double optimal_particles=5.6;
/** If this is set to 1, then the code reports any instances of particles being
* put outside of the container geometry. */
#define VOROPP_REPORT_OUT_OF_BOUNDS 0
/** Voro++ returns this status code if there is a file-related error, such as
* not being able to open file. */
#define VOROPP_FILE_ERROR 1
/** Voro++ returns this status code if there is a memory allocation error, if
* one of the safe memory limits is exceeded. */
#define VOROPP_MEMORY_ERROR 2
/** Voro++ returns this status code if there is any type of internal error, if
* it detects that representation of the Voronoi cell is inconsistent. This
* status code will generally indicate a bug, and the developer should be
* contacted. */
#define VOROPP_INTERNAL_ERROR 3
/** Voro++ returns this status code if it could not interpret the command line
* arguments passed to the command line utility. */
#define VOROPP_CMD_LINE_ERROR 4
}
#endif