convert pair styles srp to tersoff
Before Width: | Height: | Size: 3.5 KiB |
|
@ -1,9 +0,0 @@
|
|||
\documentclass[12pt]{article}
|
||||
|
||||
\begin{document}
|
||||
|
||||
\begin{eqnarray*}
|
||||
F^{SRP}_{ij} & = & C(1-r/r_c)\hat{r}_{ij} \qquad r < r_c \\
|
||||
\end{eqnarray*}
|
||||
|
||||
\end{document}
|
Before Width: | Height: | Size: 5.5 KiB |
|
@ -1,10 +0,0 @@
|
|||
\documentclass[12pt]{article}
|
||||
|
||||
\begin{document}
|
||||
|
||||
\begin{eqnarray*}
|
||||
F_{i1}^{SRP} & = & F^{SRP}_{ij}(L) \\
|
||||
F_{i2}^{SRP} & = & F^{SRP}_{ij}(1-L)
|
||||
\end{eqnarray*}
|
||||
|
||||
\end{document}
|
Before Width: | Height: | Size: 28 KiB |
|
@ -1,18 +0,0 @@
|
|||
\documentclass[12pt]{article}
|
||||
|
||||
\begin{document}
|
||||
|
||||
\begin{eqnarray*}
|
||||
E & = & \sum_i \sum_{j > i} \phi_2 (r_{ij}) +
|
||||
\sum_i \sum_{j \neq i} \sum_{k > j}
|
||||
\phi_3 (r_{ij}, r_{ik}, \theta_{ijk}) \\
|
||||
\phi_2(r_{ij}) & = & A_{ij} \epsilon_{ij} \left[ B_{ij} (\frac{\sigma_{ij}}{r_{ij}})^{p_{ij}} -
|
||||
(\frac{\sigma_{ij}}{r_{ij}})^{q_{ij}} \right]
|
||||
\exp \left( \frac{\sigma_{ij}}{r_{ij} - a_{ij} \sigma_{ij}} \right) \\
|
||||
\phi_3(r_{ij},r_{ik},\theta_{ijk}) & = & \lambda_{ijk} \epsilon_{ijk} \left[ \cos \theta_{ijk} -
|
||||
\cos \theta_{0ijk} \right]^2
|
||||
\exp \left( \frac{\gamma_{ij} \sigma_{ij}}{r_{ij} - a_{ij} \sigma_{ij}} \right)
|
||||
\exp \left( \frac{\gamma_{ik} \sigma_{ik}}{r_{ik} - a_{ik} \sigma_{ik}} \right)
|
||||
\end{eqnarray*}
|
||||
|
||||
\end{document}
|
Before Width: | Height: | Size: 35 KiB |
Before Width: | Height: | Size: 36 KiB |
|
@ -1,24 +0,0 @@
|
|||
\documentclass[12pt]{article}
|
||||
|
||||
\begin{document}
|
||||
|
||||
\begin{eqnarray*}
|
||||
E & = & \frac{1}{2} \sum_i \sum_{j \neq i} V_{ij} \\
|
||||
V_{ij} & = & f_C(r_{ij}) \left[ f_R(r_{ij}) + b_{ij} f_A(r_{ij}) \right] \\
|
||||
f_C(r) & = & \left\{ \begin{array} {r@{\quad:\quad}l}
|
||||
1 & r < R - D \\
|
||||
\frac{1}{2} - \frac{1}{2} \sin \left( \frac{\pi}{2} \frac{r-R}{D} \right) &
|
||||
R-D < r < R + D \\
|
||||
0 & r > R + D
|
||||
\end{array} \right. \\
|
||||
f_R(r) & = & A \exp (-\lambda_1 r) \\
|
||||
f_A(r) & = & -B \exp (-\lambda_2 r) \\
|
||||
b_{ij} & = & \left( 1 + \beta^n {\zeta_{ij}}^n \right)^{-\frac{1}{2n}} \\
|
||||
\zeta_{ij} & = & \sum_{k \neq i,j} f_C(r_{ik}) g(\theta_{ijk})
|
||||
\exp \left[ {\lambda_3}^m (r_{ij} - r_{ik})^m \right] \\
|
||||
g(\theta) & = & \gamma_{ijk} \left( 1 + \frac{c^2}{d^2} -
|
||||
\frac{c^2}{\left[ d^2 +
|
||||
(\cos \theta - \cos \theta_0)^2\right]} \right)
|
||||
\end{eqnarray*}
|
||||
|
||||
\end{document}
|
Before Width: | Height: | Size: 13 KiB |
|
@ -1,14 +0,0 @@
|
|||
\documentclass[12pt]{article}
|
||||
|
||||
\begin{document}
|
||||
|
||||
\begin{eqnarray*}
|
||||
\lambda_1^{i,j} &=& \frac{1}{2}(\lambda_1^i + \lambda_1^j)\\
|
||||
\lambda_2^{i,j} &=& \frac{1}{2}(\lambda_2^i + \lambda_2^j)\\
|
||||
A_{i,j} &=& (A_{i}A_{j})^{1/2}\\
|
||||
B_{i,j} &=& \chi_{ij}(B_{i}B_{j})^{1/2}\\
|
||||
R_{i,j} &=& (R_{i}R_{j})^{1/2}\\
|
||||
S_{i,j} &=& (S_{i}S_{j})^{1/2}\\
|
||||
\end{eqnarray*}
|
||||
|
||||
\end{document}
|
Before Width: | Height: | Size: 90 KiB |
|
@ -1,24 +0,0 @@
|
|||
\documentclass[12pt]{article}
|
||||
|
||||
\begin{document}
|
||||
|
||||
\begin{eqnarray*}
|
||||
E & = & \frac{1}{2} \sum_i \sum_{j \neq i} V_{ij} \\
|
||||
V_{ij} & = & f_C(r_{ij}) \left[ f_R(r_{ij}) + b_{ij} f_A(r_{ij}) \right] \\
|
||||
f_C(r) & = & \left\{ \begin{array} {r@{\quad:\quad}l}
|
||||
1 & r < R - D \\
|
||||
\frac{1}{2} - \frac{9}{16} \sin \left( \frac{\pi}{2} \frac{r-R}{D} \right) - \frac{1}{16} \sin \left( \frac{3\pi}{2} \frac{r-R}{D} \right) &
|
||||
R-D < r < R + D \\
|
||||
0 & r > R + D
|
||||
\end{array} \right. \\
|
||||
f_R(r) & = & A \exp (-\lambda_1 r) \\
|
||||
f_A(r) & = & -B \exp (-\lambda_2 r) \\
|
||||
b_{ij} & = & \left( 1 + {\zeta_{ij}}^\eta \right)^{-\frac{1}{2n}} \\
|
||||
\zeta_{ij} & = & \sum_{k \neq i,j} f_C(r_{ik}) g(\theta_{ijk})
|
||||
\exp \left[ \alpha (r_{ij} - r_{ik})^\beta \right] \\
|
||||
g(\theta) & = & c_1 + g_o(\theta) g_a(\theta) \\
|
||||
g_o(\theta) & = & \frac{c_2 (h - \cos \theta)^2}{c_3 + (h - \cos \theta)^2} \\
|
||||
g_a(\theta) & = & 1 + c_4 \exp \left[ -c_5 (h - \cos \theta)^2 \right] \\
|
||||
\end{eqnarray*}
|
||||
|
||||
\end{document}
|
Before Width: | Height: | Size: 4.1 KiB |
|
@ -1,10 +0,0 @@
|
|||
\documentclass[12pt]{article}
|
||||
\pagestyle{empty}
|
||||
|
||||
\begin{document}
|
||||
|
||||
\begin{eqnarray*}
|
||||
V_{ij} & = & f_C(r_{ij}) \left[ f_R(r_{ij}) + b_{ij} f_A(r_{ij}) + c_0 \right]
|
||||
\end{eqnarray*}
|
||||
|
||||
\end{document}
|
Before Width: | Height: | Size: 384 KiB |
|
@ -1,33 +0,0 @@
|
|||
\documentclass[12pt]{article}
|
||||
|
||||
\begin{document}
|
||||
|
||||
\begin{eqnarray*}
|
||||
E & = & \frac{1}{2} \sum_i \sum_{j \neq i} V_{ij} \\
|
||||
V_{ij} & = & (1 - f_F(r_{ij})) V^{ZBL}_{ij} + f_F(r_{ij}) V^{Tersoff}_{ij} \\
|
||||
f_F(r_{ij}) & = & \frac{1}{1 + e^{-A_F(r_{ij} - r_C)}}\\
|
||||
\\
|
||||
\\
|
||||
V^{ZBL}_{ij} & = & \frac{1}{4\pi\epsilon_0} \frac{Z_1 Z_2 \,e^2}{r_{ij}} \phi(r_{ij}/a) \\
|
||||
a & = & \frac{0.8854\,a_0}{Z_{1}^{0.23} + Z_{2}^{0.23}}\\
|
||||
\phi(x) & = & 0.1818e^{-3.2x} + 0.5099e^{-0.9423x} + 0.2802e^{-0.4029x} + 0.02817e^{-0.2016x}\\
|
||||
\\
|
||||
\\
|
||||
V^{Tersoff}_{ij} & = & f_C(r_{ij}) \left[ f_R(r_{ij}) + b_{ij} f_A(r_{ij}) \right] \\
|
||||
f_C(r) & = & \left\{ \begin{array} {r@{\quad:\quad}l}
|
||||
1 & r < R - D \\
|
||||
\frac{1}{2} - \frac{1}{2} \sin \left( \frac{\pi}{2} \frac{r-R}{D} \right) &
|
||||
R-D < r < R + D \\
|
||||
0 & r > R + D
|
||||
\end{array} \right. \\
|
||||
f_R(r) & = & A \exp (-\lambda_1 r) \\
|
||||
f_A(r) & = & -B \exp (-\lambda_2 r) \\
|
||||
b_{ij} & = & \left( 1 + \beta^n {\zeta_{ij}}^n \right)^{-\frac{1}{2n}} \\
|
||||
\zeta_{ij} & = & \sum_{k \neq i,j} f_C(r_{ik}) g(\theta_{ijk})
|
||||
\exp \left[ {\lambda_3}^m (r_{ij} - r_{ik})^m \right] \\
|
||||
g(\theta) & = & \gamma_{ijk} \left( 1 + \frac{c^2}{d^2} -
|
||||
\frac{c^2}{\left[ d^2 +
|
||||
(\cos \theta - \cos \theta_0)^2\right]} \right)
|
||||
\end{eqnarray*}
|
||||
|
||||
\end{document}
|
|
@ -56,19 +56,25 @@ Bonds of specified type *btype* interact with one another through a
|
|||
bond-pairwise potential, such that the force on bond *i* due to bond
|
||||
*j* is as follows
|
||||
|
||||
.. image:: Eqs/pair_srp1.jpg
|
||||
:align: center
|
||||
.. math::
|
||||
|
||||
where *r* and *rij* are the distance and unit vector between the two
|
||||
bonds. Note that *btype* can be specified as an asterisk "\*", which
|
||||
case the interaction is applied to all bond types. The *mid* option
|
||||
computes *r* and *rij* from the midpoint distance between bonds. The
|
||||
*min* option computes *r* and *rij* from the minimum distance between
|
||||
bonds. The force acting on a bond is mapped onto the two bond atoms
|
||||
according to the lever rule,
|
||||
F^{SRP}_{ij} & = C(1-r/r_c)\hat{r}_{ij} \qquad r < r_c
|
||||
|
||||
|
||||
where *r* and :math:`\hat{r}_{ij}` are the distance and unit vector
|
||||
between the two bonds. Note that *btype* can be specified as an
|
||||
asterisk "\*", which case the interaction is applied to all bond types.
|
||||
The *mid* option computes *r* and :math:`\hat{r}_{ij}` from the midpoint
|
||||
distance between bonds. The *min* option computes *r* and
|
||||
:math:`\hat{r}_{ij}` from the minimum distance between bonds. The force
|
||||
acting on a bond is mapped onto the two bond atoms according to the
|
||||
lever rule,
|
||||
|
||||
.. math::
|
||||
|
||||
F_{i1}^{SRP} & = F^{SRP}_{ij}(L) \\
|
||||
F_{i2}^{SRP} & = F^{SRP}_{ij}(1-L)
|
||||
|
||||
.. image:: Eqs/pair_srp2.jpg
|
||||
:align: center
|
||||
|
||||
where *L* is the normalized distance from the atom to the point of
|
||||
closest approach of bond *i* and *j*\ . The *mid* option takes *L* as
|
||||
|
@ -80,7 +86,7 @@ the data file or restart file read by the :doc:`read_data <read_data>`
|
|||
or :doc:`read_restart <read_restart>` commands:
|
||||
|
||||
* *C* (force units)
|
||||
* *rc* (distance units)
|
||||
* :math:`r_c` (distance units)
|
||||
|
||||
The last coefficient is optional. If not specified, the global cutoff
|
||||
is used.
|
||||
|
@ -114,7 +120,7 @@ Pair style *srp* turns off normalization of thermodynamic properties
|
|||
by particle number, as if the command :doc:`thermo_modify norm no <thermo_modify>` had been issued.
|
||||
|
||||
The pairwise energy associated with style *srp* is shifted to be zero
|
||||
at the cutoff distance *rc*\ .
|
||||
at the cutoff distance :math:`r_c`.
|
||||
|
||||
|
||||
----------
|
||||
|
@ -127,7 +133,7 @@ This pair styles does not support mixing.
|
|||
This pair style does not support the :doc:`pair_modify <pair_modify>`
|
||||
shift option for the energy of the pair interaction. Note that as
|
||||
discussed above, the energy term is already shifted to be 0.0 at the
|
||||
cutoff distance *rc*\ .
|
||||
cutoff distance :math:`r_c`.
|
||||
|
||||
The :doc:`pair_modify <pair_modify>` table option is not relevant for
|
||||
this pair style.
|
||||
|
|
|
@ -39,12 +39,23 @@ Description
|
|||
The *sw* style computes a 3-body :ref:`Stillinger-Weber <Stillinger2>`
|
||||
potential for the energy E of a system of atoms as
|
||||
|
||||
.. image:: Eqs/pair_sw.jpg
|
||||
:align: center
|
||||
.. math::
|
||||
|
||||
where phi2 is a two-body term and phi3 is a three-body term. The
|
||||
summations in the formula are over all neighbors J and K of atom I
|
||||
within a cutoff distance = a\*sigma.
|
||||
E & = \sum_i \sum_{j > i} \phi_2 (r_{ij}) +
|
||||
\sum_i \sum_{j \neq i} \sum_{k > j}
|
||||
\phi_3 (r_{ij}, r_{ik}, \theta_{ijk}) \\
|
||||
\phi_2(r_{ij}) & = A_{ij} \epsilon_{ij} \left[ B_{ij} (\frac{\sigma_{ij}}{r_{ij}})^{p_{ij}} -
|
||||
(\frac{\sigma_{ij}}{r_{ij}})^{q_{ij}} \right]
|
||||
\exp \left( \frac{\sigma_{ij}}{r_{ij} - a_{ij} \sigma_{ij}} \right) \\
|
||||
\phi_3(r_{ij},r_{ik},\theta_{ijk}) & = \lambda_{ijk} \epsilon_{ijk} \left[ \cos \theta_{ijk} -
|
||||
\cos \theta_{0ijk} \right]^2
|
||||
\exp \left( \frac{\gamma_{ij} \sigma_{ij}}{r_{ij} - a_{ij} \sigma_{ij}} \right)
|
||||
\exp \left( \frac{\gamma_{ik} \sigma_{ik}}{r_{ik} - a_{ik} \sigma_{ik}} \right)
|
||||
|
||||
|
||||
where :math:`\phi_2` is a two-body term and :math:`\phi_3` is a
|
||||
three-body term. The summations in the formula are over all neighbors J
|
||||
and K of atom I within a cutoff distance :math:`a `\sigma`.
|
||||
|
||||
Only a single pair\_coeff command is used with the *sw* style which
|
||||
specifies a Stillinger-Weber potential file with parameters for all
|
||||
|
@ -86,24 +97,25 @@ and three-body coefficients in the formula above:
|
|||
* element 1 (the center atom in a 3-body interaction)
|
||||
* element 2
|
||||
* element 3
|
||||
* epsilon (energy units)
|
||||
* sigma (distance units)
|
||||
* :math:`\epsilon` (energy units)
|
||||
* :math:`\sigma` (distance units)
|
||||
* a
|
||||
* lambda
|
||||
* gamma
|
||||
* costheta0
|
||||
* :math:`\lambda`
|
||||
* :math:`\gamma`
|
||||
* :math:`\cos\theta_0`
|
||||
* A
|
||||
* B
|
||||
* p
|
||||
* q
|
||||
* tol
|
||||
|
||||
The A, B, p, and q parameters are used only for two-body
|
||||
interactions. The lambda and costheta0 parameters are used only for
|
||||
three-body interactions. The epsilon, sigma and a parameters are used
|
||||
for both two-body and three-body interactions. gamma is used only in the
|
||||
three-body interactions, but is defined for pairs of atoms.
|
||||
The non-annotated parameters are unitless.
|
||||
The A, B, p, and q parameters are used only for two-body interactions.
|
||||
The :math:`\lambda` and :math:`\cos\theta_0` parameters are used only
|
||||
for three-body interactions. The :math:`\epsilon`, :math:`\sigma` and
|
||||
*a* parameters are used for both two-body and three-body
|
||||
interactions. :math:`\gamma` is used only in the three-body
|
||||
interactions, but is defined for pairs of atoms. The non-annotated
|
||||
parameters are unitless.
|
||||
|
||||
LAMMPS introduces an additional performance-optimization parameter tol
|
||||
that is used for both two-body and three-body interactions. In the
|
||||
|
@ -141,9 +153,9 @@ are usually defined by simple formulas involving two sets of pair-wise
|
|||
parameters, corresponding to the ij and ik pairs, where i is the
|
||||
center atom. The user must ensure that the correct combining rule is
|
||||
used to calculate the values of the three-body parameters for
|
||||
alloys. Note also that the function phi3 contains two exponential
|
||||
alloys. Note also that the function :math:`\phi_3` contains two exponential
|
||||
screening factors with parameter values from the ij pair and ik
|
||||
pairs. So phi3 for a C atom bonded to a Si atom and a second C atom
|
||||
pairs. So :math:`\phi_3` for a C atom bonded to a Si atom and a second C atom
|
||||
will depend on the three-body parameters for the CSiC entry, and also
|
||||
on the two-body parameters for the CCC and CSiSi entries. Since the
|
||||
order of the two neighbors is arbitrary, the three-body parameters for
|
||||
|
@ -152,8 +164,8 @@ parameters for entries SiCC and CSiSi should also be the same. The
|
|||
parameters used only for two-body interactions (A, B, p, and q) in
|
||||
entries whose 2nd and 3rd element are different (e.g. SiCSi) are not
|
||||
used for anything and can be set to 0.0 if desired.
|
||||
This is also true for the parameters in phi3 that are
|
||||
taken from the ij and ik pairs (sigma, a, gamma)
|
||||
This is also true for the parameters in :math:`\phi_3` that are
|
||||
taken from the ij and ik pairs (:math:`\sigma`, *a*\ , :math:`\gamma`)
|
||||
|
||||
|
||||
----------
|
||||
|
|
|
@ -50,12 +50,28 @@ Description
|
|||
The *tersoff* style computes a 3-body Tersoff potential
|
||||
:ref:`(Tersoff\_1) <Tersoff_11>` for the energy E of a system of atoms as
|
||||
|
||||
.. image:: Eqs/pair_tersoff_1.jpg
|
||||
:align: center
|
||||
.. math::
|
||||
|
||||
where f\_R is a two-body term and f\_A includes three-body interactions.
|
||||
The summations in the formula are over all neighbors J and K of atom I
|
||||
within a cutoff distance = R + D.
|
||||
E & = \frac{1}{2} \sum_i \sum_{j \neq i} V_{ij} \\
|
||||
V_{ij} & = f_C(r_{ij}) \left[ f_R(r_{ij}) + b_{ij} f_A(r_{ij}) \right] \\
|
||||
f_C(r) & = \left\{ \begin{array} {r@{\quad:\quad}l}
|
||||
1 & r < R - D \\
|
||||
\frac{1}{2} - \frac{1}{2} \sin \left( \frac{\pi}{2} \frac{r-R}{D} \right) &
|
||||
R-D < r < R + D \\
|
||||
0 & r > R + D
|
||||
\end{array} \right. \\
|
||||
f_R(r) & = A \exp (-\lambda_1 r) \\
|
||||
f_A(r) & = -B \exp (-\lambda_2 r) \\
|
||||
b_{ij} & = \left( 1 + \beta^n {\zeta_{ij}}^n \right)^{-\frac{1}{2n}} \\
|
||||
\zeta_{ij} & = \sum_{k \neq i,j} f_C(r_{ik}) g(\theta_{ijk})
|
||||
\exp \left[ {\lambda_3}^m (r_{ij} - r_{ik})^m \right] \\
|
||||
g(\theta) & = \gamma_{ijk} \left( 1 + \frac{c^2}{d^2} -
|
||||
\frac{c^2}{\left[ d^2 + (\cos \theta - \cos \theta_0)^2\right]} \right)
|
||||
|
||||
|
||||
where :math:`f_R` is a two-body term and :math:`f_A` includes three-body
|
||||
interactions. The summations in the formula are over all neighbors
|
||||
J and K of atom I within a cutoff distance = R + D.
|
||||
|
||||
The *tersoff/table* style uses tabulated forms for the two-body,
|
||||
environment and angular functions. Linear interpolation is performed
|
||||
|
@ -104,22 +120,24 @@ above:
|
|||
* element 2 (the atom bonded to the center atom)
|
||||
* element 3 (the atom influencing the 1-2 bond in a bond-order sense)
|
||||
* m
|
||||
* gamma
|
||||
* lambda3 (1/distance units)
|
||||
* :math:`\gamma`
|
||||
* :math:`\lambda_3` (1/distance units)
|
||||
* c
|
||||
* d
|
||||
* costheta0 (can be a value < -1 or > 1)
|
||||
* :math:`\cos\theta_0` (can be a value < -1 or > 1)
|
||||
* n
|
||||
* beta
|
||||
* lambda2 (1/distance units)
|
||||
* :math:`\beta`
|
||||
* :math:`\lambda_2` (1/distance units)
|
||||
* B (energy units)
|
||||
* R (distance units)
|
||||
* D (distance units)
|
||||
* lambda1 (1/distance units)
|
||||
* :math:`\lambda_1` (1/distance units)
|
||||
* A (energy units)
|
||||
|
||||
The n, beta, lambda2, B, lambda1, and A parameters are only used for
|
||||
two-body interactions. The m, gamma, lambda3, c, d, and costheta0
|
||||
The n, :math:`\beta`, :math:`\lambda_2`, B, :math:`\lambda_1`, and A
|
||||
parameters are only used for
|
||||
two-body interactions. The m, :math:`\gamma`, :math:`\lambda_3`, c, d,
|
||||
and :math:`\cos\theta_0`
|
||||
parameters are only used for three-body interactions. The R and D
|
||||
parameters are used for both two-body and three-body interactions. The
|
||||
non-annotated parameters are unitless. The value of m must be 3 or 1.
|
||||
|
@ -149,7 +167,8 @@ SiCC entry.
|
|||
The parameters used for a particular
|
||||
three-body interaction come from the entry with the corresponding
|
||||
three elements. The parameters used only for two-body interactions
|
||||
(n, beta, lambda2, B, lambda1, and A) in entries whose 2nd and 3rd
|
||||
(n, :math:`\beta`, :math:`\lambda_2`, B, :math:`\lambda_1`, and A)
|
||||
in entries whose 2nd and 3rd
|
||||
element are different (e.g. SiCSi) are not used for anything and can
|
||||
be set to 0.0 if desired.
|
||||
|
||||
|
@ -165,16 +184,24 @@ it reduces to the form of :ref:`Albe et al. <Albe>` when beta = 1 and m = 1.
|
|||
Note that in the current Tersoff implementation in LAMMPS, m must be
|
||||
specified as either 3 or 1. Tersoff used a slightly different but
|
||||
equivalent form for alloys, which we will refer to as Tersoff\_2
|
||||
potential :ref:`(Tersoff\_2) <Tersoff_21>`. The *tersoff/table* style implements
|
||||
potential :ref:`(Tersoff\_2) <Tersoff_21>`.
|
||||
The *tersoff/table* style implements
|
||||
Tersoff\_2 parameterization only.
|
||||
|
||||
LAMMPS parameter values for Tersoff\_2 can be obtained as follows:
|
||||
gamma\_ijk = omega\_ik, lambda3 = 0 and the value of
|
||||
:math:`\gamma_{ijk} = \omega_{ik}`, :math:`\lambda_3 = 0` and the value of
|
||||
m has no effect. The parameters for species i and j can be calculated
|
||||
using the Tersoff\_2 mixing rules:
|
||||
|
||||
.. image:: Eqs/pair_tersoff_2.jpg
|
||||
:align: center
|
||||
.. math::
|
||||
|
||||
\lambda_1^{i,j} & = \frac{1}{2}(\lambda_1^i + \lambda_1^j)\\
|
||||
\lambda_2^{i,j} & = \frac{1}{2}(\lambda_2^i + \lambda_2^j)\\
|
||||
A_{i,j} & = (A_{i}A_{j})^{1/2}\\
|
||||
B_{i,j} & = \chi_{ij}(B_{i}B_{j})^{1/2}\\
|
||||
R_{i,j} & = (R_{i}R_{j})^{1/2}\\
|
||||
S_{i,j} & = (S_{i}S_{j})^{1/2}
|
||||
|
||||
|
||||
Tersoff\_2 parameters R and S must be converted to the LAMMPS
|
||||
parameters R and D (R is different in both forms), using the following
|
||||
|
|
|
@ -49,21 +49,40 @@ potential :ref:`(Tersoff\_1) <Tersoff_12>`, :ref:`(Tersoff\_2) <Tersoff_22>` wit
|
|||
modified cutoff function and angular-dependent term, giving the energy
|
||||
E of a system of atoms as
|
||||
|
||||
.. image:: Eqs/pair_tersoff_mod.jpg
|
||||
:align: center
|
||||
.. math::
|
||||
|
||||
where f\_R is a two-body term and f\_A includes three-body interactions.
|
||||
E & = \frac{1}{2} \sum_i \sum_{j \neq i} V_{ij} \\
|
||||
V_{ij} & = f_C(r_{ij}) \left[ f_R(r_{ij}) + b_{ij} f_A(r_{ij}) \right] \\
|
||||
f_C(r) & = \left\{ \begin{array} {r@{\quad:\quad}l}
|
||||
1 & r < R - D \\
|
||||
\frac{1}{2} - \frac{9}{16} \sin \left( \frac{\pi}{2} \frac{r-R}{D} \right) - \frac{1}{16} \sin \left( \frac{3\pi}{2} \frac{r-R}{D} \right) &
|
||||
R-D < r < R + D \\
|
||||
0 & r > R + D
|
||||
\end{array} \right. \\
|
||||
f_R(r) & = A \exp (-\lambda_1 r) \\
|
||||
f_A(r) & = -B \exp (-\lambda_2 r) \\
|
||||
b_{ij} & = \left( 1 + {\zeta_{ij}}^\eta \right)^{-\frac{1}{2n}} \\
|
||||
\zeta_{ij} & = \sum_{k \neq i,j} f_C(r_{ik}) g(\theta_{ijk})
|
||||
\exp \left[ \alpha (r_{ij} - r_{ik})^\beta \right] \\
|
||||
g(\theta) & = c_1 + g_o(\theta) g_a(\theta) \\
|
||||
g_o(\theta) & = \frac{c_2 (h - \cos \theta)^2}{c_3 + (h - \cos \theta)^2} \\
|
||||
g_a(\theta) & = 1 + c_4 \exp \left[ -c_5 (h - \cos \theta)^2 \right] \\
|
||||
|
||||
|
||||
where :math:`f_R` is a two-body term and :math:`f_A` includes three-body interactions.
|
||||
The summations in the formula are over all neighbors J and K of atom I
|
||||
within a cutoff distance = R + D.
|
||||
The *tersoff/mod/c* style differs from *tersoff/mod* only in the
|
||||
formulation of the V\_ij term, where it contains an additional c0 term.
|
||||
|
||||
.. image:: Eqs/pair_tersoff_mod_c.jpg
|
||||
:align: center
|
||||
.. math::
|
||||
|
||||
The modified cutoff function f\_C proposed by :ref:`(Murty) <Murty>` and
|
||||
V_{ij} & = f_C(r_{ij}) \left[ f_R(r_{ij}) + b_{ij} f_A(r_{ij}) + c_0 \right]
|
||||
|
||||
|
||||
The modified cutoff function :math:`f_C` proposed by :ref:`(Murty) <Murty>` and
|
||||
having a continuous second-order differential is employed. The
|
||||
angular-dependent term g(theta) was modified to increase the
|
||||
angular-dependent term :math:`g(\theta)` was modified to increase the
|
||||
flexibility of the potential.
|
||||
|
||||
The *tersoff/mod* potential is fitted to both the elastic constants
|
||||
|
@ -105,30 +124,30 @@ not blank or comments (starting with #) define parameters for a triplet
|
|||
of elements. The parameters in a single entry correspond to
|
||||
coefficients in the formulae above:
|
||||
|
||||
element 1 (the center atom in a 3-body interaction)
|
||||
element 2 (the atom bonded to the center atom)
|
||||
element 3 (the atom influencing the 1-2 bond in a bond-order sense)
|
||||
beta
|
||||
alpha
|
||||
h
|
||||
eta
|
||||
beta\_ters = 1 (dummy parameter)
|
||||
lambda2 (1/distance units)
|
||||
B (energy units)
|
||||
R (distance units)
|
||||
D (distance units)
|
||||
lambda1 (1/distance units)
|
||||
A (energy units)
|
||||
n
|
||||
c1
|
||||
c2
|
||||
c3
|
||||
c4
|
||||
c5
|
||||
c0 (energy units, tersoff/mod/c only):ul
|
||||
* element 1 (the center atom in a 3-body interaction)
|
||||
* element 2 (the atom bonded to the center atom)
|
||||
* element 3 (the atom influencing the 1-2 bond in a bond-order sense)
|
||||
* :math:`\beta`
|
||||
* :math:`\alpha`
|
||||
* h
|
||||
* :math:`\eta`
|
||||
* :math:`\beta_{ters}` = 1 (dummy parameter)
|
||||
* :math:`\lambda_2` (1/distance units)
|
||||
* B (energy units)
|
||||
* R (distance units)
|
||||
* D (distance units)
|
||||
* :math:`\lambda_1` (1/distance units)
|
||||
* A (energy units)
|
||||
* n
|
||||
* c1
|
||||
* c2
|
||||
* c3
|
||||
* c4
|
||||
* c5
|
||||
* c0 (energy units, tersoff/mod/c only):ul
|
||||
|
||||
The n, eta, lambda2, B, lambda1, and A parameters are only used for
|
||||
two-body interactions. The beta, alpha, c1, c2, c3, c4, c5, h
|
||||
The n, :math:`\eta`, :math:`\lambda_2`, B, :math:`\lambda_1`, and A parameters are only used for
|
||||
two-body interactions. The :math:`\beta`, :math:`\alpha`, c1, c2, c3, c4, c5, h
|
||||
parameters are only used for three-body interactions. The R and D
|
||||
parameters are used for both two-body and three-body interactions.
|
||||
The c0 term applies to *tersoff/mod/c* only. The non-annotated
|
||||
|
|
|
@ -38,26 +38,53 @@ based on a Coulomb potential and the Ziegler-Biersack-Littmark
|
|||
universal screening function :ref:`(ZBL) <zbl-ZBL>`, giving the energy E of a
|
||||
system of atoms as
|
||||
|
||||
.. image:: Eqs/pair_tersoff_zbl.jpg
|
||||
:align: center
|
||||
.. math::
|
||||
|
||||
The f\_F term is a fermi-like function used to smoothly connect the ZBL
|
||||
E & = \frac{1}{2} \sum_i \sum_{j \neq i} V_{ij} \\
|
||||
V_{ij} & = (1 - f_F(r_{ij})) V^{ZBL}_{ij} + f_F(r_{ij}) V^{Tersoff}_{ij} \\
|
||||
f_F(r_{ij}) & = \frac{1}{1 + e^{-A_F(r_{ij} - r_C)}}\\
|
||||
\\
|
||||
\\
|
||||
V^{ZBL}_{ij} & = \frac{1}{4\pi\epsilon_0} \frac{Z_1 Z_2 \,e^2}{r_{ij}} \phi(r_{ij}/a) \\
|
||||
a & = \frac{0.8854\,a_0}{Z_{1}^{0.23} + Z_{2}^{0.23}}\\
|
||||
\phi(x) & = 0.1818e^{-3.2x} + 0.5099e^{-0.9423x} + 0.2802e^{-0.4029x} + 0.02817e^{-0.2016x}\\
|
||||
\\
|
||||
\\
|
||||
V^{Tersoff}_{ij} & = f_C(r_{ij}) \left[ f_R(r_{ij}) + b_{ij} f_A(r_{ij}) \right] \\
|
||||
f_C(r) & = \left\{ \begin{array} {r@{\quad:\quad}l}
|
||||
1 & r < R - D \\
|
||||
\frac{1}{2} - \frac{1}{2} \sin \left( \frac{\pi}{2} \frac{r-R}{D} \right) &
|
||||
R-D < r < R + D \\
|
||||
0 & r > R + D
|
||||
\end{array} \right. \\
|
||||
f_R(r) & = A \exp (-\lambda_1 r) \\
|
||||
f_A(r) & = -B \exp (-\lambda_2 r) \\
|
||||
b_{ij} & = \left( 1 + \beta^n {\zeta_{ij}}^n \right)^{-\frac{1}{2n}} \\
|
||||
\zeta_{ij} & = \sum_{k \neq i,j} f_C(r_{ik}) g(\theta_{ijk})
|
||||
\exp \left[ {\lambda_3}^m (r_{ij} - r_{ik})^m \right] \\
|
||||
g(\theta) & = \gamma_{ijk} \left( 1 + \frac{c^2}{d^2} -
|
||||
\frac{c^2}{\left[ d^2 + (\cos \theta - \cos \theta_0)^2\right]} \right)
|
||||
|
||||
|
||||
The :math:`f_F` term is a fermi-like function used to smoothly connect the ZBL
|
||||
repulsive potential with the Tersoff potential. There are 2
|
||||
parameters used to adjust it: A\_F and r\_C. A\_F controls how "sharp"
|
||||
the transition is between the two, and r\_C is essentially the cutoff
|
||||
parameters used to adjust it: :math:`A_F` and :math:`r_C`. :math:`A_F`
|
||||
controls how "sharp"
|
||||
the transition is between the two, and :math:`r_C` is essentially the cutoff
|
||||
for the ZBL potential.
|
||||
|
||||
For the ZBL portion, there are two terms. The first is the Coulomb
|
||||
repulsive term, with Z1, Z2 as the number of protons in each nucleus,
|
||||
e as the electron charge (1 for metal and real units) and epsilon0 as
|
||||
the permittivity of vacuum. The second part is the ZBL universal
|
||||
e as the electron charge (1 for metal and real units) and :math:`\epsilon_0`
|
||||
as the permittivity of vacuum. The second part is the ZBL universal
|
||||
screening function, with a0 being the Bohr radius (typically 0.529
|
||||
Angstroms), and the remainder of the coefficients provided by the
|
||||
original paper. This screening function should be applicable to most
|
||||
systems. However, it is only accurate for small separations
|
||||
(i.e. less than 1 Angstrom).
|
||||
|
||||
For the Tersoff portion, f\_R is a two-body term and f\_A includes
|
||||
For the Tersoff portion, :math:`f_R` is a two-body term and :math:`f_A`
|
||||
includes
|
||||
three-body interactions. The summations in the formula are over all
|
||||
neighbors J and K of atom I within a cutoff distance = R + D.
|
||||
|
||||
|
@ -102,29 +129,32 @@ in the formula above:
|
|||
* element 2 (the atom bonded to the center atom)
|
||||
* element 3 (the atom influencing the 1-2 bond in a bond-order sense)
|
||||
* m
|
||||
* gamma
|
||||
* lambda3 (1/distance units)
|
||||
* :math:`\gamma`
|
||||
* :math:`\lambda_3` (1/distance units)
|
||||
* c
|
||||
* d
|
||||
* costheta0 (can be a value < -1 or > 1)
|
||||
* :math:`\cos\theta_0` (can be a value < -1 or > 1)
|
||||
* n
|
||||
* beta
|
||||
* lambda2 (1/distance units)
|
||||
* :math:`\beta`
|
||||
* :math:`\lambda_2` (1/distance units)
|
||||
* B (energy units)
|
||||
* R (distance units)
|
||||
* D (distance units)
|
||||
* lambda1 (1/distance units)
|
||||
* :math:`\lambda_1` (1/distance units)
|
||||
* A (energy units)
|
||||
* Z\_i
|
||||
* Z\_j
|
||||
* :math:`Z_i`
|
||||
* :math:`Z_j`
|
||||
* ZBLcut (distance units)
|
||||
* ZBLexpscale (1/distance units)
|
||||
|
||||
The n, beta, lambda2, B, lambda1, and A parameters are only used for
|
||||
two-body interactions. The m, gamma, lambda3, c, d, and costheta0
|
||||
The n, :math:`\beta`, :math:`\lambda_2`, B, :math:`\lambda_1`, and A
|
||||
parameters are only used for
|
||||
two-body interactions. The m, :math:`\gamma`, :math:`\lambda_3`, c, d,
|
||||
and :math:`\cos\theta_0`
|
||||
parameters are only used for three-body interactions. The R and D
|
||||
parameters are used for both two-body and three-body interactions. The
|
||||
Z\_i,Z\_j, ZBLcut, ZBLexpscale parameters are used in the ZBL repulsive
|
||||
:math:`Z_i`, :math:`Z_j`, ZBLcut, ZBLexpscale parameters are used in the
|
||||
ZBL repulsive
|
||||
portion of the potential and in the Fermi-like function. The
|
||||
non-annotated parameters are unitless. The value of m must be 3 or 1.
|
||||
|
||||
|
@ -153,7 +183,8 @@ SiCC entry.
|
|||
The parameters used for a particular
|
||||
three-body interaction come from the entry with the corresponding
|
||||
three elements. The parameters used only for two-body interactions
|
||||
(n, beta, lambda2, B, lambda1, and A) in entries whose 2nd and 3rd
|
||||
(n, :math:`\beta`, :math:`\lambda_2`, B, :math:`\lambda_1`, and A)
|
||||
in entries whose 2nd and 3rd
|
||||
element are different (e.g. SiCSi) are not used for anything and can
|
||||
be set to 0.0 if desired.
|
||||
|
||||
|
@ -172,12 +203,19 @@ different but equivalent form for alloys, which we will refer to as
|
|||
Tersoff\_2 potential :ref:`(Tersoff\_2) <zbl-Tersoff_2>`.
|
||||
|
||||
LAMMPS parameter values for Tersoff\_2 can be obtained as follows:
|
||||
gamma = omega\_ijk, lambda3 = 0 and the value of
|
||||
:math:`\gamma = \omega_{ijk}`, :math:`\lambda_3 = 0` and the value of
|
||||
m has no effect. The parameters for species i and j can be calculated
|
||||
using the Tersoff\_2 mixing rules:
|
||||
|
||||
.. image:: Eqs/pair_tersoff_2.jpg
|
||||
:align: center
|
||||
.. math::
|
||||
|
||||
\lambda_1^{i,j} & = \frac{1}{2}(\lambda_1^i + \lambda_1^j)\\
|
||||
\lambda_2^{i,j} & = \frac{1}{2}(\lambda_2^i + \lambda_2^j)\\
|
||||
A_{i,j} & = (A_{i}A_{j})^{1/2}\\
|
||||
B_{i,j} & = \chi_{ij}(B_{i}B_{j})^{1/2}\\
|
||||
R_{i,j} & = (R_{i}R_{j})^{1/2}\\
|
||||
S_{i,j} & = (S_{i}S_{j})^{1/2}\\
|
||||
|
||||
|
||||
Tersoff\_2 parameters R and S must be converted to the LAMMPS
|
||||
parameters R and D (R is different in both forms), using the following
|
||||
|
|