remove source files from lib/pace;

add lib/pace/Install.py to automatically download the source files from github/ICAMS/lammps-user-pace;
add lib/pace/CMakeLists.txt to build libpace.a
add lib/pace/README
update src/USER-PACE/Install.sh
This commit is contained in:
Yury Lysogorskiy 2021-04-07 12:20:24 +02:00
parent 6a99f5b5c5
commit 3de3302767
29 changed files with 189 additions and 10254 deletions

19
lib/pace/CMakeLists.txt Normal file
View File

@ -0,0 +1,19 @@
cmake_minimum_required(VERSION 3.7) # CMake version check
project(aceevaluator)
set(CMAKE_CXX_STANDARD 11) # Enable c++11 standard
set(PACE_EVALUATOR_PATH ${CMAKE_CURRENT_LIST_DIR}/src/USER-PACE)
# message("CMakeLists.txt DEBUG: PACE_EVALUATOR_PATH=${PACE_EVALUATOR_PATH}")
set(PACE_EVALUATOR_SRC_PATH ${PACE_EVALUATOR_PATH})
FILE(GLOB PACE_EVALUATOR_SOURCE_FILES ${PACE_EVALUATOR_SRC_PATH}/*.cpp)
list(FILTER PACE_EVALUATOR_SOURCE_FILES EXCLUDE REGEX ".*pair_pace.*")
set(PACE_EVALUATOR_INCLUDE_DIR ${PACE_EVALUATOR_SRC_PATH})
##### aceevaluator #####
add_library(aceevaluator ${PACE_EVALUATOR_SOURCE_FILES})
target_include_directories(aceevaluator PUBLIC ${PACE_EVALUATOR_INCLUDE_DIR})
target_compile_options(aceevaluator PRIVATE -O3)
set_target_properties(aceevaluator PROPERTIES OUTPUT_NAME pace${LAMMPS_MACHINE})

View File

@ -1 +1,111 @@
# TODO
# TODO#!/usr/bin/env python
"""
Install.py tool to download, compile, and setup the pace library
used to automate the steps described in the README file in this dir
"""
from __future__ import print_function
import sys, os, subprocess, shutil
from argparse import ArgumentParser
sys.path.append('..')
from install_helpers import fullpath, geturl, checkmd5sum
parser = ArgumentParser(prog='Install.py',
description="LAMMPS library build wrapper script")
# settings
thisdir = fullpath('.')
version = "v.2021.2.3"
# known checksums for different PACE versions. used to validate the download.
checksums = { \
'v.2021.2.3' : '9ebb087cba7e4ca041fde52f7e9e640c', \
}
# help message
HELP = """
Syntax from src dir: make lib-pace args="-b"
or: make lib-pace args="-b -v version"
Syntax from lib dir: python Install.py -b
or: python Install.py -b -v version
Examples:
make lib-pace args="-b" # install default version of PACE lib
make lib-pace args="-b -v version" # install specified version of PACE lib
"""
pgroup = parser.add_mutually_exclusive_group()
pgroup.add_argument("-b", "--build", action="store_true",
help="download and build base PACE library")
parser.add_argument("-v", "--version", default=version, choices=checksums.keys(),
help="set version of PACE library to download and build (default: %s)" % version)
parser.add_argument("-vv", "--verbose", action="store_true",
help="be more verbose about is happening while this script runs")
args = parser.parse_args()
# print help message and exit, if neither build nor path options are given
if not args.build:
parser.print_help()
sys.exit(HELP)
buildflag = args.build
verboseflag = args.verbose
version = args.version
archive_extension = "tar.gz"
url = "https://github.com/ICAMS/lammps-user-pace/archive/refs/tags/%s.%s" % (version, archive_extension)
unarchived_folder_name = "lammps-user-pace-%s"%(version)
# download PACE tarball, unpack, build PACE
if buildflag:
# download entire tarball
print("Downloading pace tarball ...")
archive_filename = "%s.%s" % (version, archive_extension)
download_filename = "%s/%s" % (thisdir, archive_filename)
print("Downloading from ",url," to ",download_filename, end=" ")
geturl(url, download_filename)
print(" done")
# verify downloaded archive integrity via md5 checksum, if known.
if version in checksums:
if not checkmd5sum(checksums[version], archive_filename):
sys.exit("Checksum for pace library does not match")
print("Unpacking pace tarball ...")
src_folder = thisdir+"/src"
cmd = 'cd "%s"; rm -rf "%s"; tar -xvf %s; mv %s %s' % (thisdir, src_folder, archive_filename, unarchived_folder_name, src_folder)
subprocess.check_output(cmd, stderr=subprocess.STDOUT, shell=True)
# configure
build_folder = "%s/build"%(thisdir)
print("Configuring libpace ...")
cmd = 'cd %s && mkdir build && cd build && cmake .. -DCMAKE_BUILD_TYPE=Release' % (thisdir)
txt = subprocess.check_output(cmd,stderr=subprocess.STDOUT,shell=True)
if verboseflag: print(txt.decode("UTF-8"))
# build
print("Building libpace ...")
cmd = 'cd "%s" && make -j2 && cp libpace.a %s/' % (build_folder, thisdir)
txt = subprocess.check_output(cmd, stderr=subprocess.STDOUT, shell=True)
if verboseflag:
print(txt.decode("UTF-8"))
# remove source files
print("Removing pace build files and archive ...")
cmd = 'rm %s; rm -rf %s' % (download_filename, build_folder)
subprocess.check_output(cmd, stderr=subprocess.STDOUT, shell=True)

View File

@ -1,674 +0,0 @@
GNU GENERAL PUBLIC LICENSE
Version 3, 29 June 2007
Copyright (C) 2007 Free Software Foundation, Inc. <https://fsf.org/>
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.
Preamble
The GNU General Public License is a free, copyleft license for
software and other kinds of works.
The licenses for most software and other practical works are designed
to take away your freedom to share and change the works. By contrast,
the GNU General Public License is intended to guarantee your freedom to
share and change all versions of a program--to make sure it remains free
software for all its users. We, the Free Software Foundation, use the
GNU General Public License for most of our software; it applies also to
any other work released this way by its authors. You can apply it to
your programs, too.
When we speak of free software, we are referring to freedom, not
price. Our General Public Licenses are designed to make sure that you
have the freedom to distribute copies of free software (and charge for
them if you wish), that you receive source code or can get it if you
want it, that you can change the software or use pieces of it in new
free programs, and that you know you can do these things.
To protect your rights, we need to prevent others from denying you
these rights or asking you to surrender the rights. Therefore, you have
certain responsibilities if you distribute copies of the software, or if
you modify it: responsibilities to respect the freedom of others.
For example, if you distribute copies of such a program, whether
gratis or for a fee, you must pass on to the recipients the same
freedoms that you received. You must make sure that they, too, receive
or can get the source code. And you must show them these terms so they
know their rights.
Developers that use the GNU GPL protect your rights with two steps:
(1) assert copyright on the software, and (2) offer you this License
giving you legal permission to copy, distribute and/or modify it.
For the developers' and authors' protection, the GPL clearly explains
that there is no warranty for this free software. For both users' and
authors' sake, the GPL requires that modified versions be marked as
changed, so that their problems will not be attributed erroneously to
authors of previous versions.
Some devices are designed to deny users access to install or run
modified versions of the software inside them, although the manufacturer
can do so. This is fundamentally incompatible with the aim of
protecting users' freedom to change the software. The systematic
pattern of such abuse occurs in the area of products for individuals to
use, which is precisely where it is most unacceptable. Therefore, we
have designed this version of the GPL to prohibit the practice for those
products. If such problems arise substantially in other domains, we
stand ready to extend this provision to those domains in future versions
of the GPL, as needed to protect the freedom of users.
Finally, every program is threatened constantly by software patents.
States should not allow patents to restrict development and use of
software on general-purpose computers, but in those that do, we wish to
avoid the special danger that patents applied to a free program could
make it effectively proprietary. To prevent this, the GPL assures that
patents cannot be used to render the program non-free.
The precise terms and conditions for copying, distribution and
modification follow.
TERMS AND CONDITIONS
0. Definitions.
"This License" refers to version 3 of the GNU General Public License.
"Copyright" also means copyright-like laws that apply to other kinds of
works, such as semiconductor masks.
"The Program" refers to any copyrightable work licensed under this
License. Each licensee is addressed as "you". "Licensees" and
"recipients" may be individuals or organizations.
To "modify" a work means to copy from or adapt all or part of the work
in a fashion requiring copyright permission, other than the making of an
exact copy. The resulting work is called a "modified version" of the
earlier work or a work "based on" the earlier work.
A "covered work" means either the unmodified Program or a work based
on the Program.
To "propagate" a work means to do anything with it that, without
permission, would make you directly or secondarily liable for
infringement under applicable copyright law, except executing it on a
computer or modifying a private copy. Propagation includes copying,
distribution (with or without modification), making available to the
public, and in some countries other activities as well.
To "convey" a work means any kind of propagation that enables other
parties to make or receive copies. Mere interaction with a user through
a computer network, with no transfer of a copy, is not conveying.
An interactive user interface displays "Appropriate Legal Notices"
to the extent that it includes a convenient and prominently visible
feature that (1) displays an appropriate copyright notice, and (2)
tells the user that there is no warranty for the work (except to the
extent that warranties are provided), that licensees may convey the
work under this License, and how to view a copy of this License. If
the interface presents a list of user commands or options, such as a
menu, a prominent item in the list meets this criterion.
1. Source Code.
The "source code" for a work means the preferred form of the work
for making modifications to it. "Object code" means any non-source
form of a work.
A "Standard Interface" means an interface that either is an official
standard defined by a recognized standards body, or, in the case of
interfaces specified for a particular programming language, one that
is widely used among developers working in that language.
The "System Libraries" of an executable work include anything, other
than the work as a whole, that (a) is included in the normal form of
packaging a Major Component, but which is not part of that Major
Component, and (b) serves only to enable use of the work with that
Major Component, or to implement a Standard Interface for which an
implementation is available to the public in source code form. A
"Major Component", in this context, means a major essential component
(kernel, window system, and so on) of the specific operating system
(if any) on which the executable work runs, or a compiler used to
produce the work, or an object code interpreter used to run it.
The "Corresponding Source" for a work in object code form means all
the source code needed to generate, install, and (for an executable
work) run the object code and to modify the work, including scripts to
control those activities. However, it does not include the work's
System Libraries, or general-purpose tools or generally available free
programs which are used unmodified in performing those activities but
which are not part of the work. For example, Corresponding Source
includes interface definition files associated with source files for
the work, and the source code for shared libraries and dynamically
linked subprograms that the work is specifically designed to require,
such as by intimate data communication or control flow between those
subprograms and other parts of the work.
The Corresponding Source need not include anything that users
can regenerate automatically from other parts of the Corresponding
Source.
The Corresponding Source for a work in source code form is that
same work.
2. Basic Permissions.
All rights granted under this License are granted for the term of
copyright on the Program, and are irrevocable provided the stated
conditions are met. This License explicitly affirms your unlimited
permission to run the unmodified Program. The output from running a
covered work is covered by this License only if the output, given its
content, constitutes a covered work. This License acknowledges your
rights of fair use or other equivalent, as provided by copyright law.
You may make, run and propagate covered works that you do not
convey, without conditions so long as your license otherwise remains
in force. You may convey covered works to others for the sole purpose
of having them make modifications exclusively for you, or provide you
with facilities for running those works, provided that you comply with
the terms of this License in conveying all material for which you do
not control copyright. Those thus making or running the covered works
for you must do so exclusively on your behalf, under your direction
and control, on terms that prohibit them from making any copies of
your copyrighted material outside their relationship with you.
Conveying under any other circumstances is permitted solely under
the conditions stated below. Sublicensing is not allowed; section 10
makes it unnecessary.
3. Protecting Users' Legal Rights From Anti-Circumvention Law.
No covered work shall be deemed part of an effective technological
measure under any applicable law fulfilling obligations under article
11 of the WIPO copyright treaty adopted on 20 December 1996, or
similar laws prohibiting or restricting circumvention of such
measures.
When you convey a covered work, you waive any legal power to forbid
circumvention of technological measures to the extent such circumvention
is effected by exercising rights under this License with respect to
the covered work, and you disclaim any intention to limit operation or
modification of the work as a means of enforcing, against the work's
users, your or third parties' legal rights to forbid circumvention of
technological measures.
4. Conveying Verbatim Copies.
You may convey verbatim copies of the Program's source code as you
receive it, in any medium, provided that you conspicuously and
appropriately publish on each copy an appropriate copyright notice;
keep intact all notices stating that this License and any
non-permissive terms added in accord with section 7 apply to the code;
keep intact all notices of the absence of any warranty; and give all
recipients a copy of this License along with the Program.
You may charge any price or no price for each copy that you convey,
and you may offer support or warranty protection for a fee.
5. Conveying Modified Source Versions.
You may convey a work based on the Program, or the modifications to
produce it from the Program, in the form of source code under the
terms of section 4, provided that you also meet all of these conditions:
a) The work must carry prominent notices stating that you modified
it, and giving a relevant date.
b) The work must carry prominent notices stating that it is
released under this License and any conditions added under section
7. This requirement modifies the requirement in section 4 to
"keep intact all notices".
c) You must license the entire work, as a whole, under this
License to anyone who comes into possession of a copy. This
License will therefore apply, along with any applicable section 7
additional terms, to the whole of the work, and all its parts,
regardless of how they are packaged. This License gives no
permission to license the work in any other way, but it does not
invalidate such permission if you have separately received it.
d) If the work has interactive user interfaces, each must display
Appropriate Legal Notices; however, if the Program has interactive
interfaces that do not display Appropriate Legal Notices, your
work need not make them do so.
A compilation of a covered work with other separate and independent
works, which are not by their nature extensions of the covered work,
and which are not combined with it such as to form a larger program,
in or on a volume of a storage or distribution medium, is called an
"aggregate" if the compilation and its resulting copyright are not
used to limit the access or legal rights of the compilation's users
beyond what the individual works permit. Inclusion of a covered work
in an aggregate does not cause this License to apply to the other
parts of the aggregate.
6. Conveying Non-Source Forms.
You may convey a covered work in object code form under the terms
of sections 4 and 5, provided that you also convey the
machine-readable Corresponding Source under the terms of this License,
in one of these ways:
a) Convey the object code in, or embodied in, a physical product
(including a physical distribution medium), accompanied by the
Corresponding Source fixed on a durable physical medium
customarily used for software interchange.
b) Convey the object code in, or embodied in, a physical product
(including a physical distribution medium), accompanied by a
written offer, valid for at least three years and valid for as
long as you offer spare parts or customer support for that product
model, to give anyone who possesses the object code either (1) a
copy of the Corresponding Source for all the software in the
product that is covered by this License, on a durable physical
medium customarily used for software interchange, for a price no
more than your reasonable cost of physically performing this
conveying of source, or (2) access to copy the
Corresponding Source from a network server at no charge.
c) Convey individual copies of the object code with a copy of the
written offer to provide the Corresponding Source. This
alternative is allowed only occasionally and noncommercially, and
only if you received the object code with such an offer, in accord
with subsection 6b.
d) Convey the object code by offering access from a designated
place (gratis or for a charge), and offer equivalent access to the
Corresponding Source in the same way through the same place at no
further charge. You need not require recipients to copy the
Corresponding Source along with the object code. If the place to
copy the object code is a network server, the Corresponding Source
may be on a different server (operated by you or a third party)
that supports equivalent copying facilities, provided you maintain
clear directions next to the object code saying where to find the
Corresponding Source. Regardless of what server hosts the
Corresponding Source, you remain obligated to ensure that it is
available for as long as needed to satisfy these requirements.
e) Convey the object code using peer-to-peer transmission, provided
you inform other peers where the object code and Corresponding
Source of the work are being offered to the general public at no
charge under subsection 6d.
A separable portion of the object code, whose source code is excluded
from the Corresponding Source as a System Library, need not be
included in conveying the object code work.
A "User Product" is either (1) a "consumer product", which means any
tangible personal property which is normally used for personal, family,
or household purposes, or (2) anything designed or sold for incorporation
into a dwelling. In determining whether a product is a consumer product,
doubtful cases shall be resolved in favor of coverage. For a particular
product received by a particular user, "normally used" refers to a
typical or common use of that class of product, regardless of the status
of the particular user or of the way in which the particular user
actually uses, or expects or is expected to use, the product. A product
is a consumer product regardless of whether the product has substantial
commercial, industrial or non-consumer uses, unless such uses represent
the only significant mode of use of the product.
"Installation Information" for a User Product means any methods,
procedures, authorization keys, or other information required to install
and execute modified versions of a covered work in that User Product from
a modified version of its Corresponding Source. The information must
suffice to ensure that the continued functioning of the modified object
code is in no case prevented or interfered with solely because
modification has been made.
If you convey an object code work under this section in, or with, or
specifically for use in, a User Product, and the conveying occurs as
part of a transaction in which the right of possession and use of the
User Product is transferred to the recipient in perpetuity or for a
fixed term (regardless of how the transaction is characterized), the
Corresponding Source conveyed under this section must be accompanied
by the Installation Information. But this requirement does not apply
if neither you nor any third party retains the ability to install
modified object code on the User Product (for example, the work has
been installed in ROM).
The requirement to provide Installation Information does not include a
requirement to continue to provide support service, warranty, or updates
for a work that has been modified or installed by the recipient, or for
the User Product in which it has been modified or installed. Access to a
network may be denied when the modification itself materially and
adversely affects the operation of the network or violates the rules and
protocols for communication across the network.
Corresponding Source conveyed, and Installation Information provided,
in accord with this section must be in a format that is publicly
documented (and with an implementation available to the public in
source code form), and must require no special password or key for
unpacking, reading or copying.
7. Additional Terms.
"Additional permissions" are terms that supplement the terms of this
License by making exceptions from one or more of its conditions.
Additional permissions that are applicable to the entire Program shall
be treated as though they were included in this License, to the extent
that they are valid under applicable law. If additional permissions
apply only to part of the Program, that part may be used separately
under those permissions, but the entire Program remains governed by
this License without regard to the additional permissions.
When you convey a copy of a covered work, you may at your option
remove any additional permissions from that copy, or from any part of
it. (Additional permissions may be written to require their own
removal in certain cases when you modify the work.) You may place
additional permissions on material, added by you to a covered work,
for which you have or can give appropriate copyright permission.
Notwithstanding any other provision of this License, for material you
add to a covered work, you may (if authorized by the copyright holders of
that material) supplement the terms of this License with terms:
a) Disclaiming warranty or limiting liability differently from the
terms of sections 15 and 16 of this License; or
b) Requiring preservation of specified reasonable legal notices or
author attributions in that material or in the Appropriate Legal
Notices displayed by works containing it; or
c) Prohibiting misrepresentation of the origin of that material, or
requiring that modified versions of such material be marked in
reasonable ways as different from the original version; or
d) Limiting the use for publicity purposes of names of licensors or
authors of the material; or
e) Declining to grant rights under trademark law for use of some
trade names, trademarks, or service marks; or
f) Requiring indemnification of licensors and authors of that
material by anyone who conveys the material (or modified versions of
it) with contractual assumptions of liability to the recipient, for
any liability that these contractual assumptions directly impose on
those licensors and authors.
All other non-permissive additional terms are considered "further
restrictions" within the meaning of section 10. If the Program as you
received it, or any part of it, contains a notice stating that it is
governed by this License along with a term that is a further
restriction, you may remove that term. If a license document contains
a further restriction but permits relicensing or conveying under this
License, you may add to a covered work material governed by the terms
of that license document, provided that the further restriction does
not survive such relicensing or conveying.
If you add terms to a covered work in accord with this section, you
must place, in the relevant source files, a statement of the
additional terms that apply to those files, or a notice indicating
where to find the applicable terms.
Additional terms, permissive or non-permissive, may be stated in the
form of a separately written license, or stated as exceptions;
the above requirements apply either way.
8. Termination.
You may not propagate or modify a covered work except as expressly
provided under this License. Any attempt otherwise to propagate or
modify it is void, and will automatically terminate your rights under
this License (including any patent licenses granted under the third
paragraph of section 11).
However, if you cease all violation of this License, then your
license from a particular copyright holder is reinstated (a)
provisionally, unless and until the copyright holder explicitly and
finally terminates your license, and (b) permanently, if the copyright
holder fails to notify you of the violation by some reasonable means
prior to 60 days after the cessation.
Moreover, your license from a particular copyright holder is
reinstated permanently if the copyright holder notifies you of the
violation by some reasonable means, this is the first time you have
received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after
your receipt of the notice.
Termination of your rights under this section does not terminate the
licenses of parties who have received copies or rights from you under
this License. If your rights have been terminated and not permanently
reinstated, you do not qualify to receive new licenses for the same
material under section 10.
9. Acceptance Not Required for Having Copies.
You are not required to accept this License in order to receive or
run a copy of the Program. Ancillary propagation of a covered work
occurring solely as a consequence of using peer-to-peer transmission
to receive a copy likewise does not require acceptance. However,
nothing other than this License grants you permission to propagate or
modify any covered work. These actions infringe copyright if you do
not accept this License. Therefore, by modifying or propagating a
covered work, you indicate your acceptance of this License to do so.
10. Automatic Licensing of Downstream Recipients.
Each time you convey a covered work, the recipient automatically
receives a license from the original licensors, to run, modify and
propagate that work, subject to this License. You are not responsible
for enforcing compliance by third parties with this License.
An "entity transaction" is a transaction transferring control of an
organization, or substantially all assets of one, or subdividing an
organization, or merging organizations. If propagation of a covered
work results from an entity transaction, each party to that
transaction who receives a copy of the work also receives whatever
licenses to the work the party's predecessor in interest had or could
give under the previous paragraph, plus a right to possession of the
Corresponding Source of the work from the predecessor in interest, if
the predecessor has it or can get it with reasonable efforts.
You may not impose any further restrictions on the exercise of the
rights granted or affirmed under this License. For example, you may
not impose a license fee, royalty, or other charge for exercise of
rights granted under this License, and you may not initiate litigation
(including a cross-claim or counterclaim in a lawsuit) alleging that
any patent claim is infringed by making, using, selling, offering for
sale, or importing the Program or any portion of it.
11. Patents.
A "contributor" is a copyright holder who authorizes use under this
License of the Program or a work on which the Program is based. The
work thus licensed is called the contributor's "contributor version".
A contributor's "essential patent claims" are all patent claims
owned or controlled by the contributor, whether already acquired or
hereafter acquired, that would be infringed by some manner, permitted
by this License, of making, using, or selling its contributor version,
but do not include claims that would be infringed only as a
consequence of further modification of the contributor version. For
purposes of this definition, "control" includes the right to grant
patent sublicenses in a manner consistent with the requirements of
this License.
Each contributor grants you a non-exclusive, worldwide, royalty-free
patent license under the contributor's essential patent claims, to
make, use, sell, offer for sale, import and otherwise run, modify and
propagate the contents of its contributor version.
In the following three paragraphs, a "patent license" is any express
agreement or commitment, however denominated, not to enforce a patent
(such as an express permission to practice a patent or covenant not to
sue for patent infringement). To "grant" such a patent license to a
party means to make such an agreement or commitment not to enforce a
patent against the party.
If you convey a covered work, knowingly relying on a patent license,
and the Corresponding Source of the work is not available for anyone
to copy, free of charge and under the terms of this License, through a
publicly available network server or other readily accessible means,
then you must either (1) cause the Corresponding Source to be so
available, or (2) arrange to deprive yourself of the benefit of the
patent license for this particular work, or (3) arrange, in a manner
consistent with the requirements of this License, to extend the patent
license to downstream recipients. "Knowingly relying" means you have
actual knowledge that, but for the patent license, your conveying the
covered work in a country, or your recipient's use of the covered work
in a country, would infringe one or more identifiable patents in that
country that you have reason to believe are valid.
If, pursuant to or in connection with a single transaction or
arrangement, you convey, or propagate by procuring conveyance of, a
covered work, and grant a patent license to some of the parties
receiving the covered work authorizing them to use, propagate, modify
or convey a specific copy of the covered work, then the patent license
you grant is automatically extended to all recipients of the covered
work and works based on it.
A patent license is "discriminatory" if it does not include within
the scope of its coverage, prohibits the exercise of, or is
conditioned on the non-exercise of one or more of the rights that are
specifically granted under this License. You may not convey a covered
work if you are a party to an arrangement with a third party that is
in the business of distributing software, under which you make payment
to the third party based on the extent of your activity of conveying
the work, and under which the third party grants, to any of the
parties who would receive the covered work from you, a discriminatory
patent license (a) in connection with copies of the covered work
conveyed by you (or copies made from those copies), or (b) primarily
for and in connection with specific products or compilations that
contain the covered work, unless you entered into that arrangement,
or that patent license was granted, prior to 28 March 2007.
Nothing in this License shall be construed as excluding or limiting
any implied license or other defenses to infringement that may
otherwise be available to you under applicable patent law.
12. No Surrender of Others' Freedom.
If conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot convey a
covered work so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you may
not convey it at all. For example, if you agree to terms that obligate you
to collect a royalty for further conveying from those to whom you convey
the Program, the only way you could satisfy both those terms and this
License would be to refrain entirely from conveying the Program.
13. Use with the GNU Affero General Public License.
Notwithstanding any other provision of this License, you have
permission to link or combine any covered work with a work licensed
under version 3 of the GNU Affero General Public License into a single
combined work, and to convey the resulting work. The terms of this
License will continue to apply to the part which is the covered work,
but the special requirements of the GNU Affero General Public License,
section 13, concerning interaction through a network will apply to the
combination as such.
14. Revised Versions of this License.
The Free Software Foundation may publish revised and/or new versions of
the GNU General Public License from time to time. Such new versions will
be similar in spirit to the present version, but may differ in detail to
address new problems or concerns.
Each version is given a distinguishing version number. If the
Program specifies that a certain numbered version of the GNU General
Public License "or any later version" applies to it, you have the
option of following the terms and conditions either of that numbered
version or of any later version published by the Free Software
Foundation. If the Program does not specify a version number of the
GNU General Public License, you may choose any version ever published
by the Free Software Foundation.
If the Program specifies that a proxy can decide which future
versions of the GNU General Public License can be used, that proxy's
public statement of acceptance of a version permanently authorizes you
to choose that version for the Program.
Later license versions may give you additional or different
permissions. However, no additional obligations are imposed on any
author or copyright holder as a result of your choosing to follow a
later version.
15. Disclaimer of Warranty.
THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
16. Limitation of Liability.
IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.
17. Interpretation of Sections 15 and 16.
If the disclaimer of warranty and limitation of liability provided
above cannot be given local legal effect according to their terms,
reviewing courts shall apply local law that most closely approximates
an absolute waiver of all civil liability in connection with the
Program, unless a warranty or assumption of liability accompanies a
copy of the Program in return for a fee.
END OF TERMS AND CONDITIONS
How to Apply These Terms to Your New Programs
If you develop a new program, and you want it to be of the greatest
possible use to the public, the best way to achieve this is to make it
free software which everyone can redistribute and change under these terms.
To do so, attach the following notices to the program. It is safest
to attach them to the start of each source file to most effectively
state the exclusion of warranty; and each file should have at least
the "copyright" line and a pointer to where the full notice is found.
<one line to give the program's name and a brief idea of what it does.>
Copyright (C) <year> <name of author>
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <https://www.gnu.org/licenses/>.
Also add information on how to contact you by electronic and paper mail.
If the program does terminal interaction, make it output a short
notice like this when it starts in an interactive mode:
<program> Copyright (C) <year> <name of author>
This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
This is free software, and you are welcome to redistribute it
under certain conditions; type `show c' for details.
The hypothetical commands `show w' and `show c' should show the appropriate
parts of the General Public License. Of course, your program's commands
might be different; for a GUI interface, you would use an "about box".
You should also get your employer (if you work as a programmer) or school,
if any, to sign a "copyright disclaimer" for the program, if necessary.
For more information on this, and how to apply and follow the GNU GPL, see
<https://www.gnu.org/licenses/>.
The GNU General Public License does not permit incorporating your program
into proprietary programs. If your program is a subroutine library, you
may consider it more useful to permit linking proprietary applications with
the library. If this is what you want to do, use the GNU Lesser General
Public License instead of this License. But first, please read
<https://www.gnu.org/licenses/why-not-lgpl.html>.

View File

@ -0,0 +1,9 @@
This directory contains files required to use the USER-PACE package.
You can type "make lib-pace" from the src directory to see help on
how to download and build this library via make commands, or you can
do the same thing by typing "python Install.py" from within this
directory.

View File

@ -1,184 +0,0 @@
/*
* Performant implementation of atomic cluster expansion and interface to LAMMPS
*
* Copyright 2021 (c) Yury Lysogorskiy^1, Cas van der Oord^2, Anton Bochkarev^1,
* Sarath Menon^1, Matteo Rinaldi^1, Thomas Hammerschmidt^1, Matous Mrovec^1,
* Aidan Thompson^3, Gabor Csanyi^2, Christoph Ortner^4, Ralf Drautz^1
*
* ^1: Ruhr-University Bochum, Bochum, Germany
* ^2: University of Cambridge, Cambridge, United Kingdom
* ^3: Sandia National Laboratories, Albuquerque, New Mexico, USA
* ^4: University of British Columbia, Vancouver, BC, Canada
*
*
* See the LICENSE file.
* This FILENAME is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
// Created by Lysogorskiy Yury on 28.04.2020.
#include "ace_abstract_basis.h"
////embedding function
////case nemb = 1 only implementation
////F = sign(x)*( ( 1 - exp(-(w*x)^3) )*abs(x)^m + ((1/w)^(m-1))*exp(-(w*x)^3)*abs(x) )
//// !! no prefactor wpre
void Fexp(DOUBLE_TYPE x, DOUBLE_TYPE m, DOUBLE_TYPE &F, DOUBLE_TYPE &DF) {
DOUBLE_TYPE w = 1.e6;
DOUBLE_TYPE eps = 1e-10;
DOUBLE_TYPE lambda = pow(1.0 / w, m - 1.0);
if (abs(x) > eps) {
DOUBLE_TYPE g;
DOUBLE_TYPE a = abs(x);
DOUBLE_TYPE am = pow(a, m);
DOUBLE_TYPE w3x3 = pow(w * a, 3);
DOUBLE_TYPE sign_factor = (signbit(x) ? -1 : 1);
if (w3x3 > 30.0)
g = 0.0;
else
g = exp(-w3x3);
DOUBLE_TYPE omg = 1.0 - g;
F = sign_factor * (omg * am + lambda * g * a);
DOUBLE_TYPE dg = -3.0 * w * w * w * a * a * g;
DF = m * pow(a, m - 1.0) * omg - am * dg + lambda * dg * a + lambda * g;
} else {
F = lambda * x;
DF = lambda;
}
}
//Scaled-shifted embedding function
//F = sign(x)*( ( 1 - exp(-(w*x)^3) )*abs(x)^m + ((1/w)^(m-1))*exp(-(w*x)^3)*abs(x) )
// !! no prefactor wpre
void FexpShiftedScaled(DOUBLE_TYPE rho, DOUBLE_TYPE mexp, DOUBLE_TYPE &F, DOUBLE_TYPE &DF) {
DOUBLE_TYPE eps = 1e-10;
DOUBLE_TYPE a, xoff, yoff, nx, exprho;
if (abs(mexp - 1.0) < eps) {
F = rho;
DF = 1;
} else {
a = abs(rho);
exprho = exp(-a);
nx = 1. / mexp;
xoff = pow(nx, (nx / (1.0 - nx))) * exprho;
yoff = pow(nx, (1 / (1.0 - nx))) * exprho;
DOUBLE_TYPE sign_factor = (signbit(rho) ? -1 : 1);
F = sign_factor * (pow(xoff + a, mexp) - yoff);
DF = yoff + mexp * (-xoff + 1.0) * pow(xoff + a, mexp - 1.);
}
}
void ACEAbstractBasisSet::inner_cutoff(DOUBLE_TYPE rho_core, DOUBLE_TYPE rho_cut, DOUBLE_TYPE drho_cut,
DOUBLE_TYPE &fcut, DOUBLE_TYPE &dfcut) {
DOUBLE_TYPE rho_low = rho_cut - drho_cut;
if (rho_core >= rho_cut) {
fcut = 0;
dfcut = 0;
} else if (rho_core <= rho_low) {
fcut = 1;
dfcut = 0;
} else {
fcut = 0.5 * (1 + cos(M_PI * (rho_core - rho_low) / drho_cut));
dfcut = -0.5 * sin(M_PI * (rho_core - rho_low) / drho_cut) * M_PI / drho_cut;
}
}
void ACEAbstractBasisSet::FS_values_and_derivatives(Array1D<DOUBLE_TYPE> &rhos, DOUBLE_TYPE &value,
Array1D<DOUBLE_TYPE> &derivatives, DENSITY_TYPE ndensity) {
DOUBLE_TYPE F, DF = 0, wpre, mexp;
for (int p = 0; p < ndensity; p++) {
wpre = FS_parameters.at(p * ndensity + 0);
mexp = FS_parameters.at(p * ndensity + 1);
if (this->npoti == "FinnisSinclair")
Fexp(rhos(p), mexp, F, DF);
else if (this->npoti == "FinnisSinclairShiftedScaled")
FexpShiftedScaled(rhos(p), mexp, F, DF);
value += F * wpre; // * weight (wpre)
derivatives(p) = DF * wpre;// * weight (wpre)
}
}
void ACEAbstractBasisSet::_clean() {
delete[] elements_name;
elements_name = nullptr;
delete radial_functions;
radial_functions = nullptr;
}
ACEAbstractBasisSet::ACEAbstractBasisSet(const ACEAbstractBasisSet &other) {
ACEAbstractBasisSet::_copy_scalar_memory(other);
ACEAbstractBasisSet::_copy_dynamic_memory(other);
}
ACEAbstractBasisSet &ACEAbstractBasisSet::operator=(const ACEAbstractBasisSet &other) {
if (this != &other) {
// deallocate old memory
ACEAbstractBasisSet::_clean();
//copy scalar values
ACEAbstractBasisSet::_copy_scalar_memory(other);
//copy dynamic memory
ACEAbstractBasisSet::_copy_dynamic_memory(other);
}
return *this;
}
ACEAbstractBasisSet::~ACEAbstractBasisSet() {
ACEAbstractBasisSet::_clean();
}
void ACEAbstractBasisSet::_copy_scalar_memory(const ACEAbstractBasisSet &src) {
deltaSplineBins = src.deltaSplineBins;
FS_parameters = src.FS_parameters;
npoti = src.npoti;
nelements = src.nelements;
rankmax = src.rankmax;
ndensitymax = src.ndensitymax;
nradbase = src.nradbase;
lmax = src.lmax;
nradmax = src.nradmax;
cutoffmax = src.cutoffmax;
spherical_harmonics = src.spherical_harmonics;
rho_core_cutoffs = src.rho_core_cutoffs;
drho_core_cutoffs = src.drho_core_cutoffs;
E0vals = src.E0vals;
}
void ACEAbstractBasisSet::_copy_dynamic_memory(const ACEAbstractBasisSet &src) {//allocate new memory
if (src.elements_name == nullptr)
throw runtime_error("Could not copy ACEAbstractBasisSet::elements_name - array not initialized");
elements_name = new string[nelements];
//copy
for (SPECIES_TYPE mu = 0; mu < nelements; ++mu) {
elements_name[mu] = src.elements_name[mu];
}
radial_functions = src.radial_functions->clone();
}
SPECIES_TYPE ACEAbstractBasisSet::get_species_index_by_name(const string &elemname) {
for (SPECIES_TYPE t = 0; t < nelements; t++) {
if (this->elements_name[t] == elemname)
return t;
}
return -1;
}

View File

@ -1,169 +0,0 @@
/*
* Performant implementation of atomic cluster expansion and interface to LAMMPS
*
* Copyright 2021 (c) Yury Lysogorskiy^1, Cas van der Oord^2, Anton Bochkarev^1,
* Sarath Menon^1, Matteo Rinaldi^1, Thomas Hammerschmidt^1, Matous Mrovec^1,
* Aidan Thompson^3, Gabor Csanyi^2, Christoph Ortner^4, Ralf Drautz^1
*
* ^1: Ruhr-University Bochum, Bochum, Germany
* ^2: University of Cambridge, Cambridge, United Kingdom
* ^3: Sandia National Laboratories, Albuquerque, New Mexico, USA
* ^4: University of British Columbia, Vancouver, BC, Canada
*
*
* See the LICENSE file.
* This FILENAME is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
// Created by Lysogorskiy Yury on 28.04.2020.
#ifndef ACE_EVALUATOR_ACE_ABSTRACT_BASIS_H
#define ACE_EVALUATOR_ACE_ABSTRACT_BASIS_H
#include <vector>
#include <string>
#include "ace_c_basisfunction.h"
#include "ace_contigous_array.h"
#include "ace_radial.h"
#include "ace_spherical_cart.h"
#include "ace_types.h"
using namespace std;
/**
* Abstract basis set class
*/
class ACEAbstractBasisSet {
public:
SPECIES_TYPE nelements = 0; ///< number of elements in basis set
RANK_TYPE rankmax = 0; ///< maximum value of rank
DENSITY_TYPE ndensitymax = 0; ///< maximum number of densities \f$ \rho^{(p)} \f$
NS_TYPE nradbase = 0; ///< maximum number of radial \f$\textbf{basis}\f$ function \f$ g_{k}(r) \f$
LS_TYPE lmax = 0; ///< \f$ l_\textrm{max} \f$ - maximum value of orbital moment \f$ l \f$
NS_TYPE nradmax = 0; ///< maximum number \f$ n \f$ of radial function \f$ R_{nl}(r) \f$
DOUBLE_TYPE cutoffmax = 0; ///< maximum value of cutoff distance among all species in basis set
DOUBLE_TYPE deltaSplineBins = 0; ///< Spline interpolation density
string npoti = "FinnisSinclair"; ///< FS and embedding function combination
string *elements_name = nullptr; ///< Array of elements name for mapping from index (0..nelements-1) to element symbol (string)
AbstractRadialBasis *radial_functions = nullptr; ///< object to work with radial functions
ACECartesianSphericalHarmonics spherical_harmonics; ///< object to work with spherical harmonics in Cartesian representation
Array1D<DOUBLE_TYPE> rho_core_cutoffs; ///< energy-based inner cut-off
Array1D<DOUBLE_TYPE> drho_core_cutoffs; ///< decay of energy-based inner cut-off
vector<DOUBLE_TYPE> FS_parameters; ///< parameters for cluster functional, see Eq.(3) in implementation notes or Eq.(53) in <A HREF="https://journals.aps.org/prb/abstract/10.1103/PhysRevB.99.014104"> PRB 99, 014104 (2019) </A>
// E0 values
Array1D<DOUBLE_TYPE> E0vals;
/**
* Default empty constructor
*/
ACEAbstractBasisSet() = default;
// copy constructor, operator= and destructor (see. Rule of Three)
/**
* Copy constructor (see. Rule of Three)
* @param other
*/
ACEAbstractBasisSet(const ACEAbstractBasisSet &other);
/**
* operator= (see. Rule of Three)
* @param other
* @return
*/
ACEAbstractBasisSet &operator=(const ACEAbstractBasisSet &other);
/**
* virtual destructor (see. Rule of Three)
*/
virtual ~ACEAbstractBasisSet();
/**
* Computing cluster functional \f$ F(\rho_i^{(1)}, \dots, \rho_i^{(P)}) \f$
* and its derivatives \f$ (\partial F/\partial\rho_i^{(1)}, \dots, \partial F/\partial \rho_i^{(P)} ) \f$
* @param rhos array with densities \f$ \rho^{(p)} \f$
* @param value (out) return value of cluster functional
* @param derivatives (out) array of derivatives \f$ (\partial F/\partial\rho_i^{(1)}, \dots, \partial F/\partial \rho_i^{(P)} ) \f$
* @param ndensity number \f$ P \f$ of densities to use
*/
void FS_values_and_derivatives(Array1D<DOUBLE_TYPE> &rhos, DOUBLE_TYPE &value, Array1D<DOUBLE_TYPE> &derivatives,
DENSITY_TYPE ndensity);
/**
* Computing hard core pairwise repulsive potential \f$ f_{cut}(\rho_i^{(\textrm{core})})\f$ and its derivative,
* see Eq.(29) of implementation notes
* @param rho_core value of \f$ \rho_i^{(\textrm{core})} \f$
* @param rho_cut \f$ \rho_{cut}^{\mu_i} \f$ value
* @param drho_cut \f$ \Delta_{cut}^{\mu_i} \f$ value
* @param fcut (out) return inner cutoff function
* @param dfcut (out) return derivative of inner cutoff function
*/
static void inner_cutoff(DOUBLE_TYPE rho_core, DOUBLE_TYPE rho_cut, DOUBLE_TYPE drho_cut, DOUBLE_TYPE &fcut,
DOUBLE_TYPE &dfcut);
/**
* Virtual method to save potential to file
* @param filename file name
*/
virtual void save(const string &filename) = 0;
/**
* Virtual method to load potential from file
* @param filename file name
*/
virtual void load(const string filename) = 0;
/**
* Get the species index by its element name
* @param elemname element name
* @return species index
*/
SPECIES_TYPE get_species_index_by_name(const string &elemname);
// routines for copying and cleaning dynamic memory of the class (see. Rule of Three)
/**
* Routine for clean the dynamically allocated memory\n
* IMPORTANT! It must be idempotent for safety.
*/
virtual void _clean();
/**
* Copy dynamic memory from src. Must be override and extended in derived classes!
* @param src source object to copy from
*/
virtual void _copy_dynamic_memory(const ACEAbstractBasisSet &src);
/**
* Copy scalar values from src. Must be override and extended in derived classes!
* @param src source object to copy from
*/
virtual void _copy_scalar_memory(const ACEAbstractBasisSet &src);
};
void Fexp(DOUBLE_TYPE rho, DOUBLE_TYPE mexp, DOUBLE_TYPE &F, DOUBLE_TYPE &DF);
void FexpShiftedScaled(DOUBLE_TYPE rho, DOUBLE_TYPE mexp, DOUBLE_TYPE &F, DOUBLE_TYPE &DF);
#endif //ACE_EVALUATOR_ACE_ABSTRACT_BASIS_H

View File

@ -1,579 +0,0 @@
/*
* Performant implementation of atomic cluster expansion and interface to LAMMPS
*
* Copyright 2021 (c) Yury Lysogorskiy^1, Cas van der Oord^2, Anton Bochkarev^1,
* Sarath Menon^1, Matteo Rinaldi^1, Thomas Hammerschmidt^1, Matous Mrovec^1,
* Aidan Thompson^3, Gabor Csanyi^2, Christoph Ortner^4, Ralf Drautz^1
*
* ^1: Ruhr-University Bochum, Bochum, Germany
* ^2: University of Cambridge, Cambridge, United Kingdom
* ^3: Sandia National Laboratories, Albuquerque, New Mexico, USA
* ^4: University of British Columbia, Vancouver, BC, Canada
*
*
* See the LICENSE file.
* This FILENAME is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
// Created by Yury Lysogorskiy on 11.01.20.
#ifndef ACE_ARRAY2DLM_H
#define ACE_ARRAY2DLM_H
#include <stdexcept>
#include <string>
#include "ace_arraynd.h"
#include "ace_contigous_array.h"
#include "ace_types.h"
using namespace std;
/**
* Contiguous array to organize values by \f$ (l,m) \f$ indiced (orbital moment and its projection).
* Only \f$ l_\textrm{max}\f$ should be provided, \f$ m = -l, \dots,l \f$
* for \f$ l = 0, \dots, l_\textrm{max}\f$
* @tparam T type of values to store
*/
template<typename T>
class Array2DLM : public ContiguousArrayND<T> {
using ContiguousArrayND<T>::array_name;
using ContiguousArrayND<T>::data;
using ContiguousArrayND<T>::size;
LS_TYPE lmax = 0; ///< orbital dimension \f$ l_{max} \f$
bool is_proxy = false; ///< flag to show, if object is owning the memory or just represent it (proxying)dimensions
public:
/**
* Default empty constructor
*/
Array2DLM() = default;
/**
* Parametrized constructor
* @param lmax maximum value of \f$ l \f$
* @param array_name name of the array
*/
explicit Array2DLM(LS_TYPE lmax, string array_name = "Array2DLM") {
init(lmax, array_name);
}
/**
* Constructor to create slices-proxy array, i.e. to provide access to the memory, but not to own it.
* @param lmax maximum value of \f$ l \f$
* @param data_ptr pointer to original data
* @param array_name name of the array
*/
Array2DLM(LS_TYPE lmax, T *data_ptr, string array_name = "Array2DLM") {
this->lmax = lmax;
this->size = (lmax + 1) * (lmax + 1);
this->data = data_ptr;
this->array_name = array_name;
is_proxy = true;
};
/**
* Destructor
*/
~Array2DLM() {
if (!is_proxy) {
if (data != nullptr) delete[] data;
}
data = nullptr;
}
/**
* Initialize array, allocate memory
* @param lmax maximum value of l
* @param array_name name of the array
*/
void init(LS_TYPE lmax, string array_name = "Array2DLM") {
if (is_proxy) {
char s[1024];
sprintf(s, "Could not re-initialize proxy-array %s\n", this->array_name.c_str());
throw logic_error(s);
}
this->lmax = lmax;
this->array_name = array_name;
//for m = -l .. l
if (size != (lmax + 1) * (lmax + 1)) {
size = (lmax + 1) * (lmax + 1);
if (data) delete[] data;
data = new T[size]{};
memset(data, 0.0, size * sizeof(T));
} else {
memset(data, 0, size * sizeof(T));
}
}
#ifdef MULTIARRAY_INDICES_CHECK
/**
* Check if indices (l,m) are within array
*/
void check_indices(LS_TYPE l, MS_TYPE m) const {
if ((l < 0) | (l > lmax)) {
fprintf(stderr, "%s: Index l = %d out of range (0, %d)\n", array_name.c_str(), l, lmax);
exit(EXIT_FAILURE);
}
if ((m < -l) | (m > l)) {
fprintf(stderr, "%s: Index m = %d out of range (%d, %d)\n", array_name.c_str(), m, -l, l);
exit(EXIT_FAILURE);
}
size_t ii = l * (l + 1) + m;
if (ii >= size) {
fprintf(stderr, "%s: index = %ld out of range %ld\n", array_name.c_str(), ii, size);
exit(EXIT_FAILURE);
}
}
#endif
/**
* Accessing the array value by index (l,m) for reading
* @param l
* @param m
* @return array value
*/
inline const T &operator()(LS_TYPE l, MS_TYPE m) const {
#ifdef MULTIARRAY_INDICES_CHECK
check_indices(l, m);
#endif
//l^2 + l + m
return data[l * (l + 1) + m];
}
/**
* Accessing the array value by index (l,m) for writing
* @param l
* @param m
* @return array value
*/
inline T &operator()(LS_TYPE l, MS_TYPE m) {
#ifdef MULTIARRAY_INDICES_CHECK
check_indices(l, m);
#endif
//l^2 + l + m
return data[l * (l + 1) + m];
}
/**
* Convert array to STL vector<vector<T>> container
* @return vector<vector<T>> container
*/
vector<vector<T>> to_vector() const {
vector<vector<T>> res;
res.resize(lmax + 1);
for (int i = 0; i < lmax + 1; i++) {
res[i].resize(i + 1);
for (int j = 0; j < i + 1; j++) {
res[i][j] = operator()(i, j);
}
}
return res;
}
};
/**
* Contiguous array to organize values by \f$ (i_0, l , m) \f$ indices.
* Only \f$ d_{0}, l_\textrm{max}\f$ should be provided: \f$ m = -l, \dots,l \f$
* for \f$ l = 0, \dots, l_\textrm{max}\f$
* @tparam T type of values to store
*/
template<typename T>
class Array3DLM : public ContiguousArrayND<T> {
using ContiguousArrayND<T>::array_name;
using ContiguousArrayND<T>::data;
using ContiguousArrayND<T>::size;
LS_TYPE lmax = 0; ///< orbital dimension \f$ l_{max} \f$
size_t dim[1] = {0}; ///< linear dimension \f$ d_{0} \f$
size_t s[1] = {0}; ///< strides for linear dimensions
Array1D<Array2DLM<T> *> _proxy_slices; ///< slices representation
public:
/**
* Default empty constructor
*/
Array3DLM() = default;
/**
* Parametrized constructor
* @param array_name name of the array
*/
Array3DLM(string array_name) {
this->array_name = array_name;
};
/**
* Parametrized constructor
* @param d0 maximum value of \f$ i_0 \f$
* @param lmax maximum value of \f$ l \f$
* @param array_name name of the array
*/
explicit Array3DLM(size_t d0, LS_TYPE lmax, string array_name = "Array3DLM") {
init(d0, lmax, array_name);
}
/**
* Initialize array and its slices
* @param d0 maximum value of \f$ i_0 \f$
* @param lmax maximum value of \f$ l \f$
* @param array_name name of the array
*/
void init(size_t d0, LS_TYPE lmax, string array_name = "Array3DLM") {
this->array_name = array_name;
this->lmax = lmax;
dim[0] = d0;
s[0] = lmax * lmax;
if (size != s[0] * dim[0]) {
size = s[0] * dim[0];
if (data) delete[] data;
data = new T[size]{};
memset(data, 0, size * sizeof(T));
} else {
memset(data, 0, size * sizeof(T));
}
_proxy_slices.set_array_name(array_name + "_proxy");
//arrange proxy-slices
_clear_proxies();
_proxy_slices.resize(dim[0]);
for (size_t i0 = 0; i0 < dim[0]; ++i0) {
_proxy_slices(i0) = new Array2DLM<T>(this->lmax, &this->data[i0 * s[0]],
array_name + "_slice");
}
}
/**
* Release pointers to slices
*/
void _clear_proxies() {
for (size_t i0 = 0; i0 < _proxy_slices.get_dim(0); ++i0) {
delete _proxy_slices(i0);
_proxy_slices(i0) = nullptr;
}
}
/**
* Destructor, clear proxies
*/
~Array3DLM() {
_clear_proxies();
}
/**
* Resize array to new dimensions
* @param d0
* @param lmax
*/
void resize(size_t d0, LS_TYPE lmax) {
_clear_proxies();
init(d0, lmax, this->array_name);
}
/**
* Get array dimensions
* @param d dimension index
* @return dimension along axis 'd'
*/
size_t get_dim(int d) const {
return dim[d];
}
#ifdef MULTIARRAY_INDICES_CHECK
/**
* Check if indices (i0, l,m) are within array
*/
void check_indices(size_t i0, LS_TYPE l, MS_TYPE m) const {
if ((l < 0) | (l > lmax)) {
fprintf(stderr, "%s: Index l = %d out of range (0, %d)\n", array_name.c_str(), l, lmax);
exit(EXIT_FAILURE);
}
if ((m < -l) | (m > l)) {
fprintf(stderr, "%s: Index m = %d out of range (%d, %d)\n", array_name.c_str(), m, -l, l);
exit(EXIT_FAILURE);
}
if ((i0 < 0) | (i0 >= dim[0])) {
fprintf(stderr, "%s: index i0 = %ld out of range (0, %ld)\n", array_name.c_str(), i0, dim[0] - 1);
exit(EXIT_FAILURE);
}
size_t ii = i0 * s[0] + l * (l + 1) + m;
if (ii >= size) {
fprintf(stderr, "%s: index = %ld out of range %ld\n", array_name.c_str(), ii, size);
exit(EXIT_FAILURE);
}
}
#endif
/**
* Accessing the array value by index (i0,l,m) for reading
* @param i0
* @param l
* @param m
* @return array value
*/
inline const T &operator()(size_t i0, LS_TYPE l, MS_TYPE m) const {
#ifdef MULTIARRAY_INDICES_CHECK
check_indices(i0, l, m);
#endif
return data[i0 * s[0] + l * (l + 1) + m];
}
/**
* Accessing the array value by index (i0,l,m) for writing
* @param i0
* @param l
* @param m
* @return array value
*/
inline T &operator()(size_t i0, LS_TYPE l, MS_TYPE m) {
#ifdef MULTIARRAY_INDICES_CHECK
check_indices(i0, l, m);
#endif
return data[i0 * s[0] + l * (l + 1) + m];
}
/**
* Return proxy Array2DLM pointing to i0, l=0, m=0 to read
* @param i0
* @return proxy Array2DLM pointing to i0, l=0, m=0
*/
inline const Array2DLM<T> &operator()(size_t i0) const {
return *_proxy_slices(i0);
}
/**
* Return proxy Array2DLM pointing to i0, l=0, m=0 to write
* @param i0
* @return proxy Array2DLM pointing to i0, l=0, m=0
*/
inline Array2DLM<T> &operator()(size_t i0) {
return *_proxy_slices(i0);
}
};
/**
* Contiguous array to organize values by \f$ (i_0, i_1, l , m) \f$ indices.
* Only \f$ d_{0}, d_{1}, l_\textrm{max}\f$ should be provided: \f$ m = -l, \dots,l \f$
* for \f$ l = 0, \dots, l_\textrm{max}\f$
* @tparam T type of values to store
*/
template<typename T>
class Array4DLM : public ContiguousArrayND<T> {
using ContiguousArrayND<T>::array_name;
using ContiguousArrayND<T>::data;
using ContiguousArrayND<T>::size;
LS_TYPE lmax = 0; ///< orbital dimension \f$ l_{max} \f$
size_t dim[2] = {0, 0}; ///< linear dimension \f$ d_{0}, d_{1} \f$
size_t s[2] = {0, 0}; ///< strides for linear dimensions
Array2D<Array2DLM<T> *> _proxy_slices; ///< slices representation
public:
/**
* Default empty constructor
*/
Array4DLM() = default;
/**
* Parametrized constructor
* @param array_name name of the array
*/
Array4DLM(string array_name) {
this->array_name = array_name;
};
/**
* Parametrized constructor
* @param d0 maximum value of \f$ i_0 \f$
* @param d1 maximum value of \f$ i_1 \f$
* @param lmax maximum value of \f$ l \f$
* @param array_name name of the array
*/
explicit Array4DLM(size_t d0, size_t d1, LS_TYPE lmax, string array_name = "Array4DLM") {
init(d0, d1, lmax, array_name);
}
/**
* Initialize array, reallocate memory and its slices
* @param d0 maximum value of \f$ i_0 \f$
* @param d1 maximum value of \f$ i_1 \f$
* @param lmax maximum value of \f$ l \f$
* @param array_name name of the array
*/
void init(size_t d0, size_t d1, LS_TYPE lmax, string array_name = "Array4DLM") {
this->array_name = array_name;
this->lmax = lmax;
dim[1] = d1;
dim[0] = d0;
s[1] = lmax * lmax;
s[0] = s[1] * dim[1];
if (size != s[0] * dim[0]) {
size = s[0] * dim[0];
if (data) delete[] data;
data = new T[size]{};
memset(data, 0, size * sizeof(T));
} else {
memset(data, 0, size * sizeof(T));
}
_proxy_slices.set_array_name(array_name + "_proxy");
//release old memory if there is any
_clear_proxies();
//arrange proxy-slices
_proxy_slices.resize(dim[0], dim[1]);
for (size_t i0 = 0; i0 < dim[0]; ++i0)
for (size_t i1 = 0; i1 < dim[1]; ++i1) {
_proxy_slices(i0, i1) = new Array2DLM<T>(this->lmax, &this->data[i0 * s[0] + i1 * s[1]],
array_name + "_slice");
}
}
/**
* Release pointers to slices
*/
void _clear_proxies() {
for (size_t i0 = 0; i0 < _proxy_slices.get_dim(0); ++i0)
for (size_t i1 = 0; i1 < _proxy_slices.get_dim(1); ++i1) {
delete _proxy_slices(i0, i1);
_proxy_slices(i0, i1) = nullptr;
}
}
/**
* Destructor, clear proxies
*/
~Array4DLM() {
_clear_proxies();
}
/**
* Deallocate memory, reallocate with the new dimensions
* @param d0
* @param lmax
*/
void resize(size_t d0, size_t d1, LS_TYPE lmax) {
_clear_proxies();
init(d0, d1, lmax, this->array_name);
}
/**
* Get array dimensions
* @param d dimension index
* @return dimension along axis 'd'
*/
size_t get_dim(int d) const {
return dim[d];
}
#ifdef MULTIARRAY_INDICES_CHECK
/**
* Check if indices (i0, l,m) are within array
*/
void check_indices(size_t i0, size_t i1, LS_TYPE l, MS_TYPE m) const {
if ((l < 0) | (l > lmax)) {
fprintf(stderr, "%s: Index l = %d out of range (0, %d)\n", array_name.c_str(), l, lmax);
exit(EXIT_FAILURE);
}
if ((m < -l) | (m > l)) {
fprintf(stderr, "%s: Index m = %d out of range (%d, %d)\n", array_name.c_str(), m, -l, l);
exit(EXIT_FAILURE);
}
if ((i0 < 0) | (i0 >= dim[0])) {
fprintf(stderr, "%s: index i0 = %ld out of range (0, %ld)\n", array_name.c_str(), i0, dim[0] - 1);
exit(EXIT_FAILURE);
}
if ((i1 < 0) | (i1 >= dim[1])) {
fprintf(stderr, "%s: index i1 = %ld out of range (0, %ld)\n", array_name.c_str(), i1, dim[1] - 1);
exit(EXIT_FAILURE);
}
size_t ii = i0 * s[0] + i1 * s[1] + l * (l + 1) + m;
if (ii >= size) {
fprintf(stderr, "%s: index = %ld out of range %ld\n", array_name.c_str(), ii, size);
exit(EXIT_FAILURE);
}
}
#endif
/**
* Accessing the array value by index (i0,l,m) for reading
* @param i0
* @param i1
* @param l
* @param m
* @return array value
*/
inline const T &operator()(size_t i0, size_t i1, LS_TYPE l, MS_TYPE m) const {
#ifdef MULTIARRAY_INDICES_CHECK
check_indices(i0, i1, l, m);
#endif
return data[i0 * s[0] + i1 * s[1] + l * (l + 1) + m];
}
/**
* Accessing the array value by index (i0,l,m) for writing
* @param i0
* @param i1
* @param l
* @param m
* @return array value
*/
inline T &operator()(size_t i0, size_t i1, LS_TYPE l, MS_TYPE m) {
#ifdef MULTIARRAY_INDICES_CHECK
check_indices(i0, i1, l, m);
#endif
return data[i0 * s[0] + i1 * s[1] + l * (l + 1) + m];
}
/**
* Return proxy Array2DLM pointing to i0, i1, l=0, m=0 to read
* @param i0
* @param i1
* @return proxy Array2DLM pointing to i0, l=0, m=0
*/
inline const Array2DLM<T> &operator()(size_t i0, size_t i1) const {
return *_proxy_slices(i0, i1);
}
/**
* Return proxy Array2DLM pointing to i0, i1, l=0, m=0 to write
* @param i0
* @param i1
* @return proxy Array2DLM pointing to i0, l=0, m=0
*/
inline Array2DLM<T> &operator()(size_t i0, size_t i1) {
return *_proxy_slices(i0, i1);
}
};
#endif //ACE_ARRAY2DLM_H

File diff suppressed because it is too large Load Diff

View File

@ -1,980 +0,0 @@
/*
* Performant implementation of atomic cluster expansion and interface to LAMMPS
*
* Copyright 2021 (c) Yury Lysogorskiy^1, Cas van der Oord^2, Anton Bochkarev^1,
* Sarath Menon^1, Matteo Rinaldi^1, Thomas Hammerschmidt^1, Matous Mrovec^1,
* Aidan Thompson^3, Gabor Csanyi^2, Christoph Ortner^4, Ralf Drautz^1
*
* ^1: Ruhr-University Bochum, Bochum, Germany
* ^2: University of Cambridge, Cambridge, United Kingdom
* ^3: Sandia National Laboratories, Albuquerque, New Mexico, USA
* ^4: University of British Columbia, Vancouver, BC, Canada
*
*
* See the LICENSE file.
* This FILENAME is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
// Created by Yury Lysogorskiy on 1.04.20.
#include "ace_c_basis.h"
#include "ships_radial.h"
using namespace std;
ACECTildeBasisSet::ACECTildeBasisSet(string filename) {
load(filename);
}
ACECTildeBasisSet::ACECTildeBasisSet(const ACECTildeBasisSet &other) {
ACECTildeBasisSet::_copy_scalar_memory(other);
ACECTildeBasisSet::_copy_dynamic_memory(other);
pack_flatten_basis();
}
ACECTildeBasisSet &ACECTildeBasisSet::operator=(const ACECTildeBasisSet &other) {
if (this != &other) {
_clean();
_copy_scalar_memory(other);
_copy_dynamic_memory(other);
pack_flatten_basis();
}
return *this;
}
ACECTildeBasisSet::~ACECTildeBasisSet() {
ACECTildeBasisSet::_clean();
}
void ACECTildeBasisSet::_clean() {
// call parent method
ACEFlattenBasisSet::_clean();
_clean_contiguous_arrays();
_clean_basis_arrays();
}
void ACECTildeBasisSet::_copy_scalar_memory(const ACECTildeBasisSet &src) {
ACEFlattenBasisSet::_copy_scalar_memory(src);
num_ctilde_max = src.num_ctilde_max;
}
void ACECTildeBasisSet::_copy_dynamic_memory(const ACECTildeBasisSet &src) {//allocate new memory
ACEFlattenBasisSet::_copy_dynamic_memory(src);
if (src.basis_rank1 == nullptr)
throw runtime_error("Could not copy ACECTildeBasisSet::basis_rank1 - array not initialized");
if (src.basis == nullptr) throw runtime_error("Could not copy ACECTildeBasisSet::basis - array not initialized");
basis_rank1 = new ACECTildeBasisFunction *[src.nelements];
basis = new ACECTildeBasisFunction *[src.nelements];
//copy basis arrays
for (SPECIES_TYPE mu = 0; mu < src.nelements; ++mu) {
basis_rank1[mu] = new ACECTildeBasisFunction[src.total_basis_size_rank1[mu]];
for (size_t i = 0; i < src.total_basis_size_rank1[mu]; i++) {
basis_rank1[mu][i] = src.basis_rank1[mu][i];
}
basis[mu] = new ACECTildeBasisFunction[src.total_basis_size[mu]];
for (size_t i = 0; i < src.total_basis_size[mu]; i++) {
basis[mu][i] = src.basis[mu][i];
}
}
//DON"T COPY CONTIGUOUS ARRAY, REBUILD THEM
}
void ACECTildeBasisSet::_clean_contiguous_arrays() {
ACEFlattenBasisSet::_clean_contiguous_arrays();
delete[] full_c_tildes_rank1;
full_c_tildes_rank1 = nullptr;
delete[] full_c_tildes;
full_c_tildes = nullptr;
}
//re-pack the constituent dynamic arrays of all basis functions in contiguous arrays
void ACECTildeBasisSet::pack_flatten_basis() {
compute_array_sizes(basis_rank1, basis);
//1. clean contiguous arrays
_clean_contiguous_arrays();
//2. allocate contiguous arrays
delete[] full_ns_rank1;
full_ns_rank1 = new NS_TYPE[rank_array_total_size_rank1];
delete[] full_ls_rank1;
full_ls_rank1 = new NS_TYPE[rank_array_total_size_rank1];
delete[] full_mus_rank1;
full_mus_rank1 = new SPECIES_TYPE[rank_array_total_size_rank1];
delete[] full_ms_rank1;
full_ms_rank1 = new MS_TYPE[rank_array_total_size_rank1];
delete[] full_c_tildes_rank1;
full_c_tildes_rank1 = new DOUBLE_TYPE[coeff_array_total_size_rank1];
delete[] full_ns;
full_ns = new NS_TYPE[rank_array_total_size];
delete[] full_ls;
full_ls = new LS_TYPE[rank_array_total_size];
delete[] full_mus;
full_mus = new SPECIES_TYPE[rank_array_total_size];
delete[] full_ms;
full_ms = new MS_TYPE[ms_array_total_size];
delete[] full_c_tildes;
full_c_tildes = new DOUBLE_TYPE[coeff_array_total_size];
//3. copy the values from private C_tilde_B_basis_function arrays to new contigous space
//4. clean private memory
//5. reassign private array pointers
//r = 0, rank = 1
size_t rank_array_ind_rank1 = 0;
size_t coeff_array_ind_rank1 = 0;
size_t ms_array_ind_rank1 = 0;
for (SPECIES_TYPE mu = 0; mu < nelements; ++mu) {
for (int func_ind_r1 = 0; func_ind_r1 < total_basis_size_rank1[mu]; ++func_ind_r1) {
ACECTildeBasisFunction &func = basis_rank1[mu][func_ind_r1];
//copy values ns from c_tilde_basis_function private memory to contigous memory part
full_ns_rank1[rank_array_ind_rank1] = func.ns[0];
//copy values ls from c_tilde_basis_function private memory to contigous memory part
full_ls_rank1[rank_array_ind_rank1] = func.ls[0];
//copy values mus from c_tilde_basis_function private memory to contigous memory part
full_mus_rank1[rank_array_ind_rank1] = func.mus[0];
//copy values ctildes from c_tilde_basis_function private memory to contigous memory part
memcpy(&full_c_tildes_rank1[coeff_array_ind_rank1], func.ctildes,
func.ndensity * sizeof(DOUBLE_TYPE));
//copy values mus from c_tilde_basis_function private memory to contigous memory part
memcpy(&full_ms_rank1[ms_array_ind_rank1], func.ms_combs,
func.num_ms_combs *
func.rank * sizeof(MS_TYPE));
//release memory of each ACECTildeBasisFunction if it is not proxy
func._clean();
func.mus = &full_mus_rank1[rank_array_ind_rank1];
func.ns = &full_ns_rank1[rank_array_ind_rank1];
func.ls = &full_ls_rank1[rank_array_ind_rank1];
func.ms_combs = &full_ms_rank1[ms_array_ind_rank1];
func.ctildes = &full_c_tildes_rank1[coeff_array_ind_rank1];
func.is_proxy = true;
rank_array_ind_rank1 += func.rank;
ms_array_ind_rank1 += func.rank *
func.num_ms_combs;
coeff_array_ind_rank1 += func.num_ms_combs * func.ndensity;
}
}
//rank>1, r>0
size_t rank_array_ind = 0;
size_t coeff_array_ind = 0;
size_t ms_array_ind = 0;
for (SPECIES_TYPE mu = 0; mu < nelements; ++mu) {
for (int func_ind = 0; func_ind < total_basis_size[mu]; ++func_ind) {
ACECTildeBasisFunction &func = basis[mu][func_ind];
//copy values mus from c_tilde_basis_function private memory to contigous memory part
memcpy(&full_mus[rank_array_ind], func.mus,
func.rank * sizeof(SPECIES_TYPE));
//copy values ns from c_tilde_basis_function private memory to contigous memory part
memcpy(&full_ns[rank_array_ind], func.ns,
func.rank * sizeof(NS_TYPE));
//copy values ls from c_tilde_basis_function private memory to contigous memory part
memcpy(&full_ls[rank_array_ind], func.ls,
func.rank * sizeof(LS_TYPE));
//copy values mus from c_tilde_basis_function private memory to contigous memory part
memcpy(&full_ms[ms_array_ind], func.ms_combs,
func.num_ms_combs *
func.rank * sizeof(MS_TYPE));
//copy values ctildes from c_tilde_basis_function private memory to contigous memory part
memcpy(&full_c_tildes[coeff_array_ind], func.ctildes,
func.num_ms_combs * func.ndensity * sizeof(DOUBLE_TYPE));
//release memory of each ACECTildeBasisFunction if it is not proxy
func._clean();
func.ns = &full_ns[rank_array_ind];
func.ls = &full_ls[rank_array_ind];
func.mus = &full_mus[rank_array_ind];
func.ctildes = &full_c_tildes[coeff_array_ind];
func.ms_combs = &full_ms[ms_array_ind];
func.is_proxy = true;
rank_array_ind += func.rank;
ms_array_ind += func.rank *
func.num_ms_combs;
coeff_array_ind += func.num_ms_combs * func.ndensity;
}
}
}
void fwrite_c_tilde_b_basis_func(FILE *fptr, ACECTildeBasisFunction &func) {
RANK_TYPE r;
fprintf(fptr, "ctilde_basis_func: ");
fprintf(fptr, "rank=%d ndens=%d mu0=%d ", func.rank, func.ndensity, func.mu0);
fprintf(fptr, "mu=(");
for (r = 0; r < func.rank; ++r)
fprintf(fptr, " %d ", func.mus[r]);
fprintf(fptr, ")\n");
fprintf(fptr, "n=(");
for (r = 0; r < func.rank; ++r)
fprintf(fptr, " %d ", func.ns[r]);
fprintf(fptr, ")\n");
fprintf(fptr, "l=(");
for (r = 0; r < func.rank; ++r)
fprintf(fptr, " %d ", func.ls[r]);
fprintf(fptr, ")\n");
fprintf(fptr, "num_ms=%d\n", func.num_ms_combs);
for (int m_ind = 0; m_ind < func.num_ms_combs; m_ind++) {
fprintf(fptr, "<");
for (r = 0; r < func.rank; ++r)
fprintf(fptr, " %d ", func.ms_combs[m_ind * func.rank + r]);
fprintf(fptr, ">: ");
for (DENSITY_TYPE p = 0; p < func.ndensity; p++)
fprintf(fptr, " %.18f ", func.ctildes[m_ind * func.ndensity + p]);
fprintf(fptr, "\n");
}
}
void ACECTildeBasisSet::save(const string &filename) {
FILE *fptr;
fptr = fopen(filename.c_str(), "w");
fprintf(fptr, "nelements=%d\n", nelements);
//elements mapping
fprintf(fptr, "elements:");
for (SPECIES_TYPE mu = 0; mu < nelements; ++mu)
fprintf(fptr, " %s", elements_name[mu].c_str());
fprintf(fptr, "\n\n");
fprintf(fptr, "lmax=%d\n\n", lmax);
fprintf(fptr, "embedding-function: %s\n", npoti.c_str());
fprintf(fptr, "%ld FS parameters: ", FS_parameters.size());
for (int i = 0; i < FS_parameters.size(); ++i) {
fprintf(fptr, " %f", FS_parameters.at(i));
}
fprintf(fptr, "\n");
//hard-core energy cutoff repulsion
fprintf(fptr, "core energy-cutoff parameters: ");
for (SPECIES_TYPE mu_i = 0; mu_i < nelements; ++mu_i)
fprintf(fptr, "%.18f %.18f\n", rho_core_cutoffs(mu_i), drho_core_cutoffs(mu_i));
// save E0 values
fprintf(fptr, "E0:");
for (SPECIES_TYPE mu_i = 0; mu_i < nelements; ++mu_i)
fprintf(fptr, " %.18f", E0vals(mu_i));
fprintf(fptr, "\n");
fprintf(fptr, "\n");
fprintf(fptr, "radbasename=%s\n", radial_functions->radbasename.c_str());
fprintf(fptr, "nradbase=%d\n", nradbase);
fprintf(fptr, "nradmax=%d\n", nradmax);
fprintf(fptr, "cutoffmax=%f\n", cutoffmax);
fprintf(fptr, "deltaSplineBins=%f\n", deltaSplineBins);
//hard-core repulsion
fprintf(fptr, "core repulsion parameters: ");
for (SPECIES_TYPE mu_i = 0; mu_i < nelements; ++mu_i)
for (SPECIES_TYPE mu_j = 0; mu_j < nelements; ++mu_j)
fprintf(fptr, "%.18f %.18f\n", radial_functions->prehc(mu_i, mu_j), radial_functions->lambdahc(mu_j, mu_j));
//TODO: radial functions
//radparameter
fprintf(fptr, "radparameter=");
for (SPECIES_TYPE mu_i = 0; mu_i < nelements; ++mu_i)
for (SPECIES_TYPE mu_j = 0; mu_j < nelements; ++mu_j)
fprintf(fptr, " %.18f", radial_functions->lambda(mu_i, mu_j));
fprintf(fptr, "\n");
fprintf(fptr, "cutoff=");
for (SPECIES_TYPE mu_i = 0; mu_i < nelements; ++mu_i)
for (SPECIES_TYPE mu_j = 0; mu_j < nelements; ++mu_j)
fprintf(fptr, " %.18f", radial_functions->cut(mu_i, mu_j));
fprintf(fptr, "\n");
fprintf(fptr, "dcut=");
for (SPECIES_TYPE mu_i = 0; mu_i < nelements; ++mu_i)
for (SPECIES_TYPE mu_j = 0; mu_j < nelements; ++mu_j)
fprintf(fptr, " %.18f", radial_functions->dcut(mu_i, mu_j));
fprintf(fptr, "\n");
fprintf(fptr, "crad=");
for (SPECIES_TYPE mu_i = 0; mu_i < nelements; ++mu_i)
for (SPECIES_TYPE mu_j = 0; mu_j < nelements; ++mu_j) {
for (NS_TYPE k = 0; k < nradbase; k++) {
for (NS_TYPE n = 0; n < nradmax; n++) {
for (LS_TYPE l = 0; l <= lmax; l++) {
fprintf(fptr, " %.18f", radial_functions->crad(mu_i, mu_j, n, l, k));
}
fprintf(fptr, "\n");
}
}
}
fprintf(fptr, "\n");
fprintf(fptr, "rankmax=%d\n", rankmax);
fprintf(fptr, "ndensitymax=%d\n", ndensitymax);
fprintf(fptr, "\n");
//num_c_tilde_max
fprintf(fptr, "num_c_tilde_max=%d\n", num_ctilde_max);
fprintf(fptr, "num_ms_combinations_max=%d\n", num_ms_combinations_max);
//write total_basis_size and total_basis_size_rank1
fprintf(fptr, "total_basis_size_rank1: ");
for (SPECIES_TYPE mu = 0; mu < nelements; ++mu) {
fprintf(fptr, "%d ", total_basis_size_rank1[mu]);
}
fprintf(fptr, "\n");
for (SPECIES_TYPE mu = 0; mu < nelements; mu++)
for (SHORT_INT_TYPE func_ind = 0; func_ind < total_basis_size_rank1[mu]; ++func_ind)
fwrite_c_tilde_b_basis_func(fptr, basis_rank1[mu][func_ind]);
fprintf(fptr, "total_basis_size: ");
for (SPECIES_TYPE mu = 0; mu < nelements; ++mu) {
fprintf(fptr, "%d ", total_basis_size[mu]);
}
fprintf(fptr, "\n");
for (SPECIES_TYPE mu = 0; mu < nelements; mu++)
for (SHORT_INT_TYPE func_ind = 0; func_ind < total_basis_size[mu]; ++func_ind)
fwrite_c_tilde_b_basis_func(fptr, basis[mu][func_ind]);
fclose(fptr);
}
void fread_c_tilde_b_basis_func(FILE *fptr, ACECTildeBasisFunction &func) {
RANK_TYPE r;
int res;
char buf[3][128];
res = fscanf(fptr, " ctilde_basis_func: ");
res = fscanf(fptr, "rank=%s ndens=%s mu0=%s ", buf[0], buf[1], buf[2]);
if (res != 3)
throw invalid_argument("Could not read C-tilde basis function");
func.rank = (RANK_TYPE) stol(buf[0]);
func.ndensity = (DENSITY_TYPE) stol(buf[1]);
func.mu0 = (SPECIES_TYPE) stol(buf[2]);
func.mus = new SPECIES_TYPE[func.rank];
func.ns = new NS_TYPE[func.rank];
func.ls = new LS_TYPE[func.rank];
res = fscanf(fptr, " mu=(");
for (r = 0; r < func.rank; ++r) {
res = fscanf(fptr, "%s", buf[0]);
if (res != 1)
throw invalid_argument("Could not read C-tilde basis function");
func.mus[r] = (SPECIES_TYPE) stol(buf[0]);
}
res = fscanf(fptr, " )"); // ")"
res = fscanf(fptr, " n=("); // "n="
for (r = 0; r < func.rank; ++r) {
res = fscanf(fptr, "%s", buf[0]);
if (res != 1)
throw invalid_argument("Could not read C-tilde basis function");
func.ns[r] = (NS_TYPE) stol(buf[0]);
}
res = fscanf(fptr, " )");
res = fscanf(fptr, " l=(");
for (r = 0; r < func.rank; ++r) {
res = fscanf(fptr, "%s", buf[0]);
if (res != 1)
throw invalid_argument("Could not read C-tilde basis function");
func.ls[r] = (NS_TYPE) stol(buf[0]);
}
res = fscanf(fptr, " )");
res = fscanf(fptr, " num_ms=%s\n", buf[0]);
if (res != 1)
throw invalid_argument("Could not read C-tilde basis function");
func.num_ms_combs = (SHORT_INT_TYPE) stoi(buf[0]);
func.ms_combs = new MS_TYPE[func.rank * func.num_ms_combs];
func.ctildes = new DOUBLE_TYPE[func.ndensity * func.num_ms_combs];
for (int m_ind = 0; m_ind < func.num_ms_combs; m_ind++) {
res = fscanf(fptr, " <");
for (r = 0; r < func.rank; ++r) {
res = fscanf(fptr, "%s", buf[0]);
if (res != 1)
throw invalid_argument("Could not read C-tilde basis function");
func.ms_combs[m_ind * func.rank + r] = stoi(buf[0]);
}
res = fscanf(fptr, " >:");
for (DENSITY_TYPE p = 0; p < func.ndensity; p++) {
res = fscanf(fptr, "%s", buf[0]);
if (res != 1)
throw invalid_argument("Could not read C-tilde basis function");
func.ctildes[m_ind * func.ndensity + p] = stod(buf[0]);
}
}
}
string
format_error_message(const char *buffer, const string &filename, const string &var_name, const string &expected) {
string err_message = "File '" + filename + "': couldn't read '" + var_name + "'";
if (buffer)
err_message = err_message + ", read:'" + buffer + "'";
if (!expected.empty())
err_message = err_message + ". Expected format: '" + expected + "'";
return err_message;
}
void throw_error(const string &filename, const string &var_name, const string expected = "") {
throw invalid_argument(format_error_message(nullptr, filename, var_name, expected));
}
DOUBLE_TYPE stod_err(const char *buffer, const string &filename, const string &var_name, const string expected = "") {
try {
return stod(buffer);
} catch (invalid_argument &exc) {
throw invalid_argument(format_error_message(buffer, filename, var_name, expected).c_str());
}
}
int stoi_err(const char *buffer, const string &filename, const string &var_name, const string expected = "") {
try {
return stoi(buffer);
} catch (invalid_argument &exc) {
throw invalid_argument(format_error_message(buffer, filename, var_name, expected).c_str());
}
}
long int stol_err(const char *buffer, const string &filename, const string &var_name, const string expected = "") {
try {
return stol(buffer);
} catch (invalid_argument &exc) {
throw invalid_argument(format_error_message(buffer, filename, var_name, expected).c_str());
}
}
void ACECTildeBasisSet::load(const string filename) {
int res;
char buffer[1024], buffer2[1024];
string radbasename = "ChebExpCos";
FILE *fptr;
fptr = fopen(filename.c_str(), "r");
if (fptr == NULL)
throw invalid_argument("Could not open file " + filename);
//read number of elements
res = fscanf(fptr, " nelements=");
res = fscanf(fptr, "%s", buffer);
if (res != 1)
throw_error(filename, "nelements", "nelements=[number]");
nelements = stoi_err(buffer, filename, "nelements", "nelements=[number]");
//elements mapping
elements_name = new string[nelements];
res = fscanf(fptr, " elements:");
for (SPECIES_TYPE mu = 0; mu < nelements; ++mu) {
res = fscanf(fptr, "%s", buffer);
if (res != 1)
throw_error(filename, "elements", "elements: Ele1 Ele2 ...");
elements_name[mu] = buffer;
}
// load angular basis - only need spherical harmonics parameter
res = fscanf(fptr, " lmax=%s\n", buffer);
if (res != 1)
throw_error(filename, "lmax", "lmax=[number]");
lmax = stoi_err(buffer, filename, "lmax", "lmax=[number]");
spherical_harmonics.init(lmax);
// reading "embedding-function:"
bool is_embedding_function_specified = false;
res = fscanf(fptr, " embedding-function: %s", buffer);
if (res == 0) {
//throw_error(filename, "E0", " E0: E0-species1 E0-species2 ...");
this->npoti = "FinnisSinclair"; // default values
//printf("Warning! No embedding-function is specified, embedding-function: FinnisSinclair would be assumed\n");
is_embedding_function_specified = false;
} else {
this->npoti = buffer;
is_embedding_function_specified = true;
}
int parameters_size;
res = fscanf(fptr, "%s FS parameters:", buffer);
if (res != 1)
throw_error(filename, "FS parameters size", "[number] FS parameters: par1 par2 ...");
parameters_size = stoi_err(buffer, filename, "FS parameters size", "[number] FS parameters");
FS_parameters.resize(parameters_size);
for (int i = 0; i < FS_parameters.size(); ++i) {
res = fscanf(fptr, "%s", buffer);
if (res != 1)
throw_error(filename, "FS parameter", "[number] FS parameters: [par1] [par2] ...");
FS_parameters[i] = stod_err(buffer, filename, "FS parameter", "[number] FS parameters: [par1] [par2] ...");
}
if (!is_embedding_function_specified) {
// assuming non-linear potential, and embedding function type is important
for (int j = 1; j < parameters_size; j += 2)
if (FS_parameters[j] != 1.0) { //if not ensure linearity of embedding function parameters
printf("ERROR! Your potential is non-linear\n");
printf("Please specify 'embedding-function: FinnisSinclair' or 'embedding-function: FinnisSinclairShiftedScaled' before 'FS parameters size' line\n");
throw_error(filename, "embedding-function", "FinnisSinclair or FinnisSinclairShiftedScaled");
}
printf("Notice! No embedding-function is specified, but potential has linear embedding, default embedding-function: FinnisSinclair would be assumed\n");
}
//hard-core energy cutoff repulsion
res = fscanf(fptr, " core energy-cutoff parameters:");
if (res != 0)
throw_error(filename, "core energy-cutoff parameters", "core energy-cutoff parameters: [par1] [par2]");
rho_core_cutoffs.init(nelements, "rho_core_cutoffs");
drho_core_cutoffs.init(nelements, "drho_core_cutoffs");
for (SPECIES_TYPE mu_i = 0; mu_i < nelements; ++mu_i) {
res = fscanf(fptr, "%s %s", buffer, buffer2);
if (res != 2)
throw_error(filename, "core energy-cutoff parameters",
"core energy-cutoff parameters: [rho_core_cut] [drho_core_cutoff] ...");
rho_core_cutoffs(mu_i) = stod_err(buffer, filename, "rho core cutoff",
"core energy-cutoff parameters: [rho_core_cut] [drho_core_cutoff] ...");
drho_core_cutoffs(mu_i) = stod_err(buffer2, filename, "drho_core_cutoff",
"core energy-cutoff parameters: [rho_core_cut] [drho_core_cutoff] ...");
}
// atom energy shift E0 (energy of isolated atom)
E0vals.init(nelements);
// reading "E0:"
res = fscanf(fptr, " E0: %s", buffer);
if (res == 0) {
//throw_error(filename, "E0", " E0: E0-species1 E0-species2 ...");
E0vals.fill(0.0);
} else {
double E0 = atof(buffer);
E0vals(0) = E0;
for (SPECIES_TYPE mu_i = 1; mu_i < nelements; ++mu_i) {
res = fscanf(fptr, " %lf", &E0);
if (res != 1)
throw_error(filename, "E0", " couldn't read one of the E0 values");
E0vals(mu_i) = E0;
}
res = fscanf(fptr, "\n");
if (res != 0)
printf("file %s : format seems broken near E0; trying to continue...\n", filename.c_str());
}
// check which radial basis we need to load
res = fscanf(fptr, " radbasename=%s\n", buffer);
if (res != 1) {
throw_error(filename, "radbasename", "rabbasename=ChebExpCos|ChebPow|ACE.jl.Basic");
} else {
radbasename = buffer;
}
// printf("radbasename = `%s`\n", radbasename.c_str());
if (radbasename == "ChebExpCos" | radbasename == "ChebPow") {
_load_radial_ACERadial(fptr, filename, radbasename);
} else if (radbasename == "ACE.jl.Basic") {
_load_radial_SHIPsBasic(fptr, filename, radbasename);
} else {
throw invalid_argument(
("File '" + filename + "': I don't know how to read radbasename = " + radbasename).c_str());
}
res = fscanf(fptr, " rankmax=");
res = fscanf(fptr, "%s", buffer);
if (res != 1)
throw_error(filename, "rankmax", "rankmax=[number]");
rankmax = stoi_err(buffer, filename, "rankmax", "rankmax=[number]");
res = fscanf(fptr, " ndensitymax=");
res = fscanf(fptr, "%s", buffer);
if (res != 1)
throw_error(filename, "ndensitymax", "ndensitymax=[number]");
ndensitymax = stoi_err(buffer, filename, "ndensitymax", "ndensitymax=[number]");
// read the list of correlations to be put into the basis
//num_c_tilde_max
res = fscanf(fptr, " num_c_tilde_max=");
res = fscanf(fptr, "%s\n", buffer);
if (res != 1)
throw_error(filename, "num_c_tilde_max", "num_c_tilde_max=[number]");
num_ctilde_max = stol_err(buffer, filename, "num_c_tilde_max", "num_c_tilde_max=[number]");
res = fscanf(fptr, " num_ms_combinations_max=");
res = fscanf(fptr, "%s", buffer);
if (res != 1)
throw_error(filename, "num_ms_combinations_max", "num_ms_combinations_max=[number]");
// throw invalid_argument(("File '" + filename + "': couldn't read num_ms_combinations_max").c_str());
num_ms_combinations_max = stol_err(buffer, filename, "num_ms_combinations_max", "num_ms_combinations_max=[number]");
//read total_basis_size_rank1
total_basis_size_rank1 = new SHORT_INT_TYPE[nelements];
basis_rank1 = new ACECTildeBasisFunction *[nelements];
res = fscanf(fptr, " total_basis_size_rank1: ");
for (SPECIES_TYPE mu = 0; mu < nelements; ++mu) {
res = fscanf(fptr, "%s", buffer);
if (res != 1)
throw_error(filename, "total_basis_size_rank1", "total_basis_size_rank1: [size_ele1] [size_ele2] ...");
// throw invalid_argument(("File '" + filename + "': couldn't read total_basis_size_rank1").c_str());
total_basis_size_rank1[mu] = stoi_err(buffer, filename, "total_basis_size_rank1",
"total_basis_size_rank1: [size_ele1] [size_ele2] ...");
basis_rank1[mu] = new ACECTildeBasisFunction[total_basis_size_rank1[mu]];
}
for (SPECIES_TYPE mu = 0; mu < nelements; mu++)
for (SHORT_INT_TYPE func_ind = 0; func_ind < total_basis_size_rank1[mu]; ++func_ind) {
fread_c_tilde_b_basis_func(fptr, basis_rank1[mu][func_ind]);
}
//read total_basis_size
res = fscanf(fptr, " total_basis_size: ");
total_basis_size = new SHORT_INT_TYPE[nelements];
basis = new ACECTildeBasisFunction *[nelements];
for (SPECIES_TYPE mu = 0; mu < nelements; ++mu) {
res = fscanf(fptr, "%s", buffer);
if (res != 1)
throw_error(filename, "total_basis_size", "total_basis_size: [size_ele1] [size_ele2] ...");
total_basis_size[mu] = stoi_err(buffer, filename, "total_basis_size",
"total_basis_size: [size_ele1] [size_ele2] ...");
basis[mu] = new ACECTildeBasisFunction[total_basis_size[mu]];
}
for (SPECIES_TYPE mu = 0; mu < nelements; mu++)
for (SHORT_INT_TYPE func_ind = 0; func_ind < total_basis_size[mu]; ++func_ind) {
fread_c_tilde_b_basis_func(fptr, basis[mu][func_ind]);
}
fclose(fptr);
// radial_functions->radbasename = radbasename;
radial_functions->setuplookupRadspline();
pack_flatten_basis();
}
void ACECTildeBasisSet::compute_array_sizes(ACECTildeBasisFunction **basis_rank1, ACECTildeBasisFunction **basis) {
//compute arrays sizes
rank_array_total_size_rank1 = 0;
//ms_array_total_size_rank1 = rank_array_total_size_rank1;
coeff_array_total_size_rank1 = 0;
for (SPECIES_TYPE mu = 0; mu < nelements; ++mu) {
if (total_basis_size_rank1[mu] > 0) {
rank_array_total_size_rank1 += total_basis_size_rank1[mu];
ACEAbstractBasisFunction &func = basis_rank1[mu][0];//TODO: get total density instead of density from first function
coeff_array_total_size_rank1 += total_basis_size_rank1[mu] * func.ndensity;
}
}
rank_array_total_size = 0;
coeff_array_total_size = 0;
ms_array_total_size = 0;
max_dB_array_size = 0;
max_B_array_size = 0;
size_t cur_ms_size = 0;
size_t cur_ms_rank_size = 0;
for (SPECIES_TYPE mu = 0; mu < nelements; ++mu) {
cur_ms_size = 0;
cur_ms_rank_size = 0;
for (int func_ind = 0; func_ind < total_basis_size[mu]; ++func_ind) {
auto &func = basis[mu][func_ind];
rank_array_total_size += func.rank;
ms_array_total_size += func.rank * func.num_ms_combs;
coeff_array_total_size += func.ndensity * func.num_ms_combs;
cur_ms_size += func.num_ms_combs;
cur_ms_rank_size += func.rank * func.num_ms_combs;
}
if (cur_ms_size > max_B_array_size)
max_B_array_size = cur_ms_size;
if (cur_ms_rank_size > max_dB_array_size)
max_dB_array_size = cur_ms_rank_size;
}
}
void ACECTildeBasisSet::_clean_basis_arrays() {
if (basis_rank1 != nullptr)
for (SPECIES_TYPE mu = 0; mu < nelements; ++mu) {
delete[] basis_rank1[mu];
basis_rank1[mu] = nullptr;
}
if (basis != nullptr)
for (SPECIES_TYPE mu = 0; mu < nelements; ++mu) {
delete[] basis[mu];
basis[mu] = nullptr;
}
delete[] basis;
basis = nullptr;
delete[] basis_rank1;
basis_rank1 = nullptr;
}
//pack into 1D array with all basis functions
void ACECTildeBasisSet::flatten_basis(C_tilde_full_basis_vector2d &mu0_ctilde_basis_vector) {
_clean_basis_arrays();
basis_rank1 = new ACECTildeBasisFunction *[nelements];
basis = new ACECTildeBasisFunction *[nelements];
delete[] total_basis_size_rank1;
delete[] total_basis_size;
total_basis_size_rank1 = new SHORT_INT_TYPE[nelements];
total_basis_size = new SHORT_INT_TYPE[nelements];
size_t tot_size_rank1 = 0;
size_t tot_size = 0;
for (SPECIES_TYPE mu = 0; mu < this->nelements; ++mu) {
tot_size = 0;
tot_size_rank1 = 0;
for (auto &func: mu0_ctilde_basis_vector[mu]) {
if (func.rank == 1) tot_size_rank1 += 1;
else tot_size += 1;
}
total_basis_size_rank1[mu] = tot_size_rank1;
basis_rank1[mu] = new ACECTildeBasisFunction[tot_size_rank1];
total_basis_size[mu] = tot_size;
basis[mu] = new ACECTildeBasisFunction[tot_size];
}
for (SPECIES_TYPE mu = 0; mu < this->nelements; ++mu) {
size_t ind_rank1 = 0;
size_t ind = 0;
for (auto &func: mu0_ctilde_basis_vector[mu]) {
if (func.rank == 1) { //r=0, rank=1
basis_rank1[mu][ind_rank1] = func;
ind_rank1 += 1;
} else { //r>0, rank>1
basis[mu][ind] = func;
ind += 1;
}
}
}
}
void ACECTildeBasisSet::_load_radial_ACERadial(FILE *fptr,
const string filename,
const string radbasename) {
int res;
char buffer[1024], buffer2[1024];
res = fscanf(fptr, " nradbase=");
res = fscanf(fptr, "%s", buffer);
if (res != 1)
throw_error(filename, "nradbase", "nradbase=[number]");
// throw invalid_argument(("File '" + filename + "': couldn't read nradbase").c_str());
nradbase = stoi_err(buffer, filename, "nradbase", "nradbase=[number]");
res = fscanf(fptr, " nradmax=");
res = fscanf(fptr, "%s", buffer);
if (res != 1)
throw_error(filename, "nradmax", "nradmax=[number]");
nradmax = stoi_err(buffer, filename, "nradmax", "nradmax=[number]");
res = fscanf(fptr, " cutoffmax=");
res = fscanf(fptr, "%s", buffer);
if (res != 1)
throw_error(filename, "cutoffmax", "cutoffmax=[number]");
cutoffmax = stod_err(buffer, filename, "cutoffmax", "cutoffmax=[number]");
res = fscanf(fptr, " deltaSplineBins=");
res = fscanf(fptr, "%s", buffer);
if (res != 1)
throw_error(filename, "deltaSplineBins", "deltaSplineBins=[spline density, Angstroms]");
// throw invalid_argument(("File '" + filename + "': couldn't read ntot").c_str());
deltaSplineBins = stod_err(buffer, filename, "deltaSplineBins", "deltaSplineBins=[spline density, Angstroms]");
if (radial_functions == nullptr)
radial_functions = new ACERadialFunctions(nradbase, lmax, nradmax,
deltaSplineBins,
nelements,
cutoffmax, radbasename);
else
radial_functions->init(nradbase, lmax, nradmax,
deltaSplineBins,
nelements,
cutoffmax, radbasename);
//hard-core repulsion
res = fscanf(fptr, " core repulsion parameters:");
if (res != 0)
throw_error(filename, "core repulsion parameters", "core repulsion parameters: [prehc lambdahc] ...");
// throw invalid_argument(("File '" + filename + "': couldn't read core repulsion parameters").c_str());
for (SPECIES_TYPE mu_i = 0; mu_i < nelements; ++mu_i)
for (SPECIES_TYPE mu_j = 0; mu_j < nelements; ++mu_j) {
res = fscanf(fptr, "%s %s", buffer, buffer2);
if (res != 2)
throw_error(filename, "core repulsion parameters", "core repulsion parameters: [prehc lambdahc] ...");
radial_functions->prehc(mu_i, mu_j) = stod_err(buffer, filename, "core repulsion parameters",
"core repulsion parameters: [prehc lambdahc] ...");
radial_functions->lambdahc(mu_i, mu_j) = stod_err(buffer2, filename, "core repulsion parameters",
"core repulsion parameters: [prehc lambdahc] ...");
}
//read radial functions parameter
res = fscanf(fptr, " radparameter=");
for (SPECIES_TYPE mu_i = 0; mu_i < nelements; ++mu_i)
for (SPECIES_TYPE mu_j = 0; mu_j < nelements; ++mu_j) {
res = fscanf(fptr, "%s", buffer);
if (res != 1)
throw_error(filename, "radparameter", "radparameter=[param_ele1] [param_ele2]");
radial_functions->lambda(mu_i, mu_j) = stod_err(buffer, filename, "radparameter",
"radparameter=[param_ele1] [param_ele2]");
}
res = fscanf(fptr, " cutoff=");
for (SPECIES_TYPE mu_i = 0; mu_i < nelements; ++mu_i)
for (SPECIES_TYPE mu_j = 0; mu_j < nelements; ++mu_j) {
res = fscanf(fptr, "%s", buffer);
if (res != 1)
throw_error(filename, "cutoff", "cutoff=[param_ele1] [param_ele2]");
radial_functions->cut(mu_i, mu_j) = stod_err(buffer, filename, "cutoff",
"cutoff=[param_ele1] [param_ele2]");
}
res = fscanf(fptr, " dcut=");
for (SPECIES_TYPE mu_i = 0; mu_i < nelements; ++mu_i)
for (SPECIES_TYPE mu_j = 0; mu_j < nelements; ++mu_j) {
res = fscanf(fptr, " %s", buffer);
if (res != 1)
throw_error(filename, "dcut", "dcut=[param_ele1] [param_ele2]");
radial_functions->dcut(mu_i, mu_j) = stod_err(buffer, filename, "dcut", "dcut=[param_ele1] [param_ele2]");
}
res = fscanf(fptr, " crad=");
for (SPECIES_TYPE mu_i = 0; mu_i < nelements; ++mu_i)
for (SPECIES_TYPE mu_j = 0; mu_j < nelements; ++mu_j)
for (NS_TYPE k = 0; k < nradbase; k++)
for (NS_TYPE n = 0; n < nradmax; n++)
for (LS_TYPE l = 0; l <= lmax; l++) {
res = fscanf(fptr, "%s", buffer);
if (res != 1)
throw_error(filename, "crad", "crad=[crad_]...[crad_knl]: nradbase*nrad*(l+1) times");
radial_functions->crad(mu_i, mu_j, n, l, k) = stod_err(buffer, filename, "crad",
"crad=[crad_]...[crad_knl]: nradbase*nrad*(l+1) times");
}
}
void ACECTildeBasisSet::_load_radial_SHIPsBasic(FILE *fptr,
const string filename,
const string radbasename) {
// create a radial basis object, and read it from the file pointer
SHIPsRadialFunctions *ships_radial_functions = new SHIPsRadialFunctions();
ships_radial_functions->fread(fptr);
//mimic ships_radial_functions to ACERadialFunctions
ships_radial_functions->nradial = ships_radial_functions->get_maxn();
ships_radial_functions->nradbase = ships_radial_functions->get_maxn();
nradbase = ships_radial_functions->get_maxn();
nradmax = ships_radial_functions->get_maxn();
cutoffmax = ships_radial_functions->get_rcut();
deltaSplineBins = 0.001;
ships_radial_functions->init(nradbase, lmax, nradmax,
deltaSplineBins,
nelements,
cutoffmax, radbasename);
if (radial_functions) delete radial_functions;
radial_functions = ships_radial_functions;
radial_functions->prehc.fill(0);
radial_functions->lambdahc.fill(1);
radial_functions->lambda.fill(0);
radial_functions->cut.fill(ships_radial_functions->get_rcut());
radial_functions->dcut.fill(0);
radial_functions->crad.fill(0);
}

View File

@ -1,155 +0,0 @@
/*
* Performant implementation of atomic cluster expansion and interface to LAMMPS
*
* Copyright 2021 (c) Yury Lysogorskiy^1, Cas van der Oord^2, Anton Bochkarev^1,
* Sarath Menon^1, Matteo Rinaldi^1, Thomas Hammerschmidt^1, Matous Mrovec^1,
* Aidan Thompson^3, Gabor Csanyi^2, Christoph Ortner^4, Ralf Drautz^1
*
* ^1: Ruhr-University Bochum, Bochum, Germany
* ^2: University of Cambridge, Cambridge, United Kingdom
* ^3: Sandia National Laboratories, Albuquerque, New Mexico, USA
* ^4: University of British Columbia, Vancouver, BC, Canada
*
*
* See the LICENSE file.
* This FILENAME is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
// Created by Yury Lysogorskiy on 1.04.20.
#ifndef ACE_C_BASIS_H
#define ACE_C_BASIS_H
#include "ace_flatten_basis.h"
typedef vector<vector<ACECTildeBasisFunction>> C_tilde_full_basis_vector2d;
/**
* ACE basis set of C-tilde basis functions
*/
class ACECTildeBasisSet : public ACEFlattenBasisSet {
public:
ACECTildeBasisFunction **basis_rank1 = nullptr; ///< two-dimensional array of first-rank basis function with indices: [species index][func index]
ACECTildeBasisFunction **basis = nullptr; ///< two-dimensional array of higher rank basis function with indices: [species index][func index]
DOUBLE_TYPE *full_c_tildes_rank1 = nullptr; ///< C_tilde coefficients contiguous package, size: coeff_array_total_size_rank1
DOUBLE_TYPE *full_c_tildes = nullptr; ///< C_tilde coefficients contiguous package, size: coeff_array_total_size
//TODO: remove?
SHORT_INT_TYPE num_ctilde_max = 0;
/**
* Default constructor
*/
ACECTildeBasisSet() = default;
/**
* Constructor from .ace file
*/
ACECTildeBasisSet(const string filename);
/**
* Copy constructor (see. Rule of Three)
* @param other
*/
ACECTildeBasisSet(const ACECTildeBasisSet &other);
/**
* operator= (see. Rule of Three)
* @param other
* @return
*/
ACECTildeBasisSet &operator=(const ACECTildeBasisSet &other);
/**
* Destructor (see. Rule of Three)
*/
~ACECTildeBasisSet() override;
/**
* Cleaning dynamic memory of the class (see. Rule of Three)
*/
void _clean() override;
/**
* Copying and cleaning dynamic memory of the class (see. Rule of Three)
* @param src
*/
void _copy_dynamic_memory(const ACECTildeBasisSet &src);
/**
* Copying scalar variables
* @param src
*/
void _copy_scalar_memory(const ACECTildeBasisSet &src);
/**
* Clean contiguous arrays (full_c_tildes_rank1, full_c_tildes) and those of base class
*/
void _clean_contiguous_arrays() override ;
/**
* Save potential to .ace file
* @param filename .ace file name
*/
void save(const string &filename) override;
/**
* Load potential from .ace
* @param filename .ace file name
*/
void load(const string filename) override;
/**
* Load the ACE type radial basis
*/
void _load_radial_ACERadial(FILE *fptr,
const string filename,
const string radbasename);
void _load_radial_SHIPsBasic(FILE * fptr,
const string filename,
const string radbasename );
/**
* Re-pack the constituent dynamic arrays of all basis functions in contiguous arrays
*/
void pack_flatten_basis() override;
/**
* Computes flatten array sizes
* @param basis_rank1 two-dimensional array of first-rank ACECTildeBasisFunctions
* @param basis two-dimensional array of higher-rank ACECTildeBasisFunctions
*/
void compute_array_sizes(ACECTildeBasisFunction** basis_rank1, ACECTildeBasisFunction** basis);
/**
* Clean basis arrays 'basis_rank1' and 'basis'
*/
void _clean_basis_arrays();
/**
* Pack two-dimensional vector of ACECTildeBasisFunction into 1D dynami array with all basis functions
* @param mu0_ctilde_basis_vector vector<vector<ACECTildeBasisFunction>>
*/
void flatten_basis(C_tilde_full_basis_vector2d& mu0_ctilde_basis_vector);
/**
* Empty stub implementation
*/
void flatten_basis() override{};
};
#endif //ACE_C_BASIS_H

View File

@ -1,251 +0,0 @@
/*
* Performant implementation of atomic cluster expansion and interface to LAMMPS
*
* Copyright 2021 (c) Yury Lysogorskiy^1, Cas van der Oord^2, Anton Bochkarev^1,
* Sarath Menon^1, Matteo Rinaldi^1, Thomas Hammerschmidt^1, Matous Mrovec^1,
* Aidan Thompson^3, Gabor Csanyi^2, Christoph Ortner^4, Ralf Drautz^1
*
* ^1: Ruhr-University Bochum, Bochum, Germany
* ^2: University of Cambridge, Cambridge, United Kingdom
* ^3: Sandia National Laboratories, Albuquerque, New Mexico, USA
* ^4: University of British Columbia, Vancouver, BC, Canada
*
*
* See the LICENSE file.
* This FILENAME is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
// Created by Yury Lysogorskiy on 26.02.20.
#ifndef ACE_C_BASISFUNCTION_H
#define ACE_C_BASISFUNCTION_H
#include <cstring>
#include <iomanip>
#include <iostream>
#include <sstream>
#include "ace_types.h"
//macros for copying the member-array from "other" object for C-tilde and B-basis
#define basis_mem_copy(other, array, size, type) if(other.array) { \
if(!is_proxy) delete[] array;\
array = new type[(size)];\
is_proxy = false;\
memcpy(array, other.array, (size) * sizeof(type));\
}
/**
* Abstract basis function, that stores general quantities
*/
struct ACEAbstractBasisFunction {
/**
* flattened array of computed combinations of (m1, m2, ..., m_rank)
* which have non-zero general Clebsch-Gordan coefficient:
* \f$ \mathbf{m}_1, \dots, \mathbf{m}_\mathrm{num ms combs}\f$ =
* \f$ (m_1, m_2, \dots, m_{rank})_1, \dots, (m_1, m_2, \dots, m_{rank})_{\mathrm{num ms combs}} \f$,
* size = num_ms_combs * rank,
* effective shape: [num_ms_combs][rank]
*/
MS_TYPE *ms_combs = nullptr;
/**
* species types of neighbours atoms \f$ \mathbf{\mu} = (\mu_1, \mu_2, \dots, \mu_{rank}) \f$,
* should be lexicographically sorted,
* size = rank,
* effective shape: [rank]
*/
SPECIES_TYPE *mus = nullptr;
/**
* indices for radial part \f$ \mathbf{n} = (n_1, n_2, \dots, n_{rank}) \f$,
* should be lexicographically sorted,
* size = rank,
* effective shape: [rank]
*/
NS_TYPE *ns = nullptr;
/**
* indices for radial part \f$ \mathbf{l} = (l_1, l_2, \dots, l_{rank}) \f$,
* should be lexicographically sorted,
* size = rank,
* effective shape: [rank]
*/
LS_TYPE *ls = nullptr;
SHORT_INT_TYPE num_ms_combs = 0; ///< number of different ms-combinations
RANK_TYPE rank = 0; ///< number of atomic base functions "A"s in basis function product B
DENSITY_TYPE ndensity = 0; ///< number of densities
SPECIES_TYPE mu0 = 0; ///< species type of central atom
/**
* whether ms array contains only "non-negative" ms-combinations.
* positive ms-combination is when the first non-zero m is positive (0 1 -1)
* negative ms-combination is when the first non-zero m is negative (0 -1 1)
*/
bool is_half_ms_basis = false;
/*
* flag, whether object is "owner" (i.e. responsible for memory cleaning) of
* the ms, ns, ls, mus and other dynamically allocated arrases or just a proxy for them
*/
bool is_proxy = false;
/**
* Copying static and dynamic memory variables from another ACEAbstractBasisFunction.
* Always copy the dynamic memory, even if the source is a proxy object
* @param other
*/
virtual void _copy_from(const ACEAbstractBasisFunction &other) {
rank = other.rank;
ndensity = other.ndensity;
mu0 = other.mu0;
num_ms_combs = other.num_ms_combs;
is_half_ms_basis = other.is_half_ms_basis;
is_proxy = false;
basis_mem_copy(other, mus, rank, SPECIES_TYPE)
basis_mem_copy(other, ns, rank, NS_TYPE)
basis_mem_copy(other, ls, rank, LS_TYPE)
basis_mem_copy(other, ms_combs, num_ms_combs * rank, MS_TYPE)
}
/**
* Clean the dynamically allocated memory if object is responsible for it
*/
virtual void _clean() {
//release memory if the structure is not proxy
if (!is_proxy) {
delete[] mus;
delete[] ns;
delete[] ls;
delete[] ms_combs;
}
mus = nullptr;
ns = nullptr;
ls = nullptr;
ms_combs = nullptr;
}
};
/**
* Representation of C-tilde basis function, i.e. the function that is summed up over a group of B-functions
* that differs only by intermediate coupling orbital moment \f$ L \f$ and coefficients.
*/
struct ACECTildeBasisFunction : public ACEAbstractBasisFunction {
/**
* c_tilde coefficients for all densities,
* size = num_ms_combs*ndensity,
* effective shape [num_ms_combs][ndensity]
*/
DOUBLE_TYPE *ctildes = nullptr;
/*
* Default constructor
*/
ACECTildeBasisFunction() = default;
// Because the ACECTildeBasisFunction contains dynamically allocated arrays, the Rule of Three should be
// fulfilled, i.e. copy constructor (copy the dynamic arrays), operator= (release previous arrays and
// copy the new dynamic arrays) and destructor (release all dynamically allocated memory)
/**
* Copy constructor, to fulfill the Rule of Three.
* Always copy the dynamic memory, even if the source is a proxy object.
*/
ACECTildeBasisFunction(const ACECTildeBasisFunction &other) {
_copy_from(other);
}
/*
* operator=, to fulfill the Rule of Three.
* Always copy the dynamic memory, even if the source is a proxy object
*/
ACECTildeBasisFunction &operator=(const ACECTildeBasisFunction &other) {
_clean();
_copy_from(other);
return *this;
}
/*
* Destructor
*/
~ACECTildeBasisFunction() {
_clean();
}
/**
* Copy from another object, always copy the memory, even if the source is a proxy object
* @param other
*/
void _copy_from(const ACECTildeBasisFunction &other) {
ACEAbstractBasisFunction::_copy_from(other);
is_proxy = false;
basis_mem_copy(other, ctildes, num_ms_combs * ndensity, DOUBLE_TYPE)
}
/**
* Clean the dynamically allocated memory if object is responsible for it
*/
void _clean() override {
ACEAbstractBasisFunction::_clean();
//release memory if the structure is not proxy
if (!is_proxy) {
delete[] ctildes;
}
ctildes = nullptr;
}
/**
* Print the information about basis function to cout, in order to ease the output redirection.
*/
void print() const {
using namespace std;
cout << "ACECTildeBasisFunction: ndensity= " << (int) this->ndensity << ", mu0 = " << (int) this->mu0 << " ";
cout << " mus=(";
for (RANK_TYPE r = 0; r < this->rank; r++)
cout << (int) this->mus[r] << " ";
cout << "), ns=(";
for (RANK_TYPE r = 0; r < this->rank; r++)
cout << this->ns[r] << " ";
cout << "), ls=(";
for (RANK_TYPE r = 0; r < this->rank; r++)
cout << this->ls[r] << " ";
cout << "), " << this->num_ms_combs << " m_s combinations: {" << endl;
for (int i = 0; i < this->num_ms_combs; i++) {
cout << "\t< ";
for (RANK_TYPE r = 0; r < this->rank; r++)
cout << this->ms_combs[i * this->rank + r] << " ";
cout << " >: c_tilde=";
for (DENSITY_TYPE p = 0; p < this->ndensity; ++p)
cout << " " << this->ctildes[i * this->ndensity + p] << " ";
cout << endl;
}
if (this->is_proxy)
cout << "proxy ";
if (this->is_half_ms_basis)
cout << "half_ms_basis";
cout << "}" << endl;
}
};
#endif //ACE_C_BASISFUNCTION_H

View File

@ -1,266 +0,0 @@
/*
* Performant implementation of atomic cluster expansion and interface to LAMMPS
*
* Copyright 2021 (c) Yury Lysogorskiy^1, Cas van der Oord^2, Anton Bochkarev^1,
* Sarath Menon^1, Matteo Rinaldi^1, Thomas Hammerschmidt^1, Matous Mrovec^1,
* Aidan Thompson^3, Gabor Csanyi^2, Christoph Ortner^4, Ralf Drautz^1
*
* ^1: Ruhr-University Bochum, Bochum, Germany
* ^2: University of Cambridge, Cambridge, United Kingdom
* ^3: Sandia National Laboratories, Albuquerque, New Mexico, USA
* ^4: University of British Columbia, Vancouver, BC, Canada
*
*
* See the LICENSE file.
* This FILENAME is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
// Created by Yury Lysogorskiy on 26.02.20.
#ifndef ACE_COMPLEX_H
#define ACE_COMPLEX_H
/**
A custom data structure for complex numbers and overloaded operations with them.
*/
struct ACEComplex {
public:
/**
Double, real part of the complex number
*/
DOUBLE_TYPE real;
/**
Double, imaginary part of the complex number
*/
DOUBLE_TYPE img;
ACEComplex &operator=(const ACEComplex &rhs) = default;
ACEComplex &operator=(const DOUBLE_TYPE &rhs) {
this->real = rhs;
this->img = 0.;
return *this;
}
/**
Overloading of arithmetical operator += ACEComplex
*/
ACEComplex &operator+=(const ACEComplex &rhs) {
this->real += rhs.real;
this->img += rhs.img;
return *this; // return the result by reference
}
/**
Overloading of arithmetical operator += DOUBLE_TYPE
*/
ACEComplex &operator+=(const DOUBLE_TYPE &rhs) {
this->real += rhs;
return *this; // return the result by reference
}
/**
Overloading of arithmetical operator *= DOUBLE_TYPE
*/
ACEComplex &operator*=(const DOUBLE_TYPE &rhs) {
this->real *= rhs;
this->img *= rhs;
return *this; // return the result by reference
}
/**
Overloading of arithmetical operator *= ACEComplex
*/
ACEComplex &operator*=(const ACEComplex &rhs) {
DOUBLE_TYPE old_real = this->real;
this->real = old_real * rhs.real - this->img * rhs.img;
this->img = old_real * rhs.img + this->img * rhs.real;
return *this; // return the result by reference
}
/**
Overloading of arithmetical operator * ACEComplex
*/
ACEComplex operator*(const ACEComplex &cm2) const {
ACEComplex res{real * cm2.real - img * cm2.img,
real * cm2.img + img * cm2.real};
return res;
}
/*
* Return complex conjugated copy of itself
*/
ACEComplex conjugated() const {
ACEComplex res{real, -img};
return res;
}
/*
* Complex conjugate itself inplace
*/
void conjugate() {
img = -img;
}
/*
* Multiplication by ACEComplex and return real-part only
*/
DOUBLE_TYPE real_part_product(const ACEComplex &cm2) const {
return real * cm2.real - img * cm2.img;
}
/*
* Multiplication by DOUBLE_TYPE and return real-part only
*/
DOUBLE_TYPE real_part_product(const DOUBLE_TYPE &cm2) const {
return real * cm2;
}
/*
* Overloading of arithmetical operator * by DOUBLE_TYPE
*/
ACEComplex operator*(const DOUBLE_TYPE &cm2) const {
ACEComplex res{real * cm2,
img * cm2};
return res;
}
/*
* Overloading of arithmetical operator + ACEComplex
*/
ACEComplex operator+(const ACEComplex &cm2) const {
ACEComplex res{real + cm2.real,
img + cm2.img};
return res;
}
/*
* Overloading of arithmetical operator + with DOUBLE_TYPE
*/
ACEComplex operator+(const DOUBLE_TYPE &cm2) const {
ACEComplex res{real + cm2, img};
return res;
}
/*
* Overloading of arithmetical operator == ACEComplex
*/
bool operator==(const ACEComplex &c2) const {
return (real == c2.real) && (img == c2.img);
}
/*
* Overloading of arithmetical operator == DOUBLE_TYPE
*/
bool operator==(const DOUBLE_TYPE &d2) const {
return (real == d2) && (img == 0.);
}
/*
* Overloading of arithmetical operator != ACEComplex
*/
bool operator!=(const ACEComplex &c2) const {
return (real != c2.real) || (img != c2.img);
}
/*
* Overloading of arithmetical operator != DOUBLE_TYPE
*/
bool operator!=(const DOUBLE_TYPE &d2) const {
return (real != d2) || (img != 0.);
}
};
/*
* double * complex for commutativity with complex * double
*/
inline ACEComplex operator*(const DOUBLE_TYPE &real, const ACEComplex &cm) {
return cm * real;
}
/*
* double + complex for commutativity with complex + double
*/
inline ACEComplex operator+(const DOUBLE_TYPE &real, const ACEComplex &cm) {
return cm + real;
}
/**
A structure to store the derivative of \f$ Y_{lm} \f$
*/
struct ACEDYcomponent {
public:
/**
complex, contains the three components of derivative of Ylm,
\f$ \frac{dY_{lm}}{dx}, \frac{dY_{lm}}{dy} and \frac{dY_{lm}}{dz}\f$
*/
ACEComplex a[3];
/*
* Overloading of arithmetical operator*= DOUBLE_TYPE
*/
ACEDYcomponent &operator*=(const DOUBLE_TYPE &rhs) {
this->a[0] *= rhs;
this->a[1] *= rhs;
this->a[2] *= rhs;
return *this;
}
/*
* Overloading of arithmetical operator * ACEComplex
*/
ACEDYcomponent operator*(const ACEComplex &rhs) const {
ACEDYcomponent res;
res.a[0] = this->a[0] * rhs;
res.a[1] = this->a[1] * rhs;
res.a[2] = this->a[2] * rhs;
return res;
}
/*
* Overloading of arithmetical operator * DOUBLE_TYPE
*/
ACEDYcomponent operator*(const DOUBLE_TYPE &rhs) const {
ACEDYcomponent res;
res.a[0] = this->a[0] * rhs;
res.a[1] = this->a[1] * rhs;
res.a[2] = this->a[2] * rhs;
return res;
}
/*
* Return conjugated copy of itself
*/
ACEDYcomponent conjugated() const {
ACEDYcomponent res;
res.a[0] = this->a[0].conjugated();
res.a[1] = this->a[1].conjugated();
res.a[2] = this->a[2].conjugated();
return res;
}
/*
* Conjugated itself in-place
*/
void conjugate() {
this->a[0].conjugate();
this->a[1].conjugate();
this->a[2].conjugate();
}
};
#endif //ACE_COMPLEX_H

View File

@ -1,249 +0,0 @@
/*
* Performant implementation of atomic cluster expansion and interface to LAMMPS
*
* Copyright 2021 (c) Yury Lysogorskiy^1, Cas van der Oord^2, Anton Bochkarev^1,
* Sarath Menon^1, Matteo Rinaldi^1, Thomas Hammerschmidt^1, Matous Mrovec^1,
* Aidan Thompson^3, Gabor Csanyi^2, Christoph Ortner^4, Ralf Drautz^1
*
* ^1: Ruhr-University Bochum, Bochum, Germany
* ^2: University of Cambridge, Cambridge, United Kingdom
* ^3: Sandia National Laboratories, Albuquerque, New Mexico, USA
* ^4: University of British Columbia, Vancouver, BC, Canada
*
*
* See the LICENSE file.
* This FILENAME is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
// Created by Yury Lysogorskiy on 11.01.20.
#ifndef ACE_CONTIGUOUSARRAYND_H
#define ACE_CONTIGUOUSARRAYND_H
#include <string>
#include "ace_types.h"
using namespace std;
/**
* Common predecessor class to represent multidimensional array of type T
* and store it in memory contiguous form
*
* @tparam T data type
*/
template<typename T>
class ContiguousArrayND {
protected:
T *data = nullptr; ///< pointer to contiguous data
size_t size = 0; ///< total array size
string array_name = "Array"; ///<array name
bool is_proxy_ = false; ///< array is proxy (wrapper) and not owner of the memory
public:
/**
* Default empty constructor
*/
ContiguousArrayND() = default;
/**
* Constructor with array name
* @param array_name name of array (for error logging)
*/
ContiguousArrayND(string array_name) : array_name(array_name) {};
/**
* Copy constructor
* @param other other ContiguousArrayND
*/
ContiguousArrayND(const ContiguousArrayND &other) : array_name(other.array_name), size(other.size), is_proxy_(other.is_proxy_) {
#ifdef MULTIARRAY_LIFE_CYCLE
cout<<array_name<<"::copy constructor"<<endl;
#endif
if(!is_proxy_) { //if not the proxy, then copy the values
if (size > 0) {
data = new T[size];
for (size_t ind = 0; ind < size; ind++)
data[ind] = other.data[ind];
}
} else { //is proxy, then copy the pointer
data = other.data;
}
}
/**
* Overload operator=
* @param other another ContiguousArrayND
* @return itself
*/
ContiguousArrayND &operator=(const ContiguousArrayND &other) {
#ifdef MULTIARRAY_LIFE_CYCLE
cout<<array_name<<"::operator="<<endl;
#endif
if (this != &other) {
array_name = other.array_name;
size = other.size;
is_proxy_ = other.is_proxy_;
if(!is_proxy_) { //if not the proxy, then copy the values
if (size > 0) {
if(data!=nullptr) delete[] data;
data = new T[size];
for (size_t ind = 0; ind < size; ind++)
data[ind] = other.data[ind];
}
} else { //is proxy, then copy the pointer
data = other.data;
}
}
return *this;
}
//TODO: make destructor virtual, check the destructors in inherited classes
/**
* Destructor
*/
~ContiguousArrayND() {
#ifdef MULTIARRAY_LIFE_CYCLE
cout<<array_name<<"::~destructor"<<endl;
#endif
if(! is_proxy_) {
delete[] data;
}
data = nullptr;
}
/**
* Set array name
* @param name array name
*/
void set_array_name(const string &name) {
this->array_name = name;
}
/**
* Get total number of elements in array (its size)
* @return array size
*/
size_t get_size() const {
return size;
}
/**
* Fill array with value
* @param value value to fill
*/
void fill(T value) {
for (size_t ind = 0; ind < size; ind++)
data[ind] = value;
}
/**
* Get array data at absolute index ind for reading
* @param ind absolute index
* @return array value
*/
inline const T &get_data(size_t ind) const {
#ifdef MULTIARRAY_INDICES_CHECK
if ((ind < 0) | (ind >= size)) {
printf("%s: get_data ind=%d out of range (0, %d)\n", array_name, ind, size);
exit(EXIT_FAILURE);
}
#endif
return data[ind];
}
/**
* Get array data at absolute index ind for writing
* @param ind absolute index
* @return array value
*/
inline T &get_data(size_t ind) {
#ifdef MULTIARRAY_INDICES_CHECK
if ((ind < 0) | (ind >= size)) {
printf("%s: get_data ind=%ld out of range (0, %ld)\n", array_name.c_str(), ind, size);
exit(EXIT_FAILURE);
}
#endif
return data[ind];
}
/**
* Get array data pointer
* @return data array pointer
*/
inline T* get_data() const {
return data;
}
/**
* Overload comparison operator==
* Compare the total size and array values elementwise.
*
* @param other another array
* @return
*/
bool operator==(const ContiguousArrayND &other) const {
if (this->size != other.size)
return false;
for (size_t i = 0; i < this->size; ++i)
if (this->data[i] != other.data[i])
return false;
return true;
}
/**
* Convert to flatten vector<T> container
* @return vector container
*/
vector<T> to_flatten_vector() const {
vector<T> res;
res.resize(size);
size_t vec_ind = 0;
for (int vec_ind = 0; vec_ind < size; vec_ind++)
res.at(vec_ind) = data[vec_ind];
return res;
} // end to_flatten_vector()
/**
* Set values from flatten vector<T> container
* @param vec container
*/
void set_flatten_vector(const vector<T> &vec) {
if (vec.size() != size)
throw std::invalid_argument("Flatten vector size is not consistent with expected size");
for (size_t i = 0; i < size; i++) {
data[i] = vec[i];
}
}
bool is_proxy(){
return is_proxy_;
}
};
#endif //ACE_CONTIGUOUSARRAYND_H

View File

@ -1,660 +0,0 @@
/*
* Performant implementation of atomic cluster expansion and interface to LAMMPS
*
* Copyright 2021 (c) Yury Lysogorskiy^1, Cas van der Oord^2, Anton Bochkarev^1,
* Sarath Menon^1, Matteo Rinaldi^1, Thomas Hammerschmidt^1, Matous Mrovec^1,
* Aidan Thompson^3, Gabor Csanyi^2, Christoph Ortner^4, Ralf Drautz^1
*
* ^1: Ruhr-University Bochum, Bochum, Germany
* ^2: University of Cambridge, Cambridge, United Kingdom
* ^3: Sandia National Laboratories, Albuquerque, New Mexico, USA
* ^4: University of British Columbia, Vancouver, BC, Canada
*
*
* See the LICENSE file.
* This FILENAME is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
// Created by Yury Lysogorskiy on 31.01.20.
#include "ace_evaluator.h"
#include "ace_abstract_basis.h"
#include "ace_types.h"
void ACEEvaluator::init(ACEAbstractBasisSet *basis_set) {
A.init(basis_set->nelements, basis_set->nradmax + 1, basis_set->lmax + 1, "A");
A_rank1.init(basis_set->nelements, basis_set->nradbase, "A_rank1");
rhos.init(basis_set->ndensitymax + 1, "rhos"); // +1 density for core repulsion
dF_drho.init(basis_set->ndensitymax + 1, "dF_drho"); // +1 density for core repulsion
}
void ACEEvaluator::init_timers() {
loop_over_neighbour_timer.init();
forces_calc_loop_timer.init();
forces_calc_neighbour_timer.init();
energy_calc_timer.init();
per_atom_calc_timer.init();
total_time_calc_timer.init();
}
//================================================================================================================
void ACECTildeEvaluator::set_basis(ACECTildeBasisSet &bas) {
basis_set = &bas;
init(basis_set);
}
void ACECTildeEvaluator::init(ACECTildeBasisSet *basis_set) {
ACEEvaluator::init(basis_set);
weights.init(basis_set->nelements, basis_set->nradmax + 1, basis_set->lmax + 1,
"weights");
weights_rank1.init(basis_set->nelements, basis_set->nradbase, "weights_rank1");
DG_cache.init(1, basis_set->nradbase, "DG_cache");
DG_cache.fill(0);
R_cache.init(1, basis_set->nradmax, basis_set->lmax + 1, "R_cache");
R_cache.fill(0);
DR_cache.init(1, basis_set->nradmax, basis_set->lmax + 1, "DR_cache");
DR_cache.fill(0);
Y_cache.init(1, basis_set->lmax + 1, "Y_cache");
Y_cache.fill({0, 0});
DY_cache.init(1, basis_set->lmax + 1, "dY_dense_cache");
DY_cache.fill({0.});
//hard-core repulsion
DCR_cache.init(1, "DCR_cache");
DCR_cache.fill(0);
dB_flatten.init(basis_set->max_dB_array_size, "dB_flatten");
}
void ACECTildeEvaluator::resize_neighbours_cache(int max_jnum) {
if(basis_set== nullptr) {
throw std::invalid_argument("ACECTildeEvaluator: basis set is not assigned");
}
if (R_cache.get_dim(0) < max_jnum) {
//TODO: implement grow
R_cache.resize(max_jnum, basis_set->nradmax, basis_set->lmax + 1);
R_cache.fill(0);
DR_cache.resize(max_jnum, basis_set->nradmax, basis_set->lmax + 1);
DR_cache.fill(0);
DG_cache.resize(max_jnum, basis_set->nradbase);
DG_cache.fill(0);
Y_cache.resize(max_jnum, basis_set->lmax + 1);
Y_cache.fill({0, 0});
DY_cache.resize(max_jnum, basis_set->lmax + 1);
DY_cache.fill({0});
//hard-core repulsion
DCR_cache.init(max_jnum, "DCR_cache");
DCR_cache.fill(0);
}
}
// double** r - atomic coordinates of atom I
// int* types - atomic types if atom I
// int **firstneigh - ptr to 1st J int value of each I atom. Usage: jlist = firstneigh[i];
// Usage: j = jlist_of_i[jj];
// jnum - number of J neighbors for each I atom. jnum = numneigh[i];
void
ACECTildeEvaluator::compute_atom(int i, DOUBLE_TYPE **x, const SPECIES_TYPE *type, const int jnum, const int *jlist) {
if(basis_set== nullptr) {
throw std::invalid_argument("ACECTildeEvaluator: basis set is not assigned");
}
per_atom_calc_timer.start();
#ifdef PRINT_MAIN_STEPS
printf("\n ATOM: ind = %d r_norm=(%f, %f, %f)\n",i, x[i][0], x[i][1], x[i][2]);
#endif
DOUBLE_TYPE evdwl = 0, evdwl_cut = 0, rho_core = 0;
DOUBLE_TYPE r_norm;
DOUBLE_TYPE xn, yn, zn, r_xyz;
DOUBLE_TYPE R, GR, DGR, R_over_r, DR, DCR;
DOUBLE_TYPE *r_hat;
SPECIES_TYPE mu_j;
RANK_TYPE r, rank, t;
NS_TYPE n;
LS_TYPE l;
MS_TYPE m, m_t;
SPECIES_TYPE *mus;
NS_TYPE *ns;
LS_TYPE *ls;
MS_TYPE *ms;
int j, jj, func_ind, ms_ind;
SHORT_INT_TYPE factor;
ACEComplex Y{0}, Y_DR{0.};
ACEComplex B{0.};
ACEComplex dB{0};
ACEComplex A_cache[basis_set->rankmax];
dB_flatten.fill({0.});
ACEDYcomponent grad_phi_nlm{0}, DY{0.};
//size is +1 of max to avoid out-of-boundary array access in double-triangular scheme
ACEComplex A_forward_prod[basis_set->rankmax + 1];
ACEComplex A_backward_prod[basis_set->rankmax + 1];
DOUBLE_TYPE inv_r_norm;
DOUBLE_TYPE r_norms[jnum];
DOUBLE_TYPE inv_r_norms[jnum];
DOUBLE_TYPE rhats[jnum][3];//normalized vector
SPECIES_TYPE elements[jnum];
const DOUBLE_TYPE xtmp = x[i][0];
const DOUBLE_TYPE ytmp = x[i][1];
const DOUBLE_TYPE ztmp = x[i][2];
DOUBLE_TYPE f_ji[3];
bool is_element_mapping = element_type_mapping.get_size() > 0;
SPECIES_TYPE mu_i;
if (is_element_mapping)
mu_i = element_type_mapping(type[i]);
else
mu_i = type[i];
const SHORT_INT_TYPE total_basis_size_rank1 = basis_set->total_basis_size_rank1[mu_i];
const SHORT_INT_TYPE total_basis_size = basis_set->total_basis_size[mu_i];
ACECTildeBasisFunction *basis_rank1 = basis_set->basis_rank1[mu_i];
ACECTildeBasisFunction *basis = basis_set->basis[mu_i];
DOUBLE_TYPE rho_cut, drho_cut, fcut, dfcut;
DOUBLE_TYPE dF_drho_core;
//TODO: lmax -> lmaxi (get per-species type)
const LS_TYPE lmaxi = basis_set->lmax;
//TODO: nradmax -> nradiali (get per-species type)
const NS_TYPE nradiali = basis_set->nradmax;
//TODO: nradbase -> nradbasei (get per-species type)
const NS_TYPE nradbasei = basis_set->nradbase;
//TODO: get per-species type number of densities
const DENSITY_TYPE ndensity= basis_set->ndensitymax;
neighbours_forces.resize(jnum, 3);
neighbours_forces.fill(0);
//TODO: shift nullifications to place where arrays are used
weights.fill({0});
weights_rank1.fill(0);
A.fill({0});
A_rank1.fill(0);
rhos.fill(0);
dF_drho.fill(0);
#ifdef EXTRA_C_PROJECTIONS
basis_projections_rank1.init(total_basis_size_rank1, ndensity, "c_projections_rank1");
basis_projections.init(total_basis_size, ndensity, "c_projections");
#endif
//proxy references to spherical harmonics and radial functions arrays
const Array2DLM<ACEComplex> &ylm = basis_set->spherical_harmonics.ylm;
const Array2DLM<ACEDYcomponent> &dylm = basis_set->spherical_harmonics.dylm;
const Array2D<DOUBLE_TYPE> &fr = basis_set->radial_functions->fr;
const Array2D<DOUBLE_TYPE> &dfr = basis_set->radial_functions->dfr;
const Array1D<DOUBLE_TYPE> &gr = basis_set->radial_functions->gr;
const Array1D<DOUBLE_TYPE> &dgr = basis_set->radial_functions->dgr;
loop_over_neighbour_timer.start();
int jj_actual = 0;
SPECIES_TYPE type_j = 0;
int neighbour_index_mapping[jnum]; // jj_actual -> jj
//loop over neighbours, compute distance, consider only atoms within with r<cutoff(mu_i, mu_j)
for (jj = 0; jj < jnum; ++jj) {
j = jlist[jj];
xn = x[j][0] - xtmp;
yn = x[j][1] - ytmp;
zn = x[j][2] - ztmp;
type_j = type[j];
if (is_element_mapping)
mu_j = element_type_mapping(type_j);
else
mu_j = type_j;
DOUBLE_TYPE current_cutoff = basis_set->radial_functions->cut(mu_i, mu_j);
r_xyz = sqrt(xn * xn + yn * yn + zn * zn);
if (r_xyz >= current_cutoff)
continue;
inv_r_norm = 1 / r_xyz;
r_norms[jj_actual] = r_xyz;
inv_r_norms[jj_actual] = inv_r_norm;
rhats[jj_actual][0] = xn * inv_r_norm;
rhats[jj_actual][1] = yn * inv_r_norm;
rhats[jj_actual][2] = zn * inv_r_norm;
elements[jj_actual] = mu_j;
neighbour_index_mapping[jj_actual] = jj;
jj_actual++;
}
int jnum_actual = jj_actual;
//ALGORITHM 1: Atomic base A
for (jj = 0; jj < jnum_actual; ++jj) {
r_norm = r_norms[jj];
mu_j = elements[jj];
r_hat = rhats[jj];
//proxies
Array2DLM<ACEComplex> &Y_jj = Y_cache(jj);
Array2DLM<ACEDYcomponent> &DY_jj = DY_cache(jj);
basis_set->radial_functions->evaluate(r_norm, basis_set->nradbase, nradiali, mu_i, mu_j);
basis_set->spherical_harmonics.compute_ylm(r_hat[0], r_hat[1], r_hat[2], lmaxi);
//loop for computing A's
//rank = 1
for (n = 0; n < basis_set->nradbase; n++) {
GR = gr(n);
#ifdef DEBUG_ENERGY_CALCULATIONS
printf("-neigh atom %d\n", jj);
printf("gr(n=%d)(r=%f) = %f\n", n, r_norm, gr(n));
printf("dgr(n=%d)(r=%f) = %f\n", n, r_norm, dgr(n));
#endif
DG_cache(jj, n) = dgr(n);
A_rank1(mu_j, n) += GR * Y00;
}
//loop for computing A's
// for rank > 1
for (n = 0; n < nradiali; n++) {
auto &A_lm = A(mu_j, n);
for (l = 0; l <= lmaxi; l++) {
R = fr(n, l);
#ifdef DEBUG_ENERGY_CALCULATIONS
printf("R(nl=%d,%d)(r=%f)=%f\n", n + 1, l, r_norm, R);
#endif
DR_cache(jj, n, l) = dfr(n, l);
R_cache(jj, n, l) = R;
for (m = 0; m <= l; m++) {
Y = ylm(l, m);
#ifdef DEBUG_ENERGY_CALCULATIONS
printf("Y(lm=%d,%d)=(%f, %f)\n", l, m, Y.real, Y.img);
#endif
A_lm(l, m) += R * Y; //accumulation sum over neighbours
Y_jj(l, m) = Y;
DY_jj(l, m) = dylm(l, m);
}
}
}
//hard-core repulsion
rho_core += basis_set->radial_functions->cr;
DCR_cache(jj) = basis_set->radial_functions->dcr;
} //end loop over neighbours
//complex conjugate A's (for NEGATIVE (-m) terms)
// for rank > 1
for (mu_j = 0; mu_j < basis_set->nelements; mu_j++) {
for (n = 0; n < nradiali; n++) {
auto &A_lm = A(mu_j, n);
for (l = 0; l <= lmaxi; l++) {
//fill in -m part in the outer loop using the same m <-> -m symmetry as for Ylm
for (m = 1; m <= l; m++) {
factor = m % 2 == 0 ? 1 : -1;
A_lm(l, -m) = A_lm(l, m).conjugated() * factor;
}
}
}
} //now A's are constructed
loop_over_neighbour_timer.stop();
// ==================== ENERGY ====================
energy_calc_timer.start();
#ifdef EXTRA_C_PROJECTIONS
basis_projections_rank1.fill(0);
basis_projections.fill(0);
#endif
//ALGORITHM 2: Basis functions B with iterative product and density rho(p) calculation
//rank=1
for (int func_rank1_ind = 0; func_rank1_ind < total_basis_size_rank1; ++func_rank1_ind) {
ACECTildeBasisFunction *func = &basis_rank1[func_rank1_ind];
// ndensity = func->ndensity;
#ifdef PRINT_LOOPS_INDICES
printf("Num density = %d r = 0\n",(int) ndensity );
print_C_tilde_B_basis_function(*func);
#endif
double A_cur = A_rank1(func->mus[0], func->ns[0] - 1);
#ifdef DEBUG_ENERGY_CALCULATIONS
printf("A_r=1(x=%d, n=%d)=(%f)\n", func->mus[0], func->ns[0], A_cur);
printf(" coeff[0] = %f\n", func->ctildes[0]);
#endif
for (DENSITY_TYPE p = 0; p < ndensity; ++p) {
//for rank=1 (r=0) only 1 ms-combination exists (ms_ind=0), so index of func.ctildes is 0..ndensity-1
rhos(p) += func->ctildes[p] * A_cur;
#ifdef EXTRA_C_PROJECTIONS
//aggregate C-projections separately
basis_projections_rank1(func_rank1_ind, p)+= func->ctildes[p] * A_cur;
#endif
}
} // end loop for rank=1
//rank>1
int func_ms_ind = 0;
int func_ms_t_ind = 0;// index for dB
for (func_ind = 0; func_ind < total_basis_size; ++func_ind) {
ACECTildeBasisFunction *func = &basis[func_ind];
//TODO: check if func->ctildes are zero, then skip
// ndensity = func->ndensity;
rank = func->rank;
r = rank - 1;
#ifdef PRINT_LOOPS_INDICES
printf("Num density = %d r = %d\n",(int) ndensity, (int)r );
print_C_tilde_B_basis_function(*func);
#endif
mus = func->mus;
ns = func->ns;
ls = func->ls;
//loop over {ms} combinations in sum
for (ms_ind = 0; ms_ind < func->num_ms_combs; ++ms_ind, ++func_ms_ind) {
ms = &func->ms_combs[ms_ind * rank]; // current ms-combination (of length = rank)
//loop over m, collect B = product of A with given ms
A_forward_prod[0] = 1;
A_backward_prod[r] = 1;
//fill forward A-product triangle
for (t = 0; t < rank; t++) {
//TODO: optimize ns[t]-1 -> ns[t] during functions construction
A_cache[t] = A(mus[t], ns[t] - 1, ls[t], ms[t]);
#ifdef DEBUG_ENERGY_CALCULATIONS
printf("A(x=%d, n=%d, l=%d, m=%d)=(%f,%f)\n", mus[t], ns[t], ls[t], ms[t], A_cache[t].real,
A_cache[t].img);
#endif
A_forward_prod[t + 1] = A_forward_prod[t] * A_cache[t];
}
B = A_forward_prod[t];
#ifdef DEBUG_FORCES_CALCULATIONS
printf("B = (%f, %f)\n", (B).real, (B).img);
#endif
//fill backward A-product triangle
for (t = r; t >= 1; t--) {
A_backward_prod[t - 1] =
A_backward_prod[t] * A_cache[t];
}
for (t = 0; t < rank; ++t, ++func_ms_t_ind) {
dB = A_forward_prod[t] * A_backward_prod[t]; //dB - product of all A's except t-th
dB_flatten(func_ms_t_ind) = dB;
#ifdef DEBUG_FORCES_CALCULATIONS
m_t = ms[t];
printf("dB(n,l,m)(%d,%d,%d) = (%f, %f)\n", ns[t], ls[t], m_t, (dB).real, (dB).img);
#endif
}
for (DENSITY_TYPE p = 0; p < ndensity; ++p) {
//real-part only multiplication
rhos(p) += B.real_part_product(func->ctildes[ms_ind * ndensity + p]);
#ifdef EXTRA_C_PROJECTIONS
//aggregate C-projections separately
basis_projections(func_ind, p)+=B.real_part_product(func->ctildes[ms_ind * ndensity + p]);
#endif
#ifdef PRINT_INTERMEDIATE_VALUES
printf("rhos(%d) += %f\n", p, B.real_part_product(func->ctildes[ms_ind * ndensity + p]));
printf("Rho[i = %d][p = %d] = %f\n", i , p , rhos(p));
#endif
}
}//end of loop over {ms} combinations in sum
}// end loop for rank>1
#ifdef DEBUG_FORCES_CALCULATIONS
printf("rhos = ");
for(DENSITY_TYPE p =0; p<ndensity; ++p) printf(" %.20f ",rhos(p));
printf("\n");
#endif
// energy cutoff
rho_cut = basis_set->rho_core_cutoffs(mu_i);
drho_cut = basis_set->drho_core_cutoffs(mu_i);
basis_set->inner_cutoff(rho_core, rho_cut, drho_cut, fcut, dfcut);
basis_set->FS_values_and_derivatives(rhos, evdwl, dF_drho, ndensity);
dF_drho_core = evdwl * dfcut + 1;
for (DENSITY_TYPE p = 0; p < ndensity; ++p)
dF_drho(p) *= fcut;
evdwl_cut = evdwl * fcut + rho_core;
// E0 shift
evdwl_cut += basis_set->E0vals(mu_i);
#ifdef DEBUG_FORCES_CALCULATIONS
printf("dFrhos = ");
for(DENSITY_TYPE p =0; p<ndensity; ++p) printf(" %f ",dF_drho(p));
printf("\n");
#endif
//ALGORITHM 3: Weights and theta calculation
// rank = 1
for (int f_ind = 0; f_ind < total_basis_size_rank1; ++f_ind) {
ACECTildeBasisFunction *func = &basis_rank1[f_ind];
// ndensity = func->ndensity;
for (DENSITY_TYPE p = 0; p < ndensity; ++p) {
//for rank=1 (r=0) only 1 ms-combination exists (ms_ind=0), so index of func.ctildes is 0..ndensity-1
weights_rank1(func->mus[0], func->ns[0] - 1) += dF_drho(p) * func->ctildes[p];
}
}
// rank>1
func_ms_ind = 0;
func_ms_t_ind = 0;// index for dB
DOUBLE_TYPE theta = 0;
for (func_ind = 0; func_ind < total_basis_size; ++func_ind) {
ACECTildeBasisFunction *func = &basis[func_ind];
// ndensity = func->ndensity;
rank = func->rank;
mus = func->mus;
ns = func->ns;
ls = func->ls;
for (ms_ind = 0; ms_ind < func->num_ms_combs; ++ms_ind, ++func_ms_ind) {
ms = &func->ms_combs[ms_ind * rank];
theta = 0;
for (DENSITY_TYPE p = 0; p < ndensity; ++p) {
theta += dF_drho(p) * func->ctildes[ms_ind * ndensity + p];
#ifdef DEBUG_FORCES_CALCULATIONS
printf("(p=%d) theta += dF_drho[p] * func.ctildes[ms_ind * ndensity + p] = %f * %f = %f\n",p, dF_drho(p), func->ctildes[ms_ind * ndensity + p],dF_drho(p)*func->ctildes[ms_ind * ndensity + p]);
printf("theta=%f\n",theta);
#endif
}
theta *= 0.5; // 0.5 factor due to possible double counting ???
for (t = 0; t < rank; ++t, ++func_ms_t_ind) {
m_t = ms[t];
factor = (m_t % 2 == 0 ? 1 : -1);
dB = dB_flatten(func_ms_t_ind);
weights(mus[t], ns[t] - 1, ls[t], m_t) += theta * dB; //Theta_array(func_ms_ind);
// update -m_t (that could also be positive), because the basis is half_basis
weights(mus[t], ns[t] - 1, ls[t], -m_t) +=
theta * (dB).conjugated() * factor;// Theta_array(func_ms_ind);
#ifdef DEBUG_FORCES_CALCULATIONS
printf("dB(n,l,m)(%d,%d,%d) = (%f, %f)\n", ns[t], ls[t], m_t, (dB).real, (dB).img);
printf("theta = %f\n",theta);
printf("weights(n,l,m)(%d,%d,%d) += (%f, %f)\n", ns[t], ls[t], m_t, (theta * dB * 0.5).real,
(theta * dB * 0.5).img);
printf("weights(n,l,-m)(%d,%d,%d) += (%f, %f)\n", ns[t], ls[t], -m_t,
( theta * (dB).conjugated() * factor * 0.5).real,
( theta * (dB).conjugated() * factor * 0.5).img);
#endif
}
}
}
energy_calc_timer.stop();
// ==================== FORCES ====================
#ifdef PRINT_MAIN_STEPS
printf("\nFORCE CALCULATION\n");
printf("loop over neighbours\n");
#endif
forces_calc_loop_timer.start();
// loop over neighbour atoms for force calculations
for (jj = 0; jj < jnum_actual; ++jj) {
mu_j = elements[jj];
r_hat = rhats[jj];
inv_r_norm = inv_r_norms[jj];
Array2DLM<ACEComplex> &Y_cache_jj = Y_cache(jj);
Array2DLM<ACEDYcomponent> &DY_cache_jj = DY_cache(jj);
#ifdef PRINT_LOOPS_INDICES
printf("\nneighbour atom #%d\n", jj);
printf("rhat = (%f, %f, %f)\n", r_hat[0], r_hat[1], r_hat[2]);
#endif
forces_calc_neighbour_timer.start();
f_ji[0] = f_ji[1] = f_ji[2] = 0;
//for rank = 1
for (n = 0; n < nradbasei; ++n) {
if (weights_rank1(mu_j, n) == 0)
continue;
auto &DG = DG_cache(jj, n);
DGR = DG * Y00;
DGR *= weights_rank1(mu_j, n);
#ifdef DEBUG_FORCES_CALCULATIONS
printf("r=1: (n,l,m)=(%d, 0, 0)\n",n+1);
printf("\tGR(n=%d, r=%f)=%f\n",n+1,r_norm, gr(n));
printf("\tDGR(n=%d, r=%f)=%f\n",n+1,r_norm, dgr(n));
printf("\tdF+=(%f, %f, %f)\n",DGR * r_hat[0], DGR * r_hat[1], DGR * r_hat[2]);
#endif
f_ji[0] += DGR * r_hat[0];
f_ji[1] += DGR * r_hat[1];
f_ji[2] += DGR * r_hat[2];
}
//for rank > 1
for (n = 0; n < nradiali; n++) {
for (l = 0; l <= lmaxi; l++) {
R_over_r = R_cache(jj, n, l) * inv_r_norm;
DR = DR_cache(jj, n, l);
// for m>=0
for (m = 0; m <= l; m++) {
ACEComplex w = weights(mu_j, n, l, m);
if (w == 0)
continue;
//counting for -m cases if m>0
if (m > 0) w *= 2;
DY = DY_cache_jj(l, m);
Y_DR = Y_cache_jj(l, m) * DR;
grad_phi_nlm.a[0] = Y_DR * r_hat[0] + DY.a[0] * R_over_r;
grad_phi_nlm.a[1] = Y_DR * r_hat[1] + DY.a[1] * R_over_r;
grad_phi_nlm.a[2] = Y_DR * r_hat[2] + DY.a[2] * R_over_r;
#ifdef DEBUG_FORCES_CALCULATIONS
printf("d_phi(n=%d, l=%d, m=%d) = ((%f,%f), (%f,%f), (%f,%f))\n",n+1,l,m,
grad_phi_nlm.a[0].real, grad_phi_nlm.a[0].img,
grad_phi_nlm.a[1].real, grad_phi_nlm.a[1].img,
grad_phi_nlm.a[2].real, grad_phi_nlm.a[2].img);
printf("weights(n,l,m)(%d,%d,%d) = (%f,%f)\n", n+1, l, m,w.real, w.img);
//if (m>0) w*=2;
printf("dF(n,l,m)(%d, %d, %d) += (%f, %f, %f)\n", n + 1, l, m,
w.real_part_product(grad_phi_nlm.a[0]),
w.real_part_product(grad_phi_nlm.a[1]),
w.real_part_product(grad_phi_nlm.a[2])
);
#endif
// real-part multiplication only
f_ji[0] += w.real_part_product(grad_phi_nlm.a[0]);
f_ji[1] += w.real_part_product(grad_phi_nlm.a[1]);
f_ji[2] += w.real_part_product(grad_phi_nlm.a[2]);
}
}
}
#ifdef PRINT_INTERMEDIATE_VALUES
printf("f_ji(jj=%d, i=%d)=(%f, %f, %f)\n", jj, i,
f_ji[0], f_ji[1], f_ji[2]
);
#endif
//hard-core repulsion
DCR = DCR_cache(jj);
#ifdef DEBUG_FORCES_CALCULATIONS
printf("DCR = %f\n",DCR);
#endif
f_ji[0] += dF_drho_core * DCR * r_hat[0];
f_ji[1] += dF_drho_core * DCR * r_hat[1];
f_ji[2] += dF_drho_core * DCR * r_hat[2];
#ifdef PRINT_INTERMEDIATE_VALUES
printf("with core-repulsion\n");
printf("f_ji(jj=%d, i=%d)=(%f, %f, %f)\n", jj, i,
f_ji[0], f_ji[1], f_ji[2]
);
printf("neighbour_index_mapping[jj=%d]=%d\n",jj,neighbour_index_mapping[jj]);
#endif
neighbours_forces(neighbour_index_mapping[jj], 0) = f_ji[0];
neighbours_forces(neighbour_index_mapping[jj], 1) = f_ji[1];
neighbours_forces(neighbour_index_mapping[jj], 2) = f_ji[2];
forces_calc_neighbour_timer.stop();
}// end loop over neighbour atoms for forces
forces_calc_loop_timer.stop();
//now, energies and forces are ready
//energies(i) = evdwl + rho_core;
e_atom = evdwl_cut;
#ifdef PRINT_INTERMEDIATE_VALUES
printf("energies(i) = FS(...rho_p_accum...) = %f\n", evdwl);
#endif
per_atom_calc_timer.stop();
}

View File

@ -1,230 +0,0 @@
/*
* Performant implementation of atomic cluster expansion and interface to LAMMPS
*
* Copyright 2021 (c) Yury Lysogorskiy^1, Cas van der Oord^2, Anton Bochkarev^1,
* Sarath Menon^1, Matteo Rinaldi^1, Thomas Hammerschmidt^1, Matous Mrovec^1,
* Aidan Thompson^3, Gabor Csanyi^2, Christoph Ortner^4, Ralf Drautz^1
*
* ^1: Ruhr-University Bochum, Bochum, Germany
* ^2: University of Cambridge, Cambridge, United Kingdom
* ^3: Sandia National Laboratories, Albuquerque, New Mexico, USA
* ^4: University of British Columbia, Vancouver, BC, Canada
*
*
* See the LICENSE file.
* This FILENAME is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
// Created by Yury Lysogorskiy on 31.01.20.
#ifndef ACE_EVALUATOR_H
#define ACE_EVALUATOR_H
#include "ace_abstract_basis.h"
#include "ace_arraynd.h"
#include "ace_array2dlm.h"
#include "ace_c_basis.h"
#include "ace_complex.h"
#include "ace_timing.h"
#include "ace_types.h"
/**
* Basic evaluator class, that should accept the basis set and implement the "compute_atom" method using given basis set.
*/
class ACEEvaluator {
protected:
Array2D<DOUBLE_TYPE> A_rank1 = Array2D<DOUBLE_TYPE>("A_rank1"); ///< 2D-array for storing A's for rank=1, shape: A(mu_j,n)
Array4DLM<ACEComplex> A = Array4DLM<ACEComplex>("A"); ///< 4D array with (l,m) last indices for storing A's for rank>1: A(mu_j, n, l, m)
Array1D<DOUBLE_TYPE> rhos = Array1D<DOUBLE_TYPE>("rhos"); ///< densities \f$ \rho^{(p)} \f$(ndensity), p = 0 .. ndensity-1
Array1D<DOUBLE_TYPE> dF_drho = Array1D<DOUBLE_TYPE>("dF_drho"); ///< derivatives of cluster functional wrt. densities, index = 0 .. ndensity-1
/**
* Initialize internal arrays according to basis set sizes
* @param basis_set
*/
void init(ACEAbstractBasisSet *basis_set);
public:
// set of timers for code profiling
ACETimer loop_over_neighbour_timer; ///< timer for loop over neighbours when constructing A's for single central atom
ACETimer per_atom_calc_timer; ///< timer for single compute_atom call
ACETimer forces_calc_loop_timer; ///< timer for forces calculations for single central atom
ACETimer forces_calc_neighbour_timer; ///< timer for loop over neighbour atoms for force calculations
ACETimer energy_calc_timer; ///< timer for energy calculation
ACETimer total_time_calc_timer; ///< timer for total calculations of all atoms within given atomic environment system
/**
* Initialize all timers
*/
void init_timers();
/**
* Mapping from external atoms types, i.e. LAMMPS, to internal SPECIES_TYPE, used in basis functions
*/
Array1D<int> element_type_mapping = Array1D<int>("element_type_mapping");
DOUBLE_TYPE e_atom = 0; ///< energy of current atom, including core-repulsion
/**
* temporary array for the pair forces between current atom_i and its neighbours atom_k
* neighbours_forces(k,3), k = 0..num_of_neighbours(atom_i)-1
*/
Array2D<DOUBLE_TYPE> neighbours_forces = Array2D<DOUBLE_TYPE>("neighbours_forces");
ACEEvaluator() = default;
virtual ~ACEEvaluator() = default;
/**
* The key method to compute energy and forces for atom 'i'.
* Method will update the "e_atom" variable and "neighbours_forces(jj, alpha)" array
*
* @param i atom index
* @param x atomic positions array of the real and ghost atoms, shape: [atom_ind][3]
* @param type atomic types array of the real and ghost atoms, shape: [atom_ind]
* @param jnum number of neighbours of atom_i
* @param jlist array of neighbour indices, shape: [jnum]
*/
virtual void compute_atom(int i, DOUBLE_TYPE **x, const SPECIES_TYPE *type, const int jnum, const int *jlist) = 0;
/**
* Resize all caches over neighbours atoms
* @param max_jnum maximum number of neighbours
*/
virtual void resize_neighbours_cache(int max_jnum) = 0;
#ifdef EXTRA_C_PROJECTIONS
/**
* 2D array to store projections of basis function for rank = 1, shape: [func_ind][ndensity]
*/
Array2D<DOUBLE_TYPE> basis_projections_rank1 = Array2D<DOUBLE_TYPE>("basis_projections_rank1");
/**
* 2D array to store projections of basis function for rank > 1, shape: [func_ind][ndensity]
*/
Array2D<DOUBLE_TYPE> basis_projections = Array2D<DOUBLE_TYPE>("basis_projections");
#endif
};
//TODO: split into separate file
/**
* Evaluator for C-tilde basis set, that should accept the basis set and implement the "compute_atom" method using given basis set.
*/
class ACECTildeEvaluator : public ACEEvaluator {
/**
* Weights \f$ \omega_{i \mu n 0 0} \f$ for rank = 1, see Eq.(10) from implementation notes,
* 'i' is fixed for the current atom, shape: [nelements][nradbase]
*/
Array2D<DOUBLE_TYPE> weights_rank1 = Array2D<DOUBLE_TYPE>("weights_rank1");
/**
* Weights \f$ \omega_{i \mu n l m} \f$ for rank > 1, see Eq.(10) from implementation notes,
* 'i' is fixed for the current atom, shape: [nelements][nradbase][l=0..lmax, m]
*/
Array4DLM<ACEComplex> weights = Array4DLM<ACEComplex>("weights");
/**
* cache for gradients of \f$ g(r)\f$: grad_phi(jj,n)=A2DLM(l,m)
* shape:[max_jnum][nradbase]
*/
Array2D<DOUBLE_TYPE> DG_cache = Array2D<DOUBLE_TYPE>("DG_cache");
/**
* cache for \f$ R_{nl}(r)\f$
* shape:[max_jnum][nradbase][0..lmax]
*/
Array3D<DOUBLE_TYPE> R_cache = Array3D<DOUBLE_TYPE>("R_cache");
/**
* cache for derivatives of \f$ R_{nl}(r)\f$
* shape:[max_jnum][nradbase][0..lmax]
*/
Array3D<DOUBLE_TYPE> DR_cache = Array3D<DOUBLE_TYPE>("DR_cache");
/**
* cache for \f$ Y_{lm}(\hat{r})\f$
* shape:[max_jnum][0..lmax][m]
*/
Array3DLM<ACEComplex> Y_cache = Array3DLM<ACEComplex>("Y_cache");
/**
* cache for \f$ \nabla Y_{lm}(\hat{r})\f$
* shape:[max_jnum][0..lmax][m]
*/
Array3DLM<ACEDYcomponent> DY_cache = Array3DLM<ACEDYcomponent>("dY_dense_cache");
/**
* cache for derivatives of hard-core repulsion
* shape:[max_jnum]
*/
Array1D<DOUBLE_TYPE> DCR_cache = Array1D<DOUBLE_TYPE>("DCR_cache");
/**
* Partial derivatives \f$ dB_{i \mu n l m t}^{(r)} \f$ with sequential numbering over [func_ind][ms_ind][r],
* shape:[func_ms_r_ind]
*/
Array1D<ACEComplex> dB_flatten = Array1D<ACEComplex>("dB_flatten");
/**
* pointer to the ACEBasisSet object
*/
ACECTildeBasisSet *basis_set = nullptr;
/**
* Initialize internal arrays according to basis set sizes
* @param basis_set
*/
void init(ACECTildeBasisSet *basis_set);
public:
ACECTildeEvaluator() = default;
explicit ACECTildeEvaluator(ACECTildeBasisSet &bas) {
set_basis(bas);
}
/**
* set the basis function to the ACE evaluator
* @param bas
*/
void set_basis(ACECTildeBasisSet &bas);
/**
* The key method to compute energy and forces for atom 'i'.
* Method will update the "e_atom" variable and "neighbours_forces(jj, alpha)" array
*
* @param i atom index
* @param x atomic positions array of the real and ghost atoms, shape: [atom_ind][3]
* @param type atomic types array of the real and ghost atoms, shape: [atom_ind]
* @param jnum number of neighbours of atom_i
* @param jlist array of neighbour indices, shape: [jnum]
*/
void compute_atom(int i, DOUBLE_TYPE **x, const SPECIES_TYPE *type, const int jnum, const int *jlist) override;
/**
* Resize all caches over neighbours atoms
* @param max_jnum maximum number of neighbours
*/
void resize_neighbours_cache(int max_jnum) override;
};
#endif //ACE_EVALUATOR_H

View File

@ -1,130 +0,0 @@
/*
* Performant implementation of atomic cluster expansion and interface to LAMMPS
*
* Copyright 2021 (c) Yury Lysogorskiy^1, Cas van der Oord^2, Anton Bochkarev^1,
* Sarath Menon^1, Matteo Rinaldi^1, Thomas Hammerschmidt^1, Matous Mrovec^1,
* Aidan Thompson^3, Gabor Csanyi^2, Christoph Ortner^4, Ralf Drautz^1
*
* ^1: Ruhr-University Bochum, Bochum, Germany
* ^2: University of Cambridge, Cambridge, United Kingdom
* ^3: Sandia National Laboratories, Albuquerque, New Mexico, USA
* ^4: University of British Columbia, Vancouver, BC, Canada
*
*
* See the LICENSE file.
* This FILENAME is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
// Created by yury on 28.04.2020.
#include "ace_flatten_basis.h"
ACEFlattenBasisSet::ACEFlattenBasisSet(const ACEFlattenBasisSet &other) {
_copy_scalar_memory(other);
_copy_dynamic_memory(other);
}
ACEFlattenBasisSet &ACEFlattenBasisSet::operator=(const ACEFlattenBasisSet &other) {
if (this != &other) {
_clean();
_copy_scalar_memory(other);
_copy_dynamic_memory(other);
}
return *this;
}
ACEFlattenBasisSet::~ACEFlattenBasisSet() {
ACEFlattenBasisSet::_clean();
}
void ACEFlattenBasisSet::_clean() {
//chained call of base class method
ACEAbstractBasisSet::_clean();
_clean_contiguous_arrays();
_clean_basissize_arrays();
}
void ACEFlattenBasisSet::_clean_basissize_arrays() {
delete[] total_basis_size;
total_basis_size = nullptr;
delete[] total_basis_size_rank1;
total_basis_size_rank1 = nullptr;
}
void ACEFlattenBasisSet::_clean_contiguous_arrays() {
delete[] full_ns_rank1;
full_ns_rank1 = nullptr;
delete[] full_ls_rank1;
full_ls_rank1 = nullptr;
delete[] full_mus_rank1;
full_mus_rank1 = nullptr;
delete[] full_ms_rank1;
full_ms_rank1 = nullptr;
//////
delete[] full_ns;
full_ns = nullptr;
delete[] full_ls;
full_ls = nullptr;
delete[] full_mus;
full_mus = nullptr;
delete[] full_ms;
full_ms = nullptr;
}
void ACEFlattenBasisSet::_copy_scalar_memory(const ACEFlattenBasisSet &src) {
ACEAbstractBasisSet::_copy_scalar_memory(src);
rank_array_total_size_rank1 = src.rank_array_total_size_rank1;
coeff_array_total_size_rank1 = src.coeff_array_total_size_rank1;
rank_array_total_size = src.rank_array_total_size;
ms_array_total_size = src.ms_array_total_size;
coeff_array_total_size = src.coeff_array_total_size;
max_B_array_size = src.max_B_array_size;
max_dB_array_size = src.max_dB_array_size;
num_ms_combinations_max = src.num_ms_combinations_max;
}
void ACEFlattenBasisSet::_copy_dynamic_memory(const ACEFlattenBasisSet &src) { //allocate new memory
ACEAbstractBasisSet::_copy_dynamic_memory(src);
if (src.total_basis_size_rank1 == nullptr)
throw runtime_error("Could not copy ACEFlattenBasisSet::total_basis_size_rank1 - array not initialized");
if (src.total_basis_size == nullptr)
throw runtime_error("Could not copy ACEFlattenBasisSet::total_basis_size - array not initialized");
delete[] total_basis_size_rank1;
total_basis_size_rank1 = new SHORT_INT_TYPE[nelements];
delete[] total_basis_size;
total_basis_size = new SHORT_INT_TYPE[nelements];
//copy
for (SPECIES_TYPE mu = 0; mu < nelements; ++mu) {
total_basis_size_rank1[mu] = src.total_basis_size_rank1[mu];
total_basis_size[mu] = src.total_basis_size[mu];
}
}

View File

@ -1,135 +0,0 @@
/*
* Performant implementation of atomic cluster expansion and interface to LAMMPS
*
* Copyright 2021 (c) Yury Lysogorskiy^1, Cas van der Oord^2, Anton Bochkarev^1,
* Sarath Menon^1, Matteo Rinaldi^1, Thomas Hammerschmidt^1, Matous Mrovec^1,
* Aidan Thompson^3, Gabor Csanyi^2, Christoph Ortner^4, Ralf Drautz^1
*
* ^1: Ruhr-University Bochum, Bochum, Germany
* ^2: University of Cambridge, Cambridge, United Kingdom
* ^3: Sandia National Laboratories, Albuquerque, New Mexico, USA
* ^4: University of British Columbia, Vancouver, BC, Canada
*
*
* See the LICENSE file.
* This FILENAME is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
// Created by Lysogroskiy Yury on 28.04.2020.
#ifndef ACE_EVALUATOR_ACE_FLATTEN_BASIS_H
#define ACE_EVALUATOR_ACE_FLATTEN_BASIS_H
#include "ace_abstract_basis.h"
#include "ace_c_basisfunction.h"
#include "ace_radial.h"
#include "ace_spherical_cart.h"
#include "ace_types.h"
/**
* Basis set with basis function attributes, i.e. \f$ \mathbf{n}, \mathbf{l}, \mathbf{m}\f$, etc.
* packed into contiguous arrays for the cache-friendly memory layout.
*/
class ACEFlattenBasisSet : public ACEAbstractBasisSet {
public:
//arrays and its sizes for rank = 1 basis functions for packed basis
size_t rank_array_total_size_rank1 = 0; ///< size for full_ns_rank1, full_ls_rank1, full_Xs_rank1
size_t coeff_array_total_size_rank1 = 0; ///< size for full coefficients array (depends on B or C-Tilde basis)
NS_TYPE *full_ns_rank1 = nullptr; ///< ns contiguous package [rank_array_total_size_rank1]
LS_TYPE *full_ls_rank1 = nullptr; ///< ls contiguous package [rank_array_total_size_rank1]
SPECIES_TYPE *full_mus_rank1 = nullptr; ///< mus contiguous package [rank_array_total_size_rank1]
MS_TYPE *full_ms_rank1 = nullptr; ///< m_s contiguous package[rank_array_total_size_rank1]
//arrays and its sizes for rank > 1 basis functions for packed basis
size_t rank_array_total_size = 0; ///< size for full_ns, full_ls, full_Xs
size_t ms_array_total_size = 0; ///< size for full_ms array
size_t coeff_array_total_size = 0;///< size for full coefficients arrays (depends on B- or C- basis)
NS_TYPE *full_ns = nullptr; ///< ns contiguous package [rank_array_total_size]
LS_TYPE *full_ls = nullptr; ///< ls contiguous package [rank_array_total_size]
SPECIES_TYPE *full_mus = nullptr; ///< mus contiguous package [rank_array_total_size]
MS_TYPE *full_ms = nullptr; ///< //m_s contiguous package [ms_array_total_size]
/**
* Rearrange basis functions in contiguous memory to optimize cache access
*/
virtual void pack_flatten_basis() = 0;
virtual void flatten_basis() = 0;
//1D flat array basis representation: [mu]
SHORT_INT_TYPE *total_basis_size_rank1 = nullptr; ///< per-species type array of total_basis_rank1[mu] sizes
SHORT_INT_TYPE *total_basis_size = nullptr; ///< per-species type array of total_basis[mu] sizes
size_t max_B_array_size = 0; ///< maximum over elements array size for B[func_ind][ms_ind]
size_t max_dB_array_size = 0; ///< maximum over elements array size for dB[func_ind][ms_ind][r]
SHORT_INT_TYPE num_ms_combinations_max = 0; ///< maximum number of ms combinations among all basis functions
/**
* Default constructor
*/
ACEFlattenBasisSet() = default;
/**
* Copy constructor (see Rule of Three)
* @param other
*/
ACEFlattenBasisSet(const ACEFlattenBasisSet &other);
/**
* operator= (see Rule of Three)
* @param other
* @return
*/
ACEFlattenBasisSet &operator=(const ACEFlattenBasisSet &other);
/**
* Destructor (see Rule of Three)
*/
~ACEFlattenBasisSet() override;
// routines for copying and cleaning dynamic memory of the class (see Rule of Three)
/**
* Cleaning dynamic memory of the class (see. Rule of Three),
* must be idempotent for safety
*/
void _clean() override;
/**
* Copying scalar variables
* @param src
*/
void _copy_scalar_memory(const ACEFlattenBasisSet &src);
/**
* Copying and cleaning dynamic memory of the class (see. Rule of Three)
* @param src
*/
void _copy_dynamic_memory(const ACEFlattenBasisSet &src);
/**
* Clean contiguous arrays
*/
virtual void _clean_contiguous_arrays();
/**
* Release dynamic arrays with basis set sizes
*/
void _clean_basissize_arrays();
};
#endif //ACE_EVALUATOR_ACE_FLATTEN_BASIS_H

View File

@ -1,566 +0,0 @@
/*
* Performant implementation of atomic cluster expansion and interface to LAMMPS
*
* Copyright 2021 (c) Yury Lysogorskiy^1, Cas van der Oord^2, Anton Bochkarev^1,
* Sarath Menon^1, Matteo Rinaldi^1, Thomas Hammerschmidt^1, Matous Mrovec^1,
* Aidan Thompson^3, Gabor Csanyi^2, Christoph Ortner^4, Ralf Drautz^1
*
* ^1: Ruhr-University Bochum, Bochum, Germany
* ^2: University of Cambridge, Cambridge, United Kingdom
* ^3: Sandia National Laboratories, Albuquerque, New Mexico, USA
* ^4: University of British Columbia, Vancouver, BC, Canada
*
*
* See the LICENSE file.
* This FILENAME is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <cmath>
#include <functional>
#include <stdexcept>
#include "ace_radial.h"
const DOUBLE_TYPE pi = 3.14159265358979323846264338327950288419; // pi
ACERadialFunctions::ACERadialFunctions(NS_TYPE nradb, LS_TYPE lmax, NS_TYPE nradial, DOUBLE_TYPE deltaSplineBins,
SPECIES_TYPE nelements,
DOUBLE_TYPE cutoff, string radbasename) {
init(nradb, lmax, nradial, deltaSplineBins, nelements, cutoff, radbasename);
}
void ACERadialFunctions::init(NS_TYPE nradb, LS_TYPE lmax, NS_TYPE nradial, DOUBLE_TYPE deltaSplineBins,
SPECIES_TYPE nelements,
DOUBLE_TYPE cutoff, string radbasename) {
this->nradbase = nradb;
this->lmax = lmax;
this->nradial = nradial;
this->deltaSplineBins = deltaSplineBins;
this->nelements = nelements;
this->cutoff = cutoff;
this->radbasename = radbasename;
gr.init(nradbase, "gr");
dgr.init(nradbase, "dgr");
d2gr.init(nradbase, "d2gr");
fr.init(nradial, lmax + 1, "fr");
dfr.init(nradial, lmax + 1, "dfr");
d2fr.init(nradial, lmax + 1, "d2fr");
cheb.init(nradbase + 1, "cheb");
dcheb.init(nradbase + 1, "dcheb");
cheb2.init(nradbase + 1, "cheb2");
splines_gk.init(nelements, nelements, "splines_gk");
splines_rnl.init(nelements, nelements, "splines_rnl");
splines_hc.init(nelements, nelements, "splines_hc");
lambda.init(nelements, nelements, "lambda");
lambda.fill(1.);
cut.init(nelements, nelements, "cut");
cut.fill(1.);
dcut.init(nelements, nelements, "dcut");
dcut.fill(1.);
crad.init(nelements, nelements, nradial, (lmax + 1), nradbase, "crad");
crad.fill(0.);
//hard-core repulsion
prehc.init(nelements, nelements, "prehc");
prehc.fill(0.);
lambdahc.init(nelements, nelements, "lambdahc");
lambdahc.fill(1.);
}
/**
Function that computes Chebyshev polynomials of first and second kind
to setup the radial functions and the derivatives
@param n, x
@returns cheb1, dcheb1
*/
void ACERadialFunctions::calcCheb(NS_TYPE n, DOUBLE_TYPE x) {
if (n < 0) {
char s[1024];
sprintf(s, "The order n of the polynomials should be positive %d\n", n);
throw std::invalid_argument(s);
}
DOUBLE_TYPE twox = 2.0 * x;
cheb(0) = 1.;
dcheb(0) = 0.;
cheb2(0) = 1.;
if (nradbase > 1) {
cheb(1) = x;
cheb2(1) = twox;
}
for (NS_TYPE m = 1; m <= n - 1; m++) {
cheb(m + 1) = twox * cheb(m) - cheb(m - 1);
cheb2(m + 1) = twox * cheb2(m) - cheb2(m - 1);
}
for (NS_TYPE m = 1; m <= n; m++) {
dcheb(m) = m * cheb2(m - 1);
}
#ifdef DEBUG_RADIAL
for ( NS_TYPE m=0; m<=n; m++ ) {
printf(" m %d cheb %f dcheb %f \n", m, cheb(m), dcheb(m));
}
#endif
}
/**
Function that computes radial basis.
@param lam, nradbase, cut, dcut, r
@returns gr, dgr
*/
void ACERadialFunctions::radbase(DOUBLE_TYPE lam, DOUBLE_TYPE cut, DOUBLE_TYPE dcut, DOUBLE_TYPE r) {
/*lam is given by the formula (24), that contains cut */
if (r < cut) {
if (radbasename == "ChebExpCos") {
chebExpCos(lam, cut, dcut, r);
} else if (radbasename == "ChebPow") {
chebPow(lam, cut, dcut, r);
} else if (radbasename == "ChebLinear") {
chebLinear(lam, cut, dcut, r);
} else {
throw invalid_argument("Unknown radial basis function name: " + radbasename);
}
} else {
gr.fill(0);
dgr.fill(0);
}
}
/***
* Radial function: ChebExpCos, cheb exp scaling including cos envelope
* @param lam function parameter
* @param cut cutoff distance
* @param r function input argument
* @return fills in gr and dgr arrays
*/
void
ACERadialFunctions::chebExpCos(DOUBLE_TYPE lam, DOUBLE_TYPE cut, DOUBLE_TYPE dcut, DOUBLE_TYPE r) {
DOUBLE_TYPE y2, y1, x, dx;
DOUBLE_TYPE env, denv, fcut, dfcut;
/* scaled distance x and derivative*/
y1 = exp(-lam * r / cut);
y2 = exp(-lam);
x = 1.0 - 2.0 * ((y1 - y2) / (1 - y2));
dx = 2 * (lam / cut) * (y1 / (1 - y2));
/* calculation of Chebyshev polynomials from the recursion */
calcCheb(nradbase - 1, x);
gr(0) = cheb(0);
dgr(0) = dcheb(0) * dx;
for (NS_TYPE n = 2; n <= nradbase; n++) {
gr(n - 1) = 0.5 - 0.5 * cheb(n - 1);
dgr(n - 1) = -0.5 * dcheb(n - 1) * dx;
}
env = 0.5 * (1.0 + cos(M_PI * r / cut));
denv = -0.5 * sin(M_PI * r / cut) * M_PI / cut;
for (NS_TYPE n = 0; n < nradbase; n++) {
dgr(n) = gr(n) * denv + dgr(n) * env;
gr(n) = gr(n) * env;
}
// for radtype = 3 a smooth cut is already included in the basis function
dx = cut - dcut;
if (r > dx) {
fcut = 0.5 * (1.0 + cos(M_PI * (r - dx) / dcut));
dfcut = -0.5 * sin(M_PI * (r - dx) / dcut) * M_PI / dcut;
for (NS_TYPE n = 0; n < nradbase; n++) {
dgr(n) = gr(n) * dfcut + dgr(n) * fcut;
gr(n) = gr(n) * fcut;
}
}
}
/***
* Radial function: ChebPow, Radial function: ChebPow
* - argument of Chebyshev polynomials
* x = 2.0*( 1.0 - (1.0 - r/rcut)^lam ) - 1.0
* - radial function
* gr(n) = ( 1.0 - Cheb(n) )/2.0, n = 1,...,nradbase
* - the function fulfills:
* gr(n) = 0 at rcut
* dgr(n) = 0 at rcut for lam >= 1
* second derivative zero at rcut for lam >= 2
* -> the radial function does not require a separate cutoff function
* - corresponds to radial basis radtype=5 in Fortran code
*
* @param lam function parameter
* @param cut cutoff distance
* @param r function input argument
* @return fills in gr and dgr arrays
*/
void
ACERadialFunctions::chebPow(DOUBLE_TYPE lam, DOUBLE_TYPE cut, DOUBLE_TYPE dcut, DOUBLE_TYPE r) {
DOUBLE_TYPE y, dy, x, dx;
/* scaled distance x and derivative*/
y = (1.0 - r / cut);
dy = pow(y, (lam - 1.0));
y = dy * y;
dy = -lam / cut * dy;
x = 2.0 * (1.0 - y) - 1.0;
dx = -2.0 * dy;
calcCheb(nradbase, x);
for (NS_TYPE n = 1; n <= nradbase; n++) {
gr(n - 1) = 0.5 - 0.5 * cheb(n);
dgr(n - 1) = -0.5 * dcheb(n) * dx;
}
}
void
ACERadialFunctions::chebLinear(DOUBLE_TYPE lam, DOUBLE_TYPE cut, DOUBLE_TYPE dcut, DOUBLE_TYPE r) {
DOUBLE_TYPE x, dx;
/* scaled distance x and derivative*/
x = (1.0 - r / cut);
dx = -1 / cut;
calcCheb(nradbase, x);
for (NS_TYPE n = 1; n <= nradbase; n++) {
gr(n - 1) = 0.5 - 0.5 * cheb(n);
dgr(n - 1) = -0.5 * dcheb(n) * dx;
}
}
/**
Function that computes radial functions.
@param nradbase, nelements, elei, elej
@returns fr, dfr
*/
void ACERadialFunctions::radfunc(SPECIES_TYPE elei, SPECIES_TYPE elej) {
DOUBLE_TYPE frval, dfrval;
for (NS_TYPE n = 0; n < nradial; n++) {
for (LS_TYPE l = 0; l <= lmax; l++) {
frval = 0.0;
dfrval = 0.0;
for (NS_TYPE k = 0; k < nradbase; k++) {
frval += crad(elei, elej, n, l, k) * gr(k);
dfrval += crad(elei, elej, n, l, k) * dgr(k);
}
fr(n, l) = frval;
dfr(n, l) = dfrval;
}
}
}
void ACERadialFunctions::all_radfunc(SPECIES_TYPE mu_i, SPECIES_TYPE mu_j, DOUBLE_TYPE r) {
DOUBLE_TYPE lam = lambda(mu_i, mu_j);
DOUBLE_TYPE r_cut = cut(mu_i, mu_j);
DOUBLE_TYPE dr_cut = dcut(mu_i, mu_j);
// set up radial functions
radbase(lam, r_cut, dr_cut, r); //update gr, dgr
radfunc(mu_i, mu_j); // update fr(nr, l), dfr(nr, l)
}
void ACERadialFunctions::setuplookupRadspline() {
using namespace std::placeholders;
DOUBLE_TYPE lam, r_cut, dr_cut;
DOUBLE_TYPE cr_c, dcr_c, pre, lamhc;
// at r = rcut + eps the function and its derivatives is zero
for (SPECIES_TYPE elei = 0; elei < nelements; elei++) {
for (SPECIES_TYPE elej = 0; elej < nelements; elej++) {
lam = lambda(elei, elej);
r_cut = cut(elei, elej);
dr_cut = dcut(elei, elej);
splines_gk(elei, elej).setupSplines(gr.get_size(),
std::bind(&ACERadialFunctions::radbase, this, lam, r_cut, dr_cut,
_1),//update gr, dgr
gr.get_data(),
dgr.get_data(), deltaSplineBins, cutoff);
splines_rnl(elei, elej).setupSplines(fr.get_size(),
std::bind(&ACERadialFunctions::all_radfunc, this, elei, elej,
_1), // update fr(nr, l), dfr(nr, l)
fr.get_data(),
dfr.get_data(), deltaSplineBins, cutoff);
pre = prehc(elei, elej);
lamhc = lambdahc(elei, elej);
// radcore(r, pre, lamhc, cutoff, cr_c, dcr_c);
splines_hc(elei, elej).setupSplines(1,
std::bind(&ACERadialFunctions::radcore, _1, pre, lamhc, cutoff,
std::ref(cr_c), std::ref(dcr_c)),
&cr_c,
&dcr_c, deltaSplineBins, cutoff);
}
}
}
/**
Function that gets radial function from look-up table using splines.
@param r, nradbase_c, nradial_c, lmax, mu_i, mu_j
@returns fr, dfr, gr, dgr, cr, dcr
*/
void
ACERadialFunctions::evaluate(DOUBLE_TYPE r, NS_TYPE nradbase_c, NS_TYPE nradial_c, SPECIES_TYPE mu_i,
SPECIES_TYPE mu_j, bool calc_second_derivatives) {
auto &spline_gk = splines_gk(mu_i, mu_j);
auto &spline_rnl = splines_rnl(mu_i, mu_j);
auto &spline_hc = splines_hc(mu_i, mu_j);
spline_gk.calcSplines(r, calc_second_derivatives); // populate splines_gk.values, splines_gk.derivatives;
for (NS_TYPE nr = 0; nr < nradbase_c; nr++) {
gr(nr) = spline_gk.values(nr);
dgr(nr) = spline_gk.derivatives(nr);
if (calc_second_derivatives)
d2gr(nr) = spline_gk.second_derivatives(nr);
}
spline_rnl.calcSplines(r, calc_second_derivatives);
for (size_t ind = 0; ind < fr.get_size(); ind++) {
fr.get_data(ind) = spline_rnl.values.get_data(ind);
dfr.get_data(ind) = spline_rnl.derivatives.get_data(ind);
if (calc_second_derivatives)
d2fr.get_data(ind) = spline_rnl.second_derivatives.get_data(ind);
}
spline_hc.calcSplines(r, calc_second_derivatives);
cr = spline_hc.values(0);
dcr = spline_hc.derivatives(0);
if (calc_second_derivatives)
d2cr = spline_hc.second_derivatives(0);
}
void
ACERadialFunctions::radcore(DOUBLE_TYPE r, DOUBLE_TYPE pre, DOUBLE_TYPE lambda, DOUBLE_TYPE cutoff, DOUBLE_TYPE &cr,
DOUBLE_TYPE &dcr) {
/* pseudocode for hard core repulsion
in:
r: distance
pre: prefactor: read from input, depends on pair of atoms mu_i mu_j
lambda: exponent: read from input, depends on pair of atoms mu_i mu_j
cutoff: cutoff distance: read from input, depends on pair of atoms mu_i mu_j
out:
cr: hard core repulsion
dcr: derivative of hard core repulsion
function
\$f f_{core} = pre \exp( - \lambda r^2 ) / r \$f
*/
DOUBLE_TYPE r2, lr2, y, x0, env, denv;
// repulsion strictly positive and decaying
pre = abs(pre);
lambda = abs(lambda);
r2 = r * r;
lr2 = lambda * r2;
if (lr2 < 50.0) {
y = exp(-lr2);
cr = pre * y / r;
dcr = -pre * y * (2.0 * lr2 + 1.0) / r2;
x0 = r / cutoff;
env = 0.5 * (1.0 + cos(pi * x0));
denv = -0.5 * sin(pi * x0) * pi / cutoff;
dcr = cr * denv + dcr * env;
cr = cr * env;
} else {
cr = 0.0;
dcr = 0.0;
}
}
void
ACERadialFunctions::evaluate_range(vector<DOUBLE_TYPE> r_vec, NS_TYPE nradbase_c, NS_TYPE nradial_c, SPECIES_TYPE mu_i,
SPECIES_TYPE mu_j) {
if (nradbase_c > nradbase)
throw invalid_argument("nradbase_c couldn't be larger than nradbase");
if (nradial_c > nradial)
throw invalid_argument("nradial_c couldn't be larger than nradial");
if (mu_i > nelements)
throw invalid_argument("mu_i couldn't be larger than nelements");
if (mu_j > nelements)
throw invalid_argument("mu_j couldn't be larger than nelements");
gr_vec.resize(r_vec.size(), nradbase_c);
dgr_vec.resize(r_vec.size(), nradbase_c);
d2gr_vec.resize(r_vec.size(), nradbase_c);
fr_vec.resize(r_vec.size(), fr.get_dim(0), fr.get_dim(1));
dfr_vec.resize(r_vec.size(), fr.get_dim(0), fr.get_dim(1));
d2fr_vec.resize(r_vec.size(), fr.get_dim(0), fr.get_dim(1));
for (size_t i = 0; i < r_vec.size(); i++) {
DOUBLE_TYPE r = r_vec[i];
this->evaluate(r, nradbase_c, nradial_c, mu_i, mu_j, true);
for (NS_TYPE nr = 0; nr < nradbase_c; nr++) {
gr_vec(i, nr) = gr(nr);
dgr_vec(i, nr) = dgr(nr);
d2gr_vec(i, nr) = d2gr(nr);
}
for (NS_TYPE nr = 0; nr < nradial_c; nr++) {
for (LS_TYPE l = 0; l <= lmax; l++) {
fr_vec(i, nr, l) = fr(nr, l);
dfr_vec(i, nr, l) = dfr(nr, l);
d2fr_vec(i, nr, l) = d2fr(nr, l);
}
}
}
}
void SplineInterpolator::setupSplines(int num_of_functions, RadialFunctions func,
DOUBLE_TYPE *values,
DOUBLE_TYPE *dvalues, DOUBLE_TYPE deltaSplineBins, DOUBLE_TYPE cutoff) {
this->deltaSplineBins = deltaSplineBins;
this->cutoff = cutoff;
this->ntot = static_cast<int>(cutoff / deltaSplineBins);
DOUBLE_TYPE r, c[4];
this->num_of_functions = num_of_functions;
this->values.resize(num_of_functions);
this->derivatives.resize(num_of_functions);
this->second_derivatives.resize(num_of_functions);
Array1D<DOUBLE_TYPE> f1g(num_of_functions);
Array1D<DOUBLE_TYPE> f1gd1(num_of_functions);
f1g.fill(0);
f1gd1.fill(0);
nlut = ntot;
DOUBLE_TYPE f0, f1, f0d1, f1d1;
int idx;
// cutoff is global cutoff
rscalelookup = (DOUBLE_TYPE) nlut / cutoff;
invrscalelookup = 1.0 / rscalelookup;
lookupTable.init(ntot + 1, num_of_functions, 4);
if (values == nullptr & num_of_functions > 0)
throw invalid_argument("SplineInterpolator::setupSplines: values could not be null");
if (dvalues == nullptr & num_of_functions > 0)
throw invalid_argument("SplineInterpolator::setupSplines: dvalues could not be null");
for (int n = nlut; n >= 1; n--) {
r = invrscalelookup * DOUBLE_TYPE(n);
func(r); //populate values and dvalues arrays
for (int func_id = 0; func_id < num_of_functions; func_id++) {
f0 = values[func_id];
f1 = f1g(func_id);
f0d1 = dvalues[func_id] * invrscalelookup;
f1d1 = f1gd1(func_id);
// evaluate coefficients
c[0] = f0;
c[1] = f0d1;
c[2] = 3.0 * (f1 - f0) - f1d1 - 2.0 * f0d1;
c[3] = -2.0 * (f1 - f0) + f1d1 + f0d1;
// store coefficients
for (idx = 0; idx <= 3; idx++)
lookupTable(n, func_id, idx) = c[idx];
// evaluate function values and derivatives at current position
f1g(func_id) = c[0];
f1gd1(func_id) = c[1];
}
}
}
void SplineInterpolator::calcSplines(DOUBLE_TYPE r, bool calc_second_derivatives) {
DOUBLE_TYPE wl, wl2, wl3, w2l1, w3l2, w4l2;
DOUBLE_TYPE c[4];
int func_id, idx;
DOUBLE_TYPE x = r * rscalelookup;
int nl = static_cast<int>(floor(x));
if (nl <= 0)
throw std::invalid_argument("Encountered very small distance. Stopping.");
if (nl < nlut) {
wl = x - DOUBLE_TYPE(nl);
wl2 = wl * wl;
wl3 = wl2 * wl;
w2l1 = 2.0 * wl;
w3l2 = 3.0 * wl2;
w4l2 = 6.0 * wl;
for (func_id = 0; func_id < num_of_functions; func_id++) {
for (idx = 0; idx <= 3; idx++) {
c[idx] = lookupTable(nl, func_id, idx);
}
values(func_id) = c[0] + c[1] * wl + c[2] * wl2 + c[3] * wl3;
derivatives(func_id) = (c[1] + c[2] * w2l1 + c[3] * w3l2) * rscalelookup;
if (calc_second_derivatives)
second_derivatives(func_id) = (c[2] + c[3] * w4l2) * rscalelookup * rscalelookup * 2;
}
} else { // fill with zeroes
values.fill(0);
derivatives.fill(0);
if (calc_second_derivatives)
second_derivatives.fill(0);
}
}
void SplineInterpolator::calcSplines(DOUBLE_TYPE r, SHORT_INT_TYPE func_ind) {
DOUBLE_TYPE wl, wl2, wl3, w2l1, w3l2;
DOUBLE_TYPE c[4];
int idx;
DOUBLE_TYPE x = r * rscalelookup;
int nl = static_cast<int>(floor(x));
if (nl <= 0)
throw std::invalid_argument("Encountered very small distance. Stopping.");
if (nl < nlut) {
wl = x - DOUBLE_TYPE(nl);
wl2 = wl * wl;
wl3 = wl2 * wl;
w2l1 = 2.0 * wl;
w3l2 = 3.0 * wl2;
for (idx = 0; idx <= 3; idx++) {
c[idx] = lookupTable(nl, func_ind, idx);
}
values(func_ind) = c[0] + c[1] * wl + c[2] * wl2 + c[3] * wl3;
derivatives(func_ind) = (c[1] + c[2] * w2l1 + c[3] * w3l2) * rscalelookup;
} else { // fill with zeroes
values(func_ind) = 0;
derivatives(func_ind) = 0;
}
}

View File

@ -1,324 +0,0 @@
/*
* Performant implementation of atomic cluster expansion and interface to LAMMPS
*
* Copyright 2021 (c) Yury Lysogorskiy^1, Cas van der Oord^2, Anton Bochkarev^1,
* Sarath Menon^1, Matteo Rinaldi^1, Thomas Hammerschmidt^1, Matous Mrovec^1,
* Aidan Thompson^3, Gabor Csanyi^2, Christoph Ortner^4, Ralf Drautz^1
*
* ^1: Ruhr-University Bochum, Bochum, Germany
* ^2: University of Cambridge, Cambridge, United Kingdom
* ^3: Sandia National Laboratories, Albuquerque, New Mexico, USA
* ^4: University of British Columbia, Vancouver, BC, Canada
*
*
* See the LICENSE file.
* This FILENAME is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef ACE_RADIAL_FUNCTIONS_H
#define ACE_RADIAL_FUNCTIONS_H
#include "ace_arraynd.h"
#include "ace_types.h"
#include <functional>
using namespace std;
//typedef void (*RadialFunctions)(DOUBLE_TYPE x);
typedef std::function<void(DOUBLE_TYPE)> RadialFunctions;
/**
* Class that implement spline interpolation and caching for radial functions
*/
class SplineInterpolator {
public:
DOUBLE_TYPE cutoff = 0; ///< cutoff
DOUBLE_TYPE deltaSplineBins = 0.001;
int ntot = 10000; ///< Number of bins for look-up tables.
int nlut = 10000; ///< number of nodes in look-up table
DOUBLE_TYPE invrscalelookup = 1; ///< inverse of conversion coefficient from distance to lookup table within cutoff range
DOUBLE_TYPE rscalelookup = 1; ///< conversion coefficient from distance to lookup table within cutoff range
int num_of_functions = 0;///< number of functions to spline-interpolation
Array1D<DOUBLE_TYPE> values;// = Array1D<DOUBLE_TYPE>("values"); ///< shape: [func_ind]
Array1D<DOUBLE_TYPE> derivatives;// = Array1D<DOUBLE_TYPE>("derivatives");///< shape: [func_ind]
Array1D<DOUBLE_TYPE> second_derivatives;// = Array1D<DOUBLE_TYPE>("second_derivatives");///< shape: [func_ind]
Array3D<DOUBLE_TYPE> lookupTable = Array3D<DOUBLE_TYPE>("lookupTable");///< shape: [ntot+1][func_ind][4]
/**
* Setup splines
*
* @param num_of_functions number of functions
* @param func subroutine, that update `values` and `dvalues` arrays
* @param values values
* @param dvalues derivatives
*/
void setupSplines(int num_of_functions, RadialFunctions func,
DOUBLE_TYPE *values,
DOUBLE_TYPE *dvalues, DOUBLE_TYPE deltaSplineBins, DOUBLE_TYPE cutoff);
/**
* Populate `values` and `derivatives` arrays with a spline-interpolation for
* all functions
*
* @param r
*
* @return: populate 'values' and 'derivatives'
*/
void calcSplines(DOUBLE_TYPE r, bool calc_second_derivatives = false);
/**
* Populate `values` and `derivatives` arrays with a spline-interpolation for
* all functions
*
* @param r
*
* @return: populate 'values' and 'derivatives'
*/
void calcSplines(DOUBLE_TYPE r, SHORT_INT_TYPE func_ind);
};
/**
* Interface class for radial basis functions with rank=1 (g_k), R_nl (rank>1) and hard-core repulsion radial functions
*/
class AbstractRadialBasis {
public:
SPECIES_TYPE nelements = 0; ///< number of elements
Array2D<DOUBLE_TYPE> cut = Array2D<DOUBLE_TYPE>("cut"); ///< cutoffs, shape: [nelements][nelements]
Array2D<DOUBLE_TYPE> dcut = Array2D<DOUBLE_TYPE>("dcut"); ///< decay of cutoff, shape: [nelements][nelements]
DOUBLE_TYPE cutoff = 0; ///< cutoff
// int ntot = 10000; ///< Number of bins for look-up tables.
DOUBLE_TYPE deltaSplineBins;
LS_TYPE lmax = 0; ///< maximum value of `l`
NS_TYPE nradial = 0; ///< maximum number `n` of radial functions \f$ R_{nl}(r) \f$
NS_TYPE nradbase = 0; ///< number of radial basis functions \f$ g_k(r) \f$
// Arrays for look-up tables.
Array2D<SplineInterpolator> splines_gk; ///< array of spline interpolator to store g_k, shape: [nelements][nelements]
Array2D<SplineInterpolator> splines_rnl; ///< array of spline interpolator to store R_nl, shape: [nelements][nelements]
Array2D<SplineInterpolator> splines_hc; ///< array of spline interpolator to store R_nl shape: [nelements][nelements]
//--------------------------------------------------------------------------
string radbasename = "ChebExpCos"; ///< type of radial basis functions \f$ g_{k}(r) \f$ (default="ChebExpCos")
/**
Arrays to store radial functions.
*/
Array1D<DOUBLE_TYPE> gr = Array1D<DOUBLE_TYPE>("gr"); ///< g_k(r) functions, shape: [nradbase]
Array1D<DOUBLE_TYPE> dgr = Array1D<DOUBLE_TYPE>("dgr"); ///< derivatives of g_k(r) functions, shape: [nradbase]
Array1D<DOUBLE_TYPE> d2gr = Array1D<DOUBLE_TYPE>("d2gr"); ///< derivatives of g_k(r) functions, shape: [nradbase]
Array2D<DOUBLE_TYPE> fr = Array2D<DOUBLE_TYPE>("fr"); ///< R_nl(r) functions, shape: [nradial][lmax+1]
Array2D<DOUBLE_TYPE> dfr = Array2D<DOUBLE_TYPE>(
"dfr"); ///< derivatives of R_nl(r) functions, shape: [nradial][lmax+1]
Array2D<DOUBLE_TYPE> d2fr = Array2D<DOUBLE_TYPE>(
"d2fr"); ///< derivatives of R_nl(r) functions, shape: [nradial][lmax+1]
DOUBLE_TYPE cr; ///< hard-core repulsion
DOUBLE_TYPE dcr; ///< derivative of hard-core repulsion
DOUBLE_TYPE d2cr; ///< derivative of hard-core repulsion
Array5D<DOUBLE_TYPE> crad = Array5D<DOUBLE_TYPE>(
"crad"); ///< expansion coefficients of radial functions into radial basis function, see Eq. (27) of PRB, shape: [nelements][nelements][lmax + 1][nradial][nradbase]
Array2D<DOUBLE_TYPE> lambda = Array2D<DOUBLE_TYPE>(
"lambda"); ///< distance scaling parameter Eq.(24) of PRB, shape: [nelements][nelements]
Array2D<DOUBLE_TYPE> prehc = Array2D<DOUBLE_TYPE>(
"prehc"); ///< hard-core repulsion coefficients (prefactor), shape: [nelements][nelements]
Array2D<DOUBLE_TYPE> lambdahc = Array2D<DOUBLE_TYPE>(
"lambdahc");; ///< hard-core repulsion coefficients (lambdahc), shape: [nelements][nelements]
virtual void
evaluate(DOUBLE_TYPE r, NS_TYPE nradbase_c, NS_TYPE nradial_c, SPECIES_TYPE mu_i, SPECIES_TYPE mu_j,
bool calc_second_derivatives = false) = 0;
virtual void
init(NS_TYPE nradb, LS_TYPE lmax, NS_TYPE nradial, DOUBLE_TYPE deltaSplineBins, SPECIES_TYPE nelements,
DOUBLE_TYPE cutoff,
string radbasename = "ChebExpCos") = 0;
/**
* Function that sets up the look-up tables for spline-representation of radial functions.
*/
virtual void setuplookupRadspline() = 0;
virtual AbstractRadialBasis *clone() const = 0;
virtual ~AbstractRadialBasis() = default;
};
/**
Class to store radial functions and their associated functions. \n
*/
class ACERadialFunctions final : public AbstractRadialBasis {
public:
//--------------------------------------------------------------------------
/**
Arrays to store Chebyshev polynomials.
*/
Array1D<DOUBLE_TYPE> cheb = Array1D<DOUBLE_TYPE>(
"cheb"); ///< Chebyshev polynomials of the first kind, shape: [nradbase+1]
Array1D<DOUBLE_TYPE> dcheb = Array1D<DOUBLE_TYPE>(
"dcheb"); ///< derivatives Chebyshev polynomials of the first kind, shape: [nradbase+1]
Array1D<DOUBLE_TYPE> cheb2 = Array1D<DOUBLE_TYPE>(
"cheb2"); ///< Chebyshev polynomials of the second kind, shape: [nradbase+1]
//--------------------------------------------------------------------------
Array2D<DOUBLE_TYPE> gr_vec;
Array2D<DOUBLE_TYPE> dgr_vec;
Array2D<DOUBLE_TYPE> d2gr_vec;
Array3D<DOUBLE_TYPE> fr_vec;
Array3D<DOUBLE_TYPE> dfr_vec;
Array3D<DOUBLE_TYPE> d2fr_vec;
//------------------------------------------------------------------------
/**
* Default constructor
*/
ACERadialFunctions() = default;
/**
* Parametrized constructor
*
* @param nradb number of radial basis function \f$ g_k(r) \f$ - nradbase
* @param lmax maximum orbital moment - lmax
* @param nradial maximum n-index of radial functions \f$ R_{nl}(r) \f$ - nradial
* @param ntot Number of bins for spline look-up tables.
* @param nelements numer of elements
* @param cutoff cutoff
* @param radbasename type of radial basis function \f$ g_k(r) \f$ (default: "ChebExpCos")
*/
ACERadialFunctions(NS_TYPE nradb, LS_TYPE lmax, NS_TYPE nradial, DOUBLE_TYPE deltaSplineBins,
SPECIES_TYPE nelements,
DOUBLE_TYPE cutoff, string radbasename = "ChebExpCos");
/**
* Initialize arrays for given parameters
*
* @param nradb number of radial basis function \f$ g_k(r) \f$ - nradbase
* @param lmax maximum orbital moment - lmax
* @param nradial maximum n-index of radial functions \f$ R_{nl}(r) \f$ - nradial
* @param ntot Number of bins for spline look-up tables.
* @param nelements numer of elements
* @param cutoff cutoff
* @param radbasename type of radial basis function \f$ g_k(r) \f$ (default: "ChebExpCos")
*/
void init(NS_TYPE nradb, LS_TYPE lmax, NS_TYPE nradial, DOUBLE_TYPE deltaSplineBins, SPECIES_TYPE nelements,
DOUBLE_TYPE cutoff,
string radbasename = "ChebExpCos") final;
/**
* Destructor
*/
~ACERadialFunctions() final = default;
/**
* Function that computes Chebyshev polynomials of first and second kind
* to setup the radial functions and the derivatives
*
* @param n maximum polynom order
* @param x
*
* @returns fills cheb, dcheb and cheb2 arrays
*/
void calcCheb(NS_TYPE n, DOUBLE_TYPE x);
/**
* Function that computes radial basis functions \$f g_k(r) \$f, see Eq.(21) of PRB paper
* @param lam \$f \lambda \$f parameter, see eq. (24) of PRB paper
* @param cut cutoff
* @param dcut cutoff decay
* @param r distance
*
* @return function fills gr and dgr arrays
*/
void radbase(DOUBLE_TYPE lam, DOUBLE_TYPE cut, DOUBLE_TYPE dcut, DOUBLE_TYPE r);
/**
* Function that computes radial core repulsion \$f f_{core} = pre \exp( - \lambda r^2 ) / r \$f,
* and its derivative, see Eq.(27) of implementation notes.
*
* @param r distance
* @param pre prefactor: read from input, depends on pair of atoms mu_i mu_j
* @param lambda exponent: read from input, depends on pair of atoms mu_i mu_j
* @param cutoff cutoff distance: read from input, depends on pair of atoms mu_i mu_j
* @param cr (out) hard core repulsion
* @param dcr (out) derivative of hard core repulsion
*/
static void radcore(DOUBLE_TYPE r, DOUBLE_TYPE pre, DOUBLE_TYPE lambda, DOUBLE_TYPE cutoff, DOUBLE_TYPE &cr,
DOUBLE_TYPE &dcr);
/**
* Function that sets up the look-up tables for spline-representation of radial functions.
*/
void setuplookupRadspline() final;
/**
* Function that computes radial functions \f$ R_{nl}(r)\f$ (see Eq. 27 from PRB paper)
* and its derivatives for all range of n,l,
* ONLY if radial basis functions (gr and dgr) are computed.
* @param elei first species type
* @param elej second species type
*
* @return fills in fr, dfr arrays
*/
void radfunc(SPECIES_TYPE elei, SPECIES_TYPE elej);
/**
* Compute all radial functions R_nl(r), radial basis functions g_k(r) and hard-core repulsion function hc(r)
*
* @param r distance
* @param nradbase_c
* @param nradial_c
* @param mu_i
* @param mu_j
*
* @return update gr(k), dgr(k), fr(n,l), dfr(n,l), cr, dcr
*/
void evaluate(DOUBLE_TYPE r, NS_TYPE nradbase_c, NS_TYPE nradial_c, SPECIES_TYPE mu_i, SPECIES_TYPE mu_j,
bool calc_second_derivatives = false) final;
void
evaluate_range(vector<DOUBLE_TYPE> r_vec, NS_TYPE nradbase_c, NS_TYPE nradial_c, SPECIES_TYPE mu_i,
SPECIES_TYPE mu_j);
void chebExpCos(DOUBLE_TYPE lam, DOUBLE_TYPE cut, DOUBLE_TYPE dcut, DOUBLE_TYPE r);
void chebPow(DOUBLE_TYPE lam, DOUBLE_TYPE cut, DOUBLE_TYPE dcut, DOUBLE_TYPE r);
void chebLinear(DOUBLE_TYPE lam, DOUBLE_TYPE cut, DOUBLE_TYPE dcut, DOUBLE_TYPE r);
/**
* Setup all radial functions for element pair mu_i-mu_j and distance r
* @param mu_i first specie type
* @param mu_j second specie type
* @param r distance
* @return update fr(nr, l), dfr(nr, l)
*/
void all_radfunc(SPECIES_TYPE mu_i, SPECIES_TYPE mu_j, DOUBLE_TYPE r);
ACERadialFunctions *clone() const override {
return new ACERadialFunctions(*this);
};
};
#endif

File diff suppressed because it is too large Load Diff

View File

@ -1,247 +0,0 @@
/*
* Performant implementation of atomic cluster expansion and interface to LAMMPS
*
* Copyright 2021 (c) Yury Lysogorskiy^1, Cas van der Oord^2, Anton Bochkarev^1,
* Sarath Menon^1, Matteo Rinaldi^1, Thomas Hammerschmidt^1, Matous Mrovec^1,
* Aidan Thompson^3, Gabor Csanyi^2, Christoph Ortner^4, Ralf Drautz^1
*
* ^1: Ruhr-University Bochum, Bochum, Germany
* ^2: University of Cambridge, Cambridge, United Kingdom
* ^3: Sandia National Laboratories, Albuquerque, New Mexico, USA
* ^4: University of British Columbia, Vancouver, BC, Canada
*
*
* See the LICENSE file.
* This FILENAME is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
// Created by Christoph Ortner on 20.12.2020
#ifndef ACE_RECURSIVE_H
#define ACE_RECURSIVE_H
#include "ace_abstract_basis.h"
#include "ace_arraynd.h"
#include "ace_array2dlm.h"
#include "ace_c_basis.h"
#include "ace_complex.h"
#include "ace_timing.h"
#include "ace_types.h"
#include "ace_evaluator.h"
#include <list>
#include <utility>
#include <algorithm>
#include <map>
#include <vector>
using namespace std;
typedef pair<vector<int>, vector<int> > TPARTITION;
typedef list<TPARTITION> TPARTITIONS;
typedef map<vector<int>, int> TDAGMAP;
class ACEDAG {
TPARTITIONS find_2partitions(vector<int> v);
void insert_node(TDAGMAP &dagmap,
vector<int> node,
vector<DOUBLE_TYPE> c);
// the following fields are used only for *construction*, not evaluation
int dag_idx; // current index of dag node
Array2D<int> nodes_pre; //TODO: YL: better to use vector<>
Array2D<DOUBLE_TYPE> coeffs_pre; //TODO: YL: better to use vector<>
Array1D<bool> haschild; //TODO: YL: better to use vector<>
/* which heuristic to choose for DAG construction?
* 0 : the simple original heuristic
* 1 : prioritize 2-correlation nodes and build the rest from those
*/
int heuristic = 0;
public:
ACEDAG() = default;
void init(Array2D<int> Aspec, Array2D<int> AAspec,
Array1D<int> orders, Array2D<DOUBLE_TYPE> coeffs,
int heuristic );
Array1D<ACEComplex> AAbuf;
Array1D<ACEComplex> w;
Array2D<int> Aspec;
// nodes in the graph
Array2D<int> nodes;
Array2D<DOUBLE_TYPE> coeffs;
// total number of nodes in the dag
int num_nodes;
// number of interior nodes (with children)
int num2_int;
// number of leaf nodes (nc = no child)
int num2_leaf;
// number of 1-particle basis functions
// (these will be stored in the first num1 entries of AAbuf)
int get_num1() { return Aspec.get_dim(0); };
// total number of n-correlation basis functions n > 1.
int get_num2() { return num_nodes - get_num1(); };
int get_num2_int() { return num2_int; }; // with children
int get_num2_leaf() { return num2_leaf; }; // without children
// debugging tool
void print();
};
/**
* Recursive Variant of the ACETildeEvaluator; should be 100% compatible
*/
class ACERecursiveEvaluator : public ACEEvaluator {
/**
* Weights \f$ \omega_{i \mu n 0 0} \f$ for rank = 1, see Eq.(10) from implementation notes,
* 'i' is fixed for the current atom, shape: [nelements][nradbase]
*/
Array2D<DOUBLE_TYPE> weights_rank1 = Array2D<DOUBLE_TYPE>("weights_rank1");
/**
* Weights \f$ \omega_{i \mu n l m} \f$ for rank > 1, see Eq.(10) from implementation notes,
* 'i' is fixed for the current atom, shape: [nelements][nradbase][l=0..lmax, m]
*/
Array4DLM<ACEComplex> weights = Array4DLM<ACEComplex>("weights");
/**
* cache for gradients of \f$ g(r)\f$: grad_phi(jj,n)=A2DLM(l,m)
* shape:[max_jnum][nradbase]
*/
Array2D<DOUBLE_TYPE> DG_cache = Array2D<DOUBLE_TYPE>("DG_cache");
/**
* cache for \f$ R_{nl}(r)\f$
* shape:[max_jnum][nradbase][0..lmax]
*/
Array3D<DOUBLE_TYPE> R_cache = Array3D<DOUBLE_TYPE>("R_cache");
/**
* cache for derivatives of \f$ R_{nl}(r)\f$
* shape:[max_jnum][nradbase][0..lmax]
*/
Array3D<DOUBLE_TYPE> DR_cache = Array3D<DOUBLE_TYPE>("DR_cache");
/**
* cache for \f$ Y_{lm}(\hat{r})\f$
* shape:[max_jnum][0..lmax][m]
*/
Array3DLM<ACEComplex> Y_cache = Array3DLM<ACEComplex>("Y_cache");
/**
* cache for \f$ \nabla Y_{lm}(\hat{r})\f$
* shape:[max_jnum][0..lmax][m]
*/
Array3DLM<ACEDYcomponent> DY_cache = Array3DLM<ACEDYcomponent>("dY_dense_cache");
/**
* cache for derivatives of hard-core repulsion
* shape:[max_jnum]
*/
Array1D<DOUBLE_TYPE> DCR_cache = Array1D<DOUBLE_TYPE>("DCR_cache");
/**
* Partial derivatives \f$ dB_{i \mu n l m t}^{(r)} \f$ with sequential numbering over [func_ind][ms_ind][r],
* shape:[func_ms_r_ind]
*/
Array1D<ACEComplex> dB_flatten = Array1D<ACEComplex>("dB_flatten");
/**
* pointer to the ACEBasisSet object
*/
ACECTildeBasisSet *basis_set = nullptr;
/**
* Initialize internal arrays according to basis set sizes
* @param basis_set
*/
void init(ACECTildeBasisSet *basis_set, int heuristic);
/* convert the PACE to the ACE.jl format to prepare for DAG construction*/
Array2D<int> jl_Aspec;
Array2D<int> jl_AAspec;
Array1D<int> jl_AAspec_flat;
Array1D<int> jl_orders;
Array2D<DOUBLE_TYPE> jl_coeffs;
void acejlformat();
/* the main event : the computational graph */
ACEDAG dag;
bool recursive = true;
public:
ACERecursiveEvaluator() = default;
explicit ACERecursiveEvaluator(ACECTildeBasisSet &bas,
bool recursive = true) {
set_recursive(recursive);
set_basis(bas);
}
/**
* set the basis function to the ACE evaluator
* @param bas
*/
void set_basis(ACECTildeBasisSet &bas, int heuristic = 0);
/**
* The key method to compute energy and forces for atom 'i'.
* Method will update the "e_atom" variable and "neighbours_forces(jj, alpha)" array
*
* @param i atom index
* @param x atomic positions array of the real and ghost atoms, shape: [atom_ind][3]
* @param type atomic types array of the real and ghost atoms, shape: [atom_ind]
* @param jnum number of neighbours of atom_i
* @param jlist array of neighbour indices, shape: [jnum]
*/
void compute_atom(int i, DOUBLE_TYPE **x, const SPECIES_TYPE *type, const int jnum, const int *jlist) override;
/**
* Resize all caches over neighbours atoms
* @param max_jnum maximum number of neighbours
*/
void resize_neighbours_cache(int max_jnum) override;
/******* public functions related to recursive evaluator ********/
// print out the DAG for visual inspection
void print_dag() {dag.print();}
// print out the jl format for visual inspection
// should be converted into a proper test
void test_acejlformat();
void set_recursive(bool tf) { recursive = tf; }
/********************************/
};
#endif //ACE_RECURSIVE_H

View File

@ -1,221 +0,0 @@
/*
* Performant implementation of atomic cluster expansion and interface to LAMMPS
*
* Copyright 2021 (c) Yury Lysogorskiy^1, Cas van der Oord^2, Anton Bochkarev^1,
* Sarath Menon^1, Matteo Rinaldi^1, Thomas Hammerschmidt^1, Matous Mrovec^1,
* Aidan Thompson^3, Gabor Csanyi^2, Christoph Ortner^4, Ralf Drautz^1
*
* ^1: Ruhr-University Bochum, Bochum, Germany
* ^2: University of Cambridge, Cambridge, United Kingdom
* ^3: Sandia National Laboratories, Albuquerque, New Mexico, USA
* ^4: University of British Columbia, Vancouver, BC, Canada
*
*
* See the LICENSE file.
* This FILENAME is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
// Created by Ralf Drautz, Yury Lysogorskiy
#include <cmath>
#include "ace_spherical_cart.h"
ACECartesianSphericalHarmonics::ACECartesianSphericalHarmonics(LS_TYPE lm) {
init(lm);
}
void ACECartesianSphericalHarmonics::init(LS_TYPE lm) {
lmax = lm;
alm.init(lmax, "alm");
blm.init(lmax, "blm");
cl.init(lmax + 1);
dl.init(lmax + 1);
plm.init(lmax, "plm");
dplm.init(lmax, "dplm");
ylm.init(lmax, "ylm");
dylm.init(lmax, "dylm");
pre_compute();
}
/**
Destructor for ACECartesianSphericalHarmonics.
@param None
@returns None
*/
ACECartesianSphericalHarmonics::~ACECartesianSphericalHarmonics() {}
void ACECartesianSphericalHarmonics::pre_compute() {
DOUBLE_TYPE a, b;
DOUBLE_TYPE lsq, ld, l1, l2;
DOUBLE_TYPE msq;
for (LS_TYPE l = 1; l <= lmax; l++) {
lsq = l * l;
ld = 2 * l;
l1 = (4 * lsq - 1);
l2 = lsq - ld + 1;
for (MS_TYPE m = 0; m < l - 1; m++) {
msq = m * m;
a = sqrt((DOUBLE_TYPE(l1)) / (DOUBLE_TYPE(lsq - msq)));
b = -sqrt((DOUBLE_TYPE(l2 - msq)) / (DOUBLE_TYPE(4 * l2 - 1)));
alm(l, m) = a;
blm(l, m) = b;
}
}
for (LS_TYPE l = 1; l <= lmax; l++) {
cl(l) = -sqrt(1.0 + 0.5 / (DOUBLE_TYPE(l)));
dl(l) = sqrt(DOUBLE_TYPE(2 * (l - 1) + 3));
}
}
void ACECartesianSphericalHarmonics::compute_barplm(DOUBLE_TYPE rz, LS_TYPE lmaxi) {
// requires -1 <= rz <= 1 , NO CHECKING IS PERFORMED !!!!!!!!!
// prefactors include 1/sqrt(2) factor compared to reference
DOUBLE_TYPE t;
// l=0, m=0
//plm(0, 0) = Y00/sq1o4pi; //= sq1o4pi;
plm(0, 0) = Y00; //= 1;
dplm(0, 0) = 0.0;
if (lmaxi > 0) {
// l=1, m=0
plm(1, 0) = Y00 * sq3 * rz;
dplm(1, 0) = Y00 * sq3;
// l=1, m=1
plm(1, 1) = -sq3o2 * Y00;
dplm(1, 1) = 0.0;
// loop l = 2, lmax
for (LS_TYPE l = 2; l <= lmaxi; l++) {
for (MS_TYPE m = 0; m < l - 1; m++) {
plm(l, m) = alm(l, m) * (rz * plm(l - 1, m) + blm(l, m) * plm(l - 2, m));
dplm(l, m) = alm(l, m) * (plm(l - 1, m) + rz * dplm(l - 1, m) + blm(l, m) * dplm(l - 2, m));
}
t = dl(l) * plm(l - 1, l - 1);
plm(l, l - 1) = t * rz;
dplm(l, l - 1) = t;
plm(l, l) = cl(l) * plm(l - 1, l - 1);
dplm(l, l) = 0.0;
}
}
} //end compute_barplm
void ACECartesianSphericalHarmonics::compute_ylm(DOUBLE_TYPE rx, DOUBLE_TYPE ry, DOUBLE_TYPE rz, LS_TYPE lmaxi) {
// requires rx^2 + ry^2 + rz^2 = 1 , NO CHECKING IS PERFORMED !!!!!!!!!
DOUBLE_TYPE real;
DOUBLE_TYPE img;
MS_TYPE m;
ACEComplex phase;
ACEComplex phasem, mphasem1;
ACEComplex dyx, dyy, dyz;
ACEComplex rdy;
phase.real = rx;
phase.img = ry;
//compute barplm
compute_barplm(rz, lmaxi);
//m = 0
m = 0;
for (LS_TYPE l = 0; l <= lmaxi; l++) {
ylm(l, m).real = plm(l, m);
ylm(l, m).img = 0.0;
dyz.real = dplm(l, m);
rdy.real = dyz.real * rz;
dylm(l, m).a[0].real = -rdy.real * rx;
dylm(l, m).a[0].img = 0.0;
dylm(l, m).a[1].real = -rdy.real * ry;
dylm(l, m).a[1].img = 0.0;
dylm(l, m).a[2].real = dyz.real - rdy.real * rz;
dylm(l, m).a[2].img = 0;
}
//m = 0
m = 1;
for (LS_TYPE l = 1; l <= lmaxi; l++) {
ylm(l, m) = phase * plm(l, m);
// std::cout << "Re ylm(" << l << "," << m <<")= " << ylm(l, m).real << std::endl;
// std::cout << "Im ylm(" << l << "," << m <<")= " << ylm(l, m).img << std::endl;
dyx.real = plm(l, m);
dyx.img = 0.0;
dyy.real = 0.0;
dyy.img = plm(l, m);
dyz.real = phase.real * dplm(l, m);
dyz.img = phase.img * dplm(l, m);
rdy.real = rx * dyx.real + +rz * dyz.real;
rdy.img = ry * dyy.img + rz * dyz.img;
dylm(l, m).a[0].real = dyx.real - rdy.real * rx;
dylm(l, m).a[0].img = -rdy.img * rx;
dylm(l, m).a[1].real = -rdy.real * ry;
dylm(l, m).a[1].img = dyy.img - rdy.img * ry;
dylm(l, m).a[2].real = dyz.real - rdy.real * rz;
dylm(l, m).a[2].img = dyz.img - rdy.img * rz;
}
// m > 1
phasem = phase;
for (MS_TYPE m = 2; m <= lmaxi; m++) {
mphasem1.real = phasem.real * DOUBLE_TYPE(m);
mphasem1.img = phasem.img * DOUBLE_TYPE(m);
phasem = phasem * phase;
for (LS_TYPE l = m; l <= lmaxi; l++) {
ylm(l, m).real = phasem.real * plm(l, m);
ylm(l, m).img = phasem.img * plm(l, m);
dyx = mphasem1 * plm(l, m);
dyy.real = -dyx.img;
dyy.img = dyx.real;
dyz = phasem * dplm(l, m);
rdy.real = rx * dyx.real + ry * dyy.real + rz * dyz.real;
rdy.img = rx * dyx.img + ry * dyy.img + rz * dyz.img;
dylm(l, m).a[0].real = dyx.real - rdy.real * rx;
dylm(l, m).a[0].img = dyx.img - rdy.img * rx;
dylm(l, m).a[1].real = dyy.real - rdy.real * ry;
dylm(l, m).a[1].img = dyy.img - rdy.img * ry;
dylm(l, m).a[2].real = dyz.real - rdy.real * rz;
dylm(l, m).a[2].img = dyz.img - rdy.img * rz;
}
}
}

View File

@ -1,134 +0,0 @@
/*
* Performant implementation of atomic cluster expansion and interface to LAMMPS
*
* Copyright 2021 (c) Yury Lysogorskiy^1, Cas van der Oord^2, Anton Bochkarev^1,
* Sarath Menon^1, Matteo Rinaldi^1, Thomas Hammerschmidt^1, Matous Mrovec^1,
* Aidan Thompson^3, Gabor Csanyi^2, Christoph Ortner^4, Ralf Drautz^1
*
* ^1: Ruhr-University Bochum, Bochum, Germany
* ^2: University of Cambridge, Cambridge, United Kingdom
* ^3: Sandia National Laboratories, Albuquerque, New Mexico, USA
* ^4: University of British Columbia, Vancouver, BC, Canada
*
*
* See the LICENSE file.
* This FILENAME is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
// Created by Ralf Drautz, Yury Lysogorskiy
#ifndef ACE_SPHERICAL_CART_H
#define ACE_SPHERICAL_CART_H
#include <cmath>
#include "ace_arraynd.h"
#include "ace_array2dlm.h"
#include "ace_complex.h"
#include "ace_types.h"
using namespace std;
const DOUBLE_TYPE sq1o4pi = 0.28209479177387814347; // sqrt(1/(4*pi))
const DOUBLE_TYPE sq4pi = 3.54490770181103176384; // sqrt(4*pi)
const DOUBLE_TYPE sq3 = 1.73205080756887719318;//sqrt(3), numpy
const DOUBLE_TYPE sq3o2 = 1.22474487139158894067;//sqrt(3/2), numpy
//definition of common factor for spherical harmonics = Y00
//const DOUBLE_TYPE Y00 = sq1o4pi;
const DOUBLE_TYPE Y00 = 1;
/**
Class to store spherical harmonics and their associated functions. \n
All the associated members such as \f$ P_{lm}, Y_{lm}\f$ etc are one dimensional arrays of length (L+1)*(L+2)/2. \n
The value that corresponds to a particular l, m configuration can be accessed through a \code ylm(l,m) \endcode \n
*/
class ACECartesianSphericalHarmonics {
public:
/**
int, the number of spherical harmonics to be found
*/
LS_TYPE lmax;
/**
* Default constructor
*/
ACECartesianSphericalHarmonics() = default;
/**
* Parametrized constructor. Dynamically initialises all the arrays.
* @param lmax maximum orbital moment
*/
explicit ACECartesianSphericalHarmonics(LS_TYPE lmax);
/**
* Initialize internal arrays and precompute necessary coefficients
* @param lm maximum orbital moment
*/
void init(LS_TYPE lm);
/**
* Destructor
*/
~ACECartesianSphericalHarmonics();
/**
* Precompute necessaary helper arrays Precomputes the value of \f$ a_{lm}, b_{lm}, c_l, d_l \f$
*/
void pre_compute();
/**
Function that computes \f$ \bar{P}_{lm} \f$ for the corresponding lmax value
Input is \f$ \hat{r}_z \f$ which is the $z$-component of the bond direction.
For each \f$ \hat{r}_z \f$, this computes the whole range of \f$ \bar{P}_{lm} \f$ values
and its derivatives upto the lmax specified, which is a member of the class.
@param rz, DOUBLE_TYPE
@returns None
*/
void compute_barplm(DOUBLE_TYPE rz, LS_TYPE lmaxi);
/**
Function that computes \f$ Y_{lm} \f$ for the corresponding lmax value
Input is the bond-directon vector \f$ \hat{r}_x, \hat{r}_y, \hat{r}_z \f$
Each \f$ Y_{lm} \f$ value is a ACEComplex object with real and imaginary parts. This function also
finds the derivatives, which are stored in the Dycomponent class, with each component being a
ACEComplex object.
@param rx, DOUBLE_TYPE
@param ry, DOUBLE_TYPE
@param rz, DOUBLE_TYPE
@param lmaxi, int
*/
void compute_ylm(DOUBLE_TYPE rx, DOUBLE_TYPE ry, DOUBLE_TYPE rz, LS_TYPE lmaxi);
Array2DLM<DOUBLE_TYPE> alm;
Array2DLM<DOUBLE_TYPE> blm;
Array1D<DOUBLE_TYPE> cl;
Array1D<DOUBLE_TYPE> dl;
Array2DLM<DOUBLE_TYPE> plm;
Array2DLM<DOUBLE_TYPE> dplm;
Array2DLM<ACEComplex> ylm; ///< Values of all spherical harmonics after \code compute_ylm(rx,ry,rz, lmaxi) \endcode call
Array2DLM<ACEDYcomponent> dylm;///< Values of gradients of all spherical harmonics after \code compute_ylm(rx,ry,rz, lmaxi) \endcode call
};
#endif

View File

@ -1,126 +0,0 @@
/*
* Performant implementation of atomic cluster expansion and interface to LAMMPS
*
* Copyright 2021 (c) Yury Lysogorskiy^1, Cas van der Oord^2, Anton Bochkarev^1,
* Sarath Menon^1, Matteo Rinaldi^1, Thomas Hammerschmidt^1, Matous Mrovec^1,
* Aidan Thompson^3, Gabor Csanyi^2, Christoph Ortner^4, Ralf Drautz^1
*
* ^1: Ruhr-University Bochum, Bochum, Germany
* ^2: University of Cambridge, Cambridge, United Kingdom
* ^3: Sandia National Laboratories, Albuquerque, New Mexico, USA
* ^4: University of British Columbia, Vancouver, BC, Canada
*
*
* See the LICENSE file.
* This FILENAME is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
// Created by Yury Lysogorskiy on 19.02.20.
#ifndef ACE_TIMING_H
#define ACE_TIMING_H
#include <chrono>
using namespace std::chrono;
using Clock = std::chrono::high_resolution_clock;
using TimePoint = std::chrono::time_point<Clock>;
using Duration = Clock::duration;
//////////////////////////////////////////
#ifdef FINE_TIMING
/**
* Helper class for timing the code.
* The timer should be initialized to reset measured time and
* then call "start" and "stop" before and after measured code.
* The measured time is stored in "duration" variable
*/
struct ACETimer {
Duration duration; ///< measured duration
TimePoint start_moment; ///< start moment of current measurement
ACETimer() { init(); };
/**
* Reset timer
*/
void init() { duration = std::chrono::nanoseconds(0); }
/**
* Start timer
*/
void start() { start_moment = Clock::now(); }
/**
* Stop timer, update measured "duration"
*/
void stop() { duration += Clock::now() - start_moment; }
/**
* Get duration in microseconds
*/
long as_microseconds() { return std::chrono::duration_cast<std::chrono::microseconds>(duration).count(); }
/**
* Get duration in nanoseconds
*/
long as_nanoseconds() { return std::chrono::duration_cast<std::chrono::nanoseconds>(duration).count(); }
};
#else // EMPTY Definitions
/**
* Helper class for timing the code.
* The timer should be initialized to reset measured time and
* then call "start" and "stop" before and after measured code.
* The measured time is stored in "duration" variable
*/
struct ACETimer {
Duration duration; ///< measured duration
TimePoint start_moment; ///< start moment of current measurement
ACETimer() {};
/**
* Reset timer
*/
void init() {}
/**
* Start timer
*/
void start() {}
/**
* Stop timer, update measured "duration"
*/
void stop() {}
/**
* Get duration in microseconds
*/
long as_microseconds() {return 0; }
/**
* Get duration in nanoseconds
*/
long as_nanoseconds() {return 0; }
};
#endif
//////////////////////////////////////////
#endif //ACE_TIMING_H

View File

@ -1,45 +0,0 @@
/*
* Performant implementation of atomic cluster expansion and interface to LAMMPS
*
* Copyright 2021 (c) Yury Lysogorskiy^1, Cas van der Oord^2, Anton Bochkarev^1,
* Sarath Menon^1, Matteo Rinaldi^1, Thomas Hammerschmidt^1, Matous Mrovec^1,
* Aidan Thompson^3, Gabor Csanyi^2, Christoph Ortner^4, Ralf Drautz^1
*
* ^1: Ruhr-University Bochum, Bochum, Germany
* ^2: University of Cambridge, Cambridge, United Kingdom
* ^3: Sandia National Laboratories, Albuquerque, New Mexico, USA
* ^4: University of British Columbia, Vancouver, BC, Canada
*
*
* See the LICENSE file.
* This FILENAME is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
// Created by Yury Lysogorskiy on 20.01.20.
#ifndef ACE_TYPES_H
#define ACE_TYPES_H
typedef char RANK_TYPE;
typedef int SPECIES_TYPE;
typedef short int NS_TYPE;
typedef short int LS_TYPE;
typedef short int DENSITY_TYPE;
typedef short int MS_TYPE;
typedef short int SHORT_INT_TYPE;
typedef double DOUBLE_TYPE;
#endif

View File

@ -1,39 +0,0 @@
/*
* Performant implementation of atomic cluster expansion and interface to LAMMPS
*
* Copyright 2021 (c) Yury Lysogorskiy^1, Cas van der Oord^2, Anton Bochkarev^1,
* Sarath Menon^1, Matteo Rinaldi^1, Thomas Hammerschmidt^1, Matous Mrovec^1,
* Aidan Thompson^3, Gabor Csanyi^2, Christoph Ortner^4, Ralf Drautz^1
*
* ^1: Ruhr-University Bochum, Bochum, Germany
* ^2: University of Cambridge, Cambridge, United Kingdom
* ^3: Sandia National Laboratories, Albuquerque, New Mexico, USA
* ^4: University of British Columbia, Vancouver, BC, Canada
*
*
* See the LICENSE file.
* This FILENAME is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
// Created by Lysogorskiy Yury on 07.04.2020.
#ifndef ACE_VERSION_H
#define ACE_VERSION_H
#define VERSION_YEAR 2021
#define VERSION_MONTH 2
#define VERSION_DAY 3
#endif //ACE_VERSION_Hls

View File

@ -1,388 +0,0 @@
/*
* Performant implementation of atomic cluster expansion and interface to LAMMPS
*
* Copyright 2021 (c) Yury Lysogorskiy^1, Cas van der Oord^2, Anton Bochkarev^1,
* Sarath Menon^1, Matteo Rinaldi^1, Thomas Hammerschmidt^1, Matous Mrovec^1,
* Aidan Thompson^3, Gabor Csanyi^2, Christoph Ortner^4, Ralf Drautz^1
*
* ^1: Ruhr-University Bochum, Bochum, Germany
* ^2: University of Cambridge, Cambridge, United Kingdom
* ^3: Sandia National Laboratories, Albuquerque, New Mexico, USA
* ^4: University of British Columbia, Vancouver, BC, Canada
*
*
* See the LICENSE file.
* This FILENAME is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
// Created by Christoph Ortner on 03.06.2020
#include "ships_radial.h"
#include <functional>
#include <cmath>
#include <string>
using namespace std;
void SHIPsRadPolyBasis::_init(DOUBLE_TYPE r0, int p, DOUBLE_TYPE rcut,
DOUBLE_TYPE xl, DOUBLE_TYPE xr,
int pl, int pr, size_t maxn) {
this->p = p;
this->r0 = r0;
this->rcut = rcut;
this->xl = xl;
this->xr = xr;
this->pl = pl;
this->pr = pr;
this->maxn = maxn;
this->A.resize(maxn);
this->B.resize(maxn);
this->C.resize(maxn);
this->P.resize(maxn);
this->dP_dr.resize(maxn);
}
void SHIPsRadPolyBasis::fread(FILE *fptr)
{
int res; //for fscanf result
int maxn, p, pl, pr, ntests;
double r0, xl, xr, a, b, c, rcut;
// transform parameters
res = fscanf(fptr, "transform parameters: p=%d r0=%lf\n", &p, &r0);
if (res != 2)
throw invalid_argument("Couldn't read line: transform parameters: p=%d r0=%lf");
// cutoff parameters
res = fscanf(fptr, "cutoff parameters: rcut=%lf xl=%lf xr=%lf pl=%d pr=%d\n",
&rcut, &xl, &xr, &pl, &pr);
if (res != 5)
throw invalid_argument("Couldn't read cutoff parameters: rcut=%lf xl=%lf xr=%lf pl=%d pr=%d");
// basis size
res = fscanf(fptr, "recursion coefficients: maxn = %d\n", &maxn);
if (res != 1)
throw invalid_argument("Couldn't read recursion coefficients: maxn = %d");
// initialize and allocate
this->_init(r0, p, rcut, xl, xr, pl, pr, maxn);
// read basis coefficients
for (int i = 0; i < maxn; i++) {
res = fscanf(fptr, " %lf %lf %lf\n", &a, &b, &c);
if (res != 3)
throw invalid_argument("Couldn't read line: A_n B_n C_n");
this->A(i) = DOUBLE_TYPE(a);
this->B(i) = DOUBLE_TYPE(b);
this->C(i) = DOUBLE_TYPE(c);
}
// // check there are no consistency tests (I don't have time to fix this now)
// res = fscanf(fptr, "tests: ntests = %d\n", &ntests);
// if (res != 1)
// throw invalid_argument("Couldn't read line: tests: ntests = %d");
// if (ntests != 0)
// throw invalid_argument("must have ntests = 0!");
// ---------------------------------------------------------------------
// run the consistency test this could be moved into a separate function
double r, Pn, dPn;
double err = 0.0;
res = fscanf(fptr, "tests: ntests = %d\n", &ntests);
if (res != 1)
throw invalid_argument("Couldn't read line: tests: ntests = %d");
for (size_t itest = 0; itest < ntests; itest++) {
// read an r argument
res = fscanf(fptr, " r=%lf\n", &r);
// printf("r = %lf \n", r);
if (res != 1)
throw invalid_argument("Couldn't read line: r=%lf");
// printf("test %d, r=%f, maxn=%d \n", itest, r, maxn);
// evaluate the basis
this->calcP(r, maxn, SPECIES_TYPE(0), SPECIES_TYPE(0));
// compare against the stored values
for (size_t n = 0; n < maxn; n++) {
res = fscanf(fptr, " %lf %lf\n", &Pn, &dPn);
if (res != 2)
throw invalid_argument("Couldn't read test value line: %lf %lf");
err = max(err, abs(Pn - this->P(n)) + abs(dPn - this->dP_dr(n)));
// printf(" %d %e %e \n", int(n),
// abs(Pn - this->P(n)),
// abs(dPn - this->dP_dr(n)));
}
}
if (ntests > 0)
printf("Maximum Test error = %e\n", err);
// ---------------------------------------------------------------------
}
size_t SHIPsRadPolyBasis::get_maxn()
{
return this->maxn;
}
// Julia code: ((1+r0)/(1+r))^p
void SHIPsRadPolyBasis::transform(const DOUBLE_TYPE r, DOUBLE_TYPE &x_out, DOUBLE_TYPE &dx_out) const {
x_out = pow((1 + r0) / (1 + r), p); // ==pow( (1 + r) / (1 + r0), -p );
dx_out = -p * pow((1 + r) / (1 + r0), -p - 1) / (1 + r0);
}
void SHIPsRadPolyBasis::fcut(const DOUBLE_TYPE x, DOUBLE_TYPE &f_out, DOUBLE_TYPE &df_out) const {
if ( ((x < xl) && (pl > 0)) || ((x > xr) && (pr > 0)) ) {
f_out = 0.0;
df_out = 0.0;
} else {
f_out = pow(x - xl, pl) * pow(x - xr, pr);
df_out = pl * pow(x - xl, pl - 1) * pow(x - xr, pr) + pow(x - xl, pl) * pr * pow(x - xr, pr - 1);
}
}
/* ------------------------------------------------------------------------
Julia Code
P[1] = J.A[1] * _fcut_(J.pl, J.tl, J.pr, J.tr, t)
if length(J) == 1; return P; end
P[2] = (J.A[2] * t + J.B[2]) * P[1]
@inbounds for n = 3:length(J)
P[n] = (J.A[n] * t + J.B[n]) * P[n-1] + J.C[n] * P[n-2]
end
return P
------------------------------------------------------------------------ */
void SHIPsRadPolyBasis::calcP(DOUBLE_TYPE r, size_t maxn,
SPECIES_TYPE z1, SPECIES_TYPE z2) {
if (maxn > this->maxn)
throw invalid_argument("Given maxn couldn't be larger than global maxn");
if (maxn > P.get_size())
throw invalid_argument("Given maxn couldn't be larger than global length of P");
DOUBLE_TYPE x, dx_dr; // dx -> dx/dr
transform(r, x, dx_dr);
// printf("r = %f, x = %f, fcut = %f \n", r, x, fcut(x));
DOUBLE_TYPE f, df_dx;
fcut(x, f, df_dx); // df -> df/dx
//fill with zeros
P.fill(0);
dP_dr.fill(0);
P(0) = A(0) * f;
dP_dr(0) = A(0) * df_dx * dx_dr; // dP/dr; chain rule: df_cut/dr = df_cut/dx * dx/dr
if (maxn > 0) {
P(1) = (A(1) * x + B(1)) * P(0);
dP_dr(1) = A(1) * dx_dr * P(0) + (A(1) * x + B(1)) * dP_dr(0);
}
for (size_t n = 2; n < maxn; n++) {
P(n) = (A(n) * x + B(n)) * P(n - 1) + C(n) * P(n - 2);
dP_dr(n) = A(n) * dx_dr * P(n - 1) + (A(n) * x + B(n)) * dP_dr(n - 1) + C(n) * dP_dr(n - 2);
}
}
// ====================================================================
bool SHIPsRadialFunctions::has_pair() {
return this->haspair;
}
void SHIPsRadialFunctions::load(string fname) {
FILE * fptr = fopen(fname.data(), "r");
size_t res = fscanf(fptr, "radbasename=ACE.jl.Basic\n");
if (res != 0)
throw("SHIPsRadialFunctions::load : couldnt read radbasename=ACE.jl.Basic");
this->fread(fptr);
fclose(fptr);
}
void SHIPsRadialFunctions::fread(FILE *fptr){
int res;
size_t maxn;
char hasE0, haspair;
DOUBLE_TYPE c;
// check whether we have a pair potential
res = fscanf(fptr, "haspair: %c\n", &haspair);
if (res != 1)
throw("SHIPsRadialFunctions::load : couldn't read haspair");
// read the radial basis
this->radbasis.fread(fptr);
// read the pair potential
if (haspair == 't') {
this->haspair=true;
fscanf(fptr, "begin repulsive potential\n");
fscanf(fptr, "begin polypairpot\n");
// read the basis parameters
pairbasis.fread(fptr);
maxn = pairbasis.get_maxn();
// read the coefficients
fscanf(fptr, "coefficients\n");
paircoeffs.resize(maxn);
for (size_t n = 0; n < maxn; n++) {
fscanf(fptr, "%lf\n", &c);
paircoeffs(n) = c;
}
fscanf(fptr, "end polypairpot\n");
// read the spline parameters
fscanf(fptr, "spline parameters\n");
fscanf(fptr, " e_0 + B exp(-A*(r/ri-1)) * (ri/r)\n");
fscanf(fptr, "ri=%lf\n", &(this->ri));
fscanf(fptr, "e0=%lf\n", &(this->e0));
fscanf(fptr, "A=%lf\n", &(this->A));
fscanf(fptr, "B=%lf\n", &(this->B));
fscanf(fptr, "end repulsive potential\n");
}
}
size_t SHIPsRadialFunctions::get_maxn()
{
return this->radbasis.get_maxn();
}
DOUBLE_TYPE SHIPsRadialFunctions::get_rcut()
{
return max(radbasis.rcut, pairbasis.rcut);
}
void SHIPsRadialFunctions::fill_gk(DOUBLE_TYPE r, NS_TYPE maxn, SPECIES_TYPE z1, SPECIES_TYPE z2) {
radbasis.calcP(r, maxn, z1, z2);
for (NS_TYPE n = 0; n < maxn; n++) {
gr(n) = radbasis.P(n);
dgr(n) = radbasis.dP_dr(n);
}
}
void SHIPsRadialFunctions::fill_Rnl(DOUBLE_TYPE r, NS_TYPE maxn, SPECIES_TYPE z1, SPECIES_TYPE z2) {
radbasis.calcP(r, maxn, z1, z2);
for (NS_TYPE n = 0; n < maxn; n++) {
for (LS_TYPE l = 0; l <= lmax; l++) {
fr(n, l) = radbasis.P(n);
dfr(n, l) = radbasis.dP_dr(n);
}
}
}
void SHIPsRadialFunctions::setuplookupRadspline() {
}
void SHIPsRadialFunctions::init(NS_TYPE nradb, LS_TYPE lmax, NS_TYPE nradial, DOUBLE_TYPE deltaSplineBins,
SPECIES_TYPE nelements,
DOUBLE_TYPE cutoff, string radbasename) {
//mimic ACERadialFunctions::init
this->nradbase = nradb;
this->lmax = lmax;
this->nradial = nradial;
this->deltaSplineBins = deltaSplineBins;
this->nelements = nelements;
this->cutoff = cutoff;
this->radbasename = radbasename;
gr.init(nradbase, "gr");
dgr.init(nradbase, "dgr");
fr.init(nradial, lmax + 1, "fr");
dfr.init(nradial, lmax + 1, "dfr");
splines_gk.init(nelements, nelements, "splines_gk");
splines_rnl.init(nelements, nelements, "splines_rnl");
splines_hc.init(nelements, nelements, "splines_hc");
lambda.init(nelements, nelements, "lambda");
lambda.fill(1.);
cut.init(nelements, nelements, "cut");
cut.fill(1.);
dcut.init(nelements, nelements, "dcut");
dcut.fill(1.);
crad.init(nelements, nelements, (lmax + 1), nradial, nradbase, "crad");
crad.fill(0.);
//hard-core repulsion
prehc.init(nelements, nelements, "prehc");
prehc.fill(0.);
lambdahc.init(nelements, nelements, "lambdahc");
lambdahc.fill(1.);
}
void SHIPsRadialFunctions::evaluate(DOUBLE_TYPE r, NS_TYPE nradbase_c, NS_TYPE nradial_c, SPECIES_TYPE mu_i,
SPECIES_TYPE mu_j, bool calc_second_derivatives) {
if (calc_second_derivatives)
throw invalid_argument("SHIPsRadialFunctions has not `calc_second_derivatives` option");
radbasis.calcP(r, nradbase_c, mu_i, mu_j);
for (NS_TYPE nr = 0; nr < nradbase_c; nr++) {
gr(nr) = radbasis.P(nr);
dgr(nr) = radbasis.dP_dr(nr);
}
for (NS_TYPE nr = 0; nr < nradial_c; nr++) {
for (LS_TYPE l = 0; l <= this->lmax; l++) {
fr(nr, l) = radbasis.P(nr);
dfr(nr, l) = radbasis.dP_dr(nr);
}
}
if (this->has_pair())
this->evaluate_pair(r, mu_i, mu_j);
else {
cr = 0;
dcr = 0;
}
}
void SHIPsRadialFunctions::evaluate_pair(DOUBLE_TYPE r,
SPECIES_TYPE mu_i,
SPECIES_TYPE mu_j,
bool calc_second_derivatives) {
// spline_hc.calcSplines(r);
// cr = spline_hc.values(0);
// dcr = spline_hc.derivatives(0);
// the outer polynomial potential
if (r > ri) {
pairbasis.calcP(r, pairbasis.get_maxn(), mu_i, mu_j);
cr = 0;
dcr = 0;
for (size_t n = 0; n < pairbasis.get_maxn(); n++) {
cr += paircoeffs(n) * pairbasis.P(n);
dcr += paircoeffs(n) * pairbasis.dP_dr(n);
}
}
else { // the repulsive core part
cr = e0 + B * exp(-A * (r/ri - 1)) * (ri/r);
dcr = B * exp( - A * (r/ri-1) ) * ri * ( - A / ri / r - 1/(r*r) );
}
// fix double-counting
cr *= 0.5;
dcr *= 0.5;
}

View File

@ -1,158 +0,0 @@
/*
* Performant implementation of atomic cluster expansion and interface to LAMMPS
*
* Copyright 2021 (c) Yury Lysogorskiy^1, Cas van der Oord^2, Anton Bochkarev^1,
* Sarath Menon^1, Matteo Rinaldi^1, Thomas Hammerschmidt^1, Matous Mrovec^1,
* Aidan Thompson^3, Gabor Csanyi^2, Christoph Ortner^4, Ralf Drautz^1
*
* ^1: Ruhr-University Bochum, Bochum, Germany
* ^2: University of Cambridge, Cambridge, United Kingdom
* ^3: Sandia National Laboratories, Albuquerque, New Mexico, USA
* ^4: University of British Columbia, Vancouver, BC, Canada
*
*
* See the LICENSE file.
* This FILENAME is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
// Created by Christoph Ortner on 03.06.2020
#ifndef SHIPs_RADIAL_FUNCTIONS_H
#define SHIPs_RADIAL_FUNCTIONS_H
#include "ace_arraynd.h"
#include "ace_types.h"
#include "ace_radial.h"
class SHIPsRadPolyBasis {
public:
// transform parameters
int p = 0;
DOUBLE_TYPE r0 = 0.0;
// cutoff parameters
DOUBLE_TYPE rcut = 0.0;
DOUBLE_TYPE xl = 0.0;
DOUBLE_TYPE xr = 0.0;
int pl = 0;
int pr = 0;
// basis size
size_t maxn = 0;
// recursion parameters
Array1D<DOUBLE_TYPE> A = Array1D<DOUBLE_TYPE>("SHIPs radial basis: A");
Array1D<DOUBLE_TYPE> B = Array1D<DOUBLE_TYPE>("SHIPs radial basis: B");
Array1D<DOUBLE_TYPE> C = Array1D<DOUBLE_TYPE>("SHIPs radial basis: C");
// temporary storage for evaluating the basis
Array1D<DOUBLE_TYPE> P = Array1D<DOUBLE_TYPE>("SHIPs radial basis: P");
Array1D<DOUBLE_TYPE> dP_dr = Array1D<DOUBLE_TYPE>("SHIPs radial basis: dP");
//////////////////////////////////
SHIPsRadPolyBasis() = default;
~SHIPsRadPolyBasis() = default;
// distance transform
void transform(const DOUBLE_TYPE r, DOUBLE_TYPE &x_out, DOUBLE_TYPE &dx_out) const;
// cutoff function
void fcut(const DOUBLE_TYPE x, DOUBLE_TYPE &f_out, DOUBLE_TYPE &df_out) const;
void fread(FILE *fptr);
void _init(DOUBLE_TYPE r0, int p, DOUBLE_TYPE rcut,
DOUBLE_TYPE xl, DOUBLE_TYPE xr,
int pl, int pr, size_t maxn);
void calcP(DOUBLE_TYPE r, size_t maxn, SPECIES_TYPE z1, SPECIES_TYPE z2);
size_t get_maxn();
};
class SHIPsRadialFunctions : public AbstractRadialBasis {
public:
// radial basis
SHIPsRadPolyBasis radbasis;
// pair potential basis
bool haspair = false;
SHIPsRadPolyBasis pairbasis;
// pair potential coefficients
Array1D<DOUBLE_TYPE> paircoeffs = Array1D<DOUBLE_TYPE>("SHIPs pairpot coeffs: paircoeffs");
// spline parameters for repulsive core
DOUBLE_TYPE ri = 0.0;
DOUBLE_TYPE e0 = 0.0;
DOUBLE_TYPE A = 0.0;
DOUBLE_TYPE B = 0.0;
//////////////////////////////////
SHIPsRadialFunctions() = default;
~SHIPsRadialFunctions() override = default;
void fread(FILE *fptr);
void load(string fname);
size_t get_maxn();
DOUBLE_TYPE get_rcut();
bool has_pair();
void init(NS_TYPE nradb, LS_TYPE lmax, NS_TYPE nradial, DOUBLE_TYPE deltaSplineBins, SPECIES_TYPE nelements,
DOUBLE_TYPE cutoff,
string radbasename) override;
void
evaluate(DOUBLE_TYPE r, NS_TYPE nradbase_c, NS_TYPE nradial_c, SPECIES_TYPE mu_i, SPECIES_TYPE mu_j,
bool calc_second_derivatives = false) override;
void
evaluate_pair(DOUBLE_TYPE r, SPECIES_TYPE mu_i, SPECIES_TYPE mu_j,
bool calc_second_derivatives = false);
void setuplookupRadspline() override;
SHIPsRadialFunctions *clone() const override {
return new SHIPsRadialFunctions(*this);
};
/**
* Helper method, that populate `fr` and `dfr` 2D-arrays (n,l) with P(n), dP_dr for given coordinate r
* @param r
* @param maxn
* @param z1
* @param z2
*/
void fill_Rnl(DOUBLE_TYPE r, NS_TYPE maxn, SPECIES_TYPE z1, SPECIES_TYPE z2);
void fill_gk(DOUBLE_TYPE r, NS_TYPE maxn, SPECIES_TYPE z1, SPECIES_TYPE z2);
};
#endif

View File

@ -1,68 +1,64 @@
# Install.sh file that integrates the settings from the lib folder into the conventional build process (make build?)
# Install/unInstall package files in LAMMPS
# mode = 0/1/2 for uninstall/install/update
# COPIED FROM src/KIM/Install.sh:
mode=$1
# # Install/unInstall package files in LAMMPS
# # mode = 0/1/2 for uninstall/install/update
# enforce using portable C locale
LC_ALL=C
export LC_ALL
# mode=$1
# arg1 = file, arg2 = file it depends on
# # enforce using portable C locale
# LC_ALL=C
# export LC_ALL
action () {
if (test $mode = 0) then
rm -f ../$1
elif (! cmp -s $1 ../$1) then
if (test -z "$2" || test -e ../$2) then
cp $1 ..
if (test $mode = 2) then
echo " updating src/$1"
fi
fi
elif (test -n "$2") then
if (test ! -e ../$2) then
rm -f ../$1
fi
fi
}
# # arg1 = file, arg2 = file it depends on
# all package files with no dependencies
# action () {
# if (test $mode = 0) then
# rm -f ../$1
# elif (! cmp -s $1 ../$1) then
# if (test -z "$2" || test -e ../$2) then
# cp $1 ..
# if (test $mode = 2) then
# echo " updating src/$1"
# fi
# fi
# elif (test -n "$2") then
# if (test ! -e ../$2) then
# rm -f ../$1
# fi
# fi
# }
for file in *.cpp *.h; do
test -f ${file} && action $file
done
# # all package files with no dependencies
# edit 2 Makefile.package files to include/exclude package info
# for file in *.cpp *.h; do
# test -f ${file} && action $file
# done
if (test $1 = 1) then
# # edit 2 Makefile.package files to include/exclude package info
if (test -e ../Makefile.package) then
sed -i -e 's/[^ \t]*pace[^ \t]* //' ../Makefile.package
sed -i -e 's|^PKG_SYSINC =[ \t]*|&$(pace_SYSINC) |' ../Makefile.package
sed -i -e 's|^PKG_SYSLIB =[ \t]*|&$(pace_SYSLIB) |' ../Makefile.package
sed -i -e 's|^PKG_SYSPATH =[ \t]*|&$(pace_SYSPATH) |' ../Makefile.package
fi
# if (test $1 = 1) then
if (test -e ../Makefile.package.settings) then
sed -i -e '/^include.*pace.*$/d' ../Makefile.package.settings
# multiline form needed for BSD sed on Macs
sed -i -e '4 i \
include ..\/..\/lib\/pace\/Makefile.lammps
' ../Makefile.package.settings
fi
# if (test -e ../Makefile.package) then
# sed -i -e 's/[^ \t]*kim[^ \t]* //' ../Makefile.package
# sed -i -e 's|^PKG_SYSINC =[ \t]*|&$(kim_SYSINC) |' ../Makefile.package
# sed -i -e 's|^PKG_SYSLIB =[ \t]*|&$(kim_SYSLIB) |' ../Makefile.package
# sed -i -e 's|^PKG_SYSPATH =[ \t]*|&$(kim_SYSPATH) |' ../Makefile.package
# fi
elif (test $1 = 0) then
# if (test -e ../Makefile.package.settings) then
# sed -i -e '/^include.*kim.*$/d' ../Makefile.package.settings
# # multiline form needed for BSD sed on Macs
# sed -i -e '4 i \
# include ..\/..\/lib\/kim\/Makefile.lammps
# ' ../Makefile.package.settings
# fi
if (test -e ../Makefile.package) then
sed -i -e 's/[^ \t]*pace[^ \t]* //' ../Makefile.package
fi
# elif (test $1 = 0) then
if (test -e ../Makefile.package.settings) then
sed -i -e '/^include.*pace.*$/d' ../Makefile.package.settings
fi
# if (test -e ../Makefile.package) then
# sed -i -e 's/[^ \t]*kim[^ \t]* //' ../Makefile.package
# fi
# if (test -e ../Makefile.package.settings) then
# sed -i -e '/^include.*kim.*$/d' ../Makefile.package.settings
# fi
# fi
fi